Lecture 12: Modern Architectures

Administrative

- A3 is due tonight
- Quiz 3 on Friday (covers up to this lecture)

Today: Modern Architectures

Ranjay Krishna, Sarah Pratt

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5×5, applied at stride 1
Subsampling (Pooling) layers were 2×2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Review: Convolution

Stride:
Downsample output activations

Padding:
Preserve input spatial dimensions in output activations

Review: Convolution

activation maps

Each conv filter outputs a "slice" in the activation

Review: Pooling

Single depth slice

Today: Modern Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet
- ViT
- MLP Mixers

Also....

- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet
- EfficientNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: AlexNet

[Krizhevsky et al. 2012]

```
Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
```


Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 9611×11 filters applied at stride 4

$$
W^{\prime}=(W-F+2 P) / S+1
$$

$$
=>
$$

Q: what is the output volume size? Hint: $(227-11) / 4+1=55$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11×11 filters applied at stride 4

$$
W^{\prime}=(W-F+2 P) / S+1
$$

=>

Output volume [55x55x96]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11×11 filters applied at stride 4 =>
Output volume [55x55x96]
Q: What is the total number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11×11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: $\left(11^{*} 11^{*} 3+1\right)^{*} 96=35 K$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

$$
W^{\prime}=(W-F+2 P) / S+1
$$

Second layer (POOL1): 3×3 filters applied at stride 2
Q: what is the output volume size? Hint: $(55-3) / 2+1=27$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

$$
W^{\prime}=(W-F+2 P) / S+1
$$

Second layer (POOL1): 3×3 filters applied at stride 2
Output volume: 27x27x96
Q: what is the number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3×3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13×13x256] NORM2: Normalization layer
[13x13x384] CONV3: 3843×3 filters at stride 1, pad 1
[13x13x384] CONV4: 3843×3 filters at stride 1, pad 1
[13x13x256] CONV5: 2563×3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT
 [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13×13×384] CONV3: 3843×3 filters at stride 1, pad 1 [13x13x384] CONV4: 3843×3 filters at stride 1, pad 1 [13x13x256] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate $1 \mathrm{e}-2$, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2%-> 15.4\%

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT
 [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[$55 \times 55 \times 48] \times 2$
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1 [13x13x384] CONV4: 3843×3 filters at stride 1, pad 1 [13x13x256] CONV5: 2563×3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2

CONV1, CONV2, CONV4, CONV5: Connections only with feature maps [13×13×256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1 [13×13×384] CONV4: 3843×3 filters at stride 1, pad 1 [13x13x256] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

CONV3, FC6, FC7, FC8:
Connections with all feature maps in preceding layer, communication across GPUs
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[13×13x384] CONV4: 3843×3 filters at stride 1, pad 1
[13x13x256] CONV5: 2563×3 filters at stride 1, pad 1
[$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet

AlexNet but:
CONV1: change from (11×11 stride 4) to (7×7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512
ImageNet top 5 error: 16.4\% -> 11.7\%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
8 layers (AlexNet)
-> 16-19 layers (VGG16Net)
Only 3×3 CONV stride 1, pad 1 and 2×2 MAX POOL stride 2
11.7\% top 5 error in ILSVRC'13 (ZFNet)
-> 7.3\% top 5 error in ILSVRC'14

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3×3 conv)

Sotmax
FCC 1000
FC
FC 4096
Pool
3x3 conv, 25
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 266
11x11 conv, 96
Input
AlexNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3×3 conv)

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer

Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Sotmax
FCC 1000
FC 4096
FCC 4096
Pool
3x3 conv, 25
3x 3 conv, 384
Pool
3x 3 conv, 384
Pool
5×5 conv, 256
11x11 conv, 96
Inout
AlexNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Ranjay Krishna, Sarah Pratt
Lecture 12-33
February 13, 2024

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Ranjay Krishna, Sarah Pratt
Lecture 12-34
February 13, 2024

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Ranjay Krishna, Sarah Pratt
Lecture 12-35

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Ranjay Krishna, Sarah Pratt Lecture 12-36

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3×3 conv)

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer
[7x7]

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one $7 x 7$ conv layer

But deeper, more non-linearities
And fewer parameters: 3 * $\left(3^{2} \mathrm{C}^{2}\right)$ vs. $7^{2} \mathrm{C}^{2}$ for C channels per layer

AlexNet

VGG16

VGG16 FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138 M parameters

CONV3-64: [224x224x64] memory: $224^{* 224 * 64=3.2 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112×112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}(3 * 3 * 64)^{*} 128=73,728$
CONV3-128: [112x112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 128\right) * 128=147,456$
POOL2: [56x56x128] memory: $56 * 56 * 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28×28×256] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14x512] memory: 14*14*512=100K params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7x7x512] memory: $7^{*} 7^{*} 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: 24 M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

AlexNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: GoogLeNet

[Szegedy et al., 2014]
Deeper networks, with computational efficiency

- ILSVRC'14 classification winner (6.7\% top 5 error)
- 22 layers
- Only 5 million parameters! 12x less than AlexNet $27 x$ less than VGG-16
- Efficient "Inception" module
- No FC layers

Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Case Study: GoogLeNet

[Szegedy et al., 2014]
Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together channel-wise
Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together channel-wise

Q: What is the problem with this? [Hint: Computational complexity]

Case Study: GoogLeNet

[Szegedy et al., 2014]
Q: What is the problem with this? [Hint: Computational complexity]

Example:

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Example: Q1: What are the output sizes of all different filter operations?

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Q: What is the problem with this? [Hint: Computational complexity]

Example: Q1: What are the output sizes of all different filter operations?

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

Example:
 Q2:What is output size after

 filter concatenation?

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

Q: What is the problem with this? [Hint: Computational complexity]

Example: \quad Q2:What is output size after filter concatenation?

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] $28 \times 28 \times 128 \times 1 \times 1 \times 256$ [3×3 conv, 192] 28x28x192x3x3x256 [5×5 conv, 96] $28 \times 28 \times 96 \times 5 \times 5 \times 256$ Total: 854M ops

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Example: \quad Q2:What is output size after filter concatenation?

Conv Ops:

[1x1 conv, 128] $28 \times 28 \times 128 \times 1 \times 1 \times 256$ [3×3 conv, 192] 28x28x192x3x3x256 [5×5 conv, 96] $28 \times 28 \times 96 \times 5 \times 5 \times 256$
Total: 854M ops
Very expensive compute
Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!

Q: What is the problem with this? [Hint: Computational complexity]

Module input: Input
$28 \times 28 \times 256$
Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Q: What is the problem with this? [Hint: Computational complexity]

Example: \quad Q2:What is output size after filter concatenation?

Solution: "bottleneck" layers that use 1×1 convolutions to reduce feature channel size

Naive Inception module

Review: 1×1 convolutions

Review: 1x1 convolutions

Alternatively, interpret it as applying the same FC layer on each input pixel

64

Review: 1×1 convolutions

Alternatively, interpret it as applying the same FC layer on each input pixel

Case Study: GoogLeNet

[Szegedy et al., 2014]

Naive Inception module

Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al., 2014]

> 1x1 conv "bottleneck" layers

Naive Inception module

Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al., 2014]
$28 \times 28 \times 480$

Inception module with dimension reduction

Using same parallel layers as naive example, and adding " 1×1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3×3 conv, 192] $28 \times 28 \times 192 \times 3 \times 3 \times 64$ [5×5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops
Compared to 854 M ops for naive version Bottleneck can also reduce depth after pooling layer

Case Study: GoogLeNet

[Szegedy et al., 2014]

Stack Inception modules with dimension reduction on top of each other

Case Study: GoogLeNet

[Szegedy et al., 2014]

Case Study: GoogLeNet

[Szegedy et al., 2014]

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet architecture

Case Study: GoogLeNet

[Szegedy et al., 2014]

Full GoogLeNet
 average pooling layer is used that spatially averages across each feature map, before final FC layer. No

Classifier output longer multiple expensive FC layers!

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don't count auxiliary output layers)

Case Study: GoogLeNet

[Szegedy et al., 2014]
Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- $12 x$ less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7\% top 5 error)

Inception module

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: ResNet

[He et al., 2015]
Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57\% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both test and training error -> The deeper model performs worse, but it's not caused by overfitting!

Case Study: ResNet

[He et al., 2015]
Fact: Deep models have more representation power (more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

Case Study: ResNet

[He et al., 2015]
Fact: Deep models have more representation power (more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

What should the deeper model learn to be at least as good as the shallower model?

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Use layers to fit residual $F(x)=H(x)-x$ instead of $H(x)$ directly

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)
- No FC layers at the end (only FC 1000 to output classes)
- (In theory, you can train a ResNet with input image of variable sizes)

Case Study: ResNet

[He et al., 2015]

Total depths of $18,34,50$, 101, or 152 layers for ImageNet

Ranjay Krishna, Sarah Pratt Lecture 12-85

Case Study: ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use "bottleneck" layer to improve efficiency
(similar to GoogLeNet)

Case Study: ResNet

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

Case Study: ResNet

[He et al., 2015]
Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1 , divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of $1 e-5$
- No dropout used

Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11\% better than 2nd
- COCO Segmentation: 12% better than 2nd

Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11\% better than 2nd
- COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6\% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

GoogLeNet: most efficient

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

AlexNet:
Smaller compute, still memory heavy, lower accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

ResNet:
Moderate efficiency depending on model, highest accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Improving ResNets...

"Good Practices for Deep Feature Fusion"

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, Wide Resnet models
- ILSVRC'16 classification winner

Inception- v3	Inception- $\mathbf{v 4}$	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)	
Err. (\%)	4.20	4.01	3.52	4.26	4.65	$2.92(-0.6)$	2.99

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Improving ResNets...

Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a "feature recalibration" module that learns to adaptively reweight feature maps
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC'17 classification winner (using ResNeXt-152 as a base architecture)

SE-Inception Module

SE-ResNet Module

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

How have transformers affected architectures?

Transformer Encoder Block:

Inputs: Set of vectors \mathbf{x} Outputs: Set of vectors \mathbf{y}

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Notice the residual connections!!

Residual connections inherited from ResNet's design.

Allows for better gradients to flow through all the transformers blocks.

How to incorporate transformers to vision?

How to incorporate transformers to vision?

How to incorporate transformers to vision?

Dosovitskiyet al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

How to incorporate transformers to vision?

Dosovitskiyet al, "An Image is Worth 16×16 Words: Transformers for Image Recegnition
Idea \#2: Divide image into patches and pass those patches into the transformer

So, each $z_{0,0}$ is a $16 \times 16 \times 3$ patch.
Q. What operation do you know already that operates over patches?
Yes it's a convolution.
Q. What is the kernel size
Ranjay Krishna, Sarah Pratt
Lecture 12-108
「ebruary 13, 2024

How to incorporate transformers to vision?

Dosovitskiyet al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Position encoding

Since transformers are permutation invariant, we want to add position encoding to each patch.

- Patches are 768D.
- Position encoding is some learned 768D.
Pick any consistent ordering of patches (e.g. top left patch is always first).

Simply Add position encoding and patch representation.
Dosovitskiyet al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

How to turn the output to a class prediction?

\section*{linear
 | 1000 -way |
| :---: |
| classification |
 Add special [CLS] token.}

Similar to <start> and <end> tokens in NLP.

Output CLS representation makes the final prediction Using a linear layer

Common ViT architectures

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86 M
ViT-Large	24	1024	4096	16	307 M
ViT-Huge	32	1280	5120	16	632 M

Common patch sizes: $32,16,14 \ldots$
Smaller patches results in larger more powerful models.
Nomenclature: ViT-B/32 means that its a ViT model that uses Base values for layers, hidden size, mlp vize, and head. /32 means the input image patches are 32x32.

Comparing ResNets with ViTs

Models are initially trained on a large dataset called JFT-300M

And then the last linear layer is finetuned on ImageNet-1.5M

ViT performs worse when only 10M images are used from JFT. But ViT outperforms ResNets with larger training data (300M images from JFT).

Self-attention is expensive... can we design something simpler?

Every self-attention is expensive. We want each input to "interact" with other tokens but can we simplify the operation a bit?

MLP-Mixer: an all-MLP architecture

MLP-Mixer: an all-MLP architecture

MLP-Mixer: The MLPs are sort of like convs

Cool idea; but hasn't
taken off yet.
Equivalent to
Conv(1x1, C->C, stride=1)
Equivalent to
$\operatorname{Conv}\left(\mathrm{N}^{1 / 2} \times \mathrm{N}^{1 / 2}, \mathrm{C}->\mathrm{C}\right.$, groups=C)

Input: N x C
N patches with
C channels each

MLP 1: C -> C, apply to each of the
N patches

MLP 2: N -> N, apply to each of the C patches

MLP-Mixer: Many concurrent and followups

```
Touvronet al, "ResMLP: Feedforward Networks for Image Classification with Data-Efficient Training", arXiv2021, https://arxiv.org/abs/2105.03404
Tolstikhinet al, "MLP-Mixer: An all-MLP architecture for vision", NeurIPS2021, https://arxiv.org/abs/2105.01601
Liu et al, "Pay Attention to MLPs", NeurIPS2021, https://arxiv.org/abs/2105.08050
Yu et al, "S2-MLP: Spatial-Shift MLP Architecture for Vision", WACV 2022, https://arxiv.org/abs/2106.07477
```

Chen et al, "CycleMLP: AMLP-like Architecture for Dense Prediction", ICLR 2022, https://arxiv.org/abs/2107.10224

But research has continued since ImageNet

 (Will go over following slides if time, Otherwise skip to the summary slides in the end.)
Improving ResNets...

Identity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network
- Gives better performance

Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms 152-layer original ResNet
- Increasing width instead of depth more computationally efficient

Basic residual block

Wide residual block (parallelizable)

Improving ResNets...

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)
[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module

Other ideas...

Densely Connected Convolutional Networks (DenseNet)

\qquad
[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Showed that shallow 50-layer network can outperform deeper 152 layer ResNet

Efficient networks...

MobileNets: Efficient Convolutional Neural Networks for Mobile Applications [Howard et al. 2017]

- Depthwise separable convolutions replace
standard convolutions by factorizing them into a
 depthwise convolution and a 1×1 convolution
- Much more efficient, with little loss in accuracy
- Follow-up MobileNetV2 work in 2018 (Sandler et al.)
- ShuffleNet: Zhang et al, CVPR 2018

Learning to search for network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- "Controller" network that learns to design a good network architecture (output a string corresponding to network design)
- Iterate:

1) Sample an architecture from search space
2) Train the architecture to get a "reward" R corresponding to accuracy
3) Compute gradient of sample probability, and scale by R to perform controller parameter update (i.e. increase likelihood of good architecture being sampled, decrease likelihood of bad architecture)

Learning to search for network architectures...

Learning Transferable Architectures for Scalable Image Recognition

[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a large dataset like ImageNet is expensive
- Design a search space of building blocks ("cells") that can be flexibly stacked
- NASNet: Use NAS to find best cell structure on smaller CIFAR-10 dataset, then transfer architecture to ImageNet
- Many follow-up works in this space e.g. AmoebaNet (Real et al. 2019) and ENAS (Pham, Guan et al. 2018)

But sometimes smart heuristic is better than NAS ...

EfficientNet: Smart Compound Scaling

[Tan and Le. 2019]

- Increase network capacity by scaling width, depth, and resolution, while balancing accuracy and efficiency.
- Search for optimal set of compound scaling
 factors given a compute budget (target memory \& flops).
- Scale up using smart heuristic rules

$$
\begin{aligned}
& \begin{array}{c}
\text { depth: } d=\alpha^{\phi} \\
\text { width: } w=\beta^{\phi} \\
\text { resolution: } r=\gamma^{\phi} \\
\text { s.t. } \alpha \cdot \beta^{2} \cdot \gamma^{2} \approx 2 \\
\\
\alpha \geq 1, \beta \geq 1, \gamma \geq 1
\end{array}
\end{aligned}
$$

Efficient networks...

10

Summary: Modern Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet
- Vit
- MLP-Mixer

Also....

- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet

Main takeaways

AlexNet showed that you can use CNNs to train Computer Vision models.
ZFNet, VGG shows that bigger networks work better
GoogLeNet is one of the first to focus on efficiency using 1×1 bottleneck convolutions and global avg pool instead of FC layers
ResNet showed us how to train extremely deep networks

- Limited only by GPU \& memory!
- Showed diminishing returns as networks got bigger

After ResNet: CNNs were better than the human metric and focus shifted to Efficient networks:

- Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet Neural Architecture Search can now automate architecture design ViT is the current favorite architecture but requires a lot of compute and data MLP-Mixers have presented an alternative to transformers but they haven't taken off.

Summary: Modern Architectures

- ResNet-50 and ViT currently good defaults to use
- Next time: Structure prediction

Next time: Structured Prediction

Ranjay Krishna, Sarah Pratt

Lecture 12-132

