Lecture 3: Loss Functions **Optimization**

Ali Farhadi, Sarah Pratt Lecture 3 - 1 Oct 03, 2024

Administrative: Assignment 0

- Due **tonight** by 11:59pm

Administrative: Assignment 1

Due 10/10 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Final Project + More Python

Presenter: Tanush

Last time: Image Classification: A core task in Computer Vision

[This image](https://www.flickr.com/photos/malfet/1428198050) by [Nikita](https://www.flickr.com/photos/malfet/) is licensed under [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

(assume given a set of labels) {dog, cat, truck, plane, ...}

Ali Farhadi, Sarah Pratt **Lecture 3 - 5** Oct 03, 2024

Recall from last time: Challenges of recognition

Viewpoint

Illumination Deformation Occlusion

[This image](https://www.flickr.com/photos/34745138@N00/4068996309) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/deed.en) public domain

is licensed under CC-BY 2.0

[This image](https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg) by [jonsson](https://www.flickr.com/people/81571077@N00?rb=1) is licensed under [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

[This image](https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/deed.en) public domain

Intraclass Variation

[This image](http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/deed.en) public domain

Lecture $3 - 6$

Ali Farhadi, Sarah Pratt **Lecture 3 - 6** Oct 03, 2024

Recall from last time: data-driven approach, kNN

Ali Farhadi, Sarah Pratt National Lecture 3 - 7 Communication Commun

7

Recall from last time: Linear Classifier

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 8 Cott 03, 2024

Interpreting a Linear Classifier: Visual Viewpoint

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 9 Cot 03, 2024

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier: Geometric Viewpoint

 $f(x,W) = Wx + b$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using [Wolfram Cloud](https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8) [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 11 Cort 03, 2024

Linear Classifier

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 12 Cost 03, 2024

Parametric Approach

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 13 Colorus 2024

Parametric Approach: Linear Classifier

Ali Farhadi, Sarah Pratt National Lecture 3 - 14 Cott 03, 2024

Parametric Approach: Linear Classifier Image parameters or weights W \blacktriangleright f(\mathbf{x},\mathbf{W}) \cdot **10** numbers giving class scores Array of **32x32x3** numbers (3072 numbers total) $f(x, W)$ **10x1 10x3072 3072x1**

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 15 Colorus 2024

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 16 Colorum Context 03, 2024

[This image](http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718) is [CC0 1.0 p](https://creativecommons.org/publicdomain/zero/1.0/deed.en)ublic domain

Ali Farhadi, Sarah Pratt National Lecture 3 - 17 Cot 03, 2024

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 18 Oct 03, 2024

Recall CIFAR10

50,000 training images each image is **32x32x3**

19

10,000 test images.

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 19 Cot 03, 2024

Flatten tensors into a vector

Input image

Ali Farhadi, Sarah Pratt Lecture 3 - 20 Oct 03, 2024

Flatten tensors into a vector

Ali Farhadi, Sarah Pratt Lecture 3 - 21 Oct 03, 2024

Flatten tensors into a vector

Ali Farhadi, Sarah Pratt Lecture 3 - 22 Oct 03, 2024

Flatten tensors into a vector

Ali Farhadi, Sarah Pratt Lecture 3 - 23 Oct 03, 2024

Flatten tensors into a vector

Ali Farhadi, Sarah Pratt Lecture 3 - 24 Oct 03, 2024

Algebraic viewpoint: Bias trick to simply computation

Flatten tensors into a vector

Stretch pixels into column 56 0.2 -0.5 0.1 2.0 1.1 -96.8 231 56 231 1.5 1.3 2.1 0.0 3.2 437.9 $\ddot{}$ Ξ 24 $\overline{2}$ 24 $\mathbf{0}$ 0.25 0.2 -0.3 -1.2 61.95 Input image \mathbf{z} $(2, 2)$ W (3, 4) $(3,)$ b $(4,)$ $(3,)$

Ali Farhadi, Sarah Pratt **Lecture 3 - 26** Oct 03, 2024

Algebraic viewpoint:

Ali Farhadi, Sarah Pratt **Lecture 3 - 27** Oct 03, 2024

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 28 Cot 03, 2024

Lecture $3 - 29$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 29 Cot 03, 2024

Lecture $3 - 30$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 30 Cost 03, 2024

Geometric Viewpoint: linear decision boundaries

 $f(x,W) = Wx + b$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using [Wolfram Cloud](https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8) [Cat image](https://www.flickr.com/photos/malfet/1428198050) by [Nikita](https://www.flickr.com/photos/malfet/) is licensed under [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 31 Cort 03, 2024

Geometric Viewpoint: linear decision boundaries

 $f(x,W) = Wx + b$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using [Wolfram Cloud](https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8) [Cat image](https://www.flickr.com/photos/malfet/1428198050) by [Nikita](https://www.flickr.com/photos/malfet/) is licensed under [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

Ali Farhadi, Sarah Pratt **Lecture 3 - 32** Oct 03, 2024

Geometric Viewpoint: linear decision boundaries

 $f(x,W) = Wx + b$

Array of **32x32x3** numbers (3072 numbers total)

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 33 Colorus 2024

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants **Class 1**: $1 \le L2$ norm ≤ 2

Class 2: Everything else **Class 1**: Three modes

Class 2: Everything else

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 34 Communication C

Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 35 Cost 03, 2024

Three viewpoints for interpreting linear classifiers

 $f(x,W) = Wx$

Visual Viewpoint

One template per class

Lecture $3 - 36$

Geometric Viewpoint

Hyperplanes cutting up space

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 36 Cort 03, 2024
Next: How to train the weights in a Linear Classifier

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Example output for CIFAR-10:

censed under [CC-BY 2.0;](https://creativecommons.org/licenses/by/2.0/) [Car image](https://www.pexels.com/photo/audi-cabriolet-car-red-2568/) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) public domain; [Frog image](https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg) is in the public domain

- A random W produces the following 10 scores for the 3 images to the left.
- 10 scores because there are 10 classes.
- First column bad because dog is highest.
- Second column good.
- Third column bad because frog is highest

Lecture $3 - 38$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 38 Cort 03, 2024

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 39 Cost 03, 2024

A **loss function** tells how good our current classifier is

Ali Farhadi, Sarah Pratt **Lecture 3 - 40** Oct 03, 2024

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$
\{(x_i,y_i)\}_{i=1}^N
$$

Where x_i is image and y_i is (integer) label

Ali Farhadi, Sarah Pratt Lecture 3 - 41 Oct 03, 2024

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$
\{(x_i,y_i)\}_{i=1}^N
$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$
L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)
$$

Ali Farhadi, Sarah Pratt Lecture 3 - 42 Oct 03, 2024

cat

car

where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$			
3.2	1.3	2.2	
5.1	4.9	2.5	$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$
-1.7	2.0	-3.1	$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Multiclass SVM loss:

Given an example (x_i, y_i) e image and e (integer) label,

horthand for the $s = f(x_i, W)$

as the form:

Ali Farhadi, Sarah Pratt Lecture 3 - 43 Oct 03, 2024

cat

car

frog

if $s_{y_i} \geq s_i + 1$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{\substack{j \neq y_i \\ j \neq y_i}} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}
$$
\n
$$
= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Ali Farhadi, Sarah Pratt Lecture 3 - 44 Oct 03, 2024

cat

car

frog

where x_i is the where y_i is the conces vector: s ?			
3.2	1.3	2.2	
5.1	4.9	2.5	
1.7	2.0	-3.1	= $\sum_{j \neq y_i} \max(0, s_j - s_j)$

Ali Farhadi, Sarah Pratt Lecture 3 - 45 Oct 03, 2024

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) image and (integer) label,

orthand for the $= f(x_i, W)$

s the form:

$$
L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}
$$
\n
$$
= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$				
Cat		3.2	1.3	2.2
Car	5.1	4.9	2.5	$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$
frog	-1.7	2.0	-3.1	$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Ali Farhadi, Sarah Pratt National Lecture 3 - 46 Oct 03, 2024

cat

car

Multiclass SVM loss:

Given an example (x_i, y_i)

Suppose: 3 training examples, 3 classes. **Interpreting Multiclass SVM loss:** With some W the scores $f(x, W) = Wx$ are: \mathbf{w} Loss where is the (integer) label, where \vert and the shorthand for (000) scores vector: difference in scores between correct and the Suite of and
incorrect class **3.2** 1.3 2.2 cat $L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 2.5 5.1 **4.9** car $=\sum_{i} \max(0, s_j - s_{y_i} + 1)$ 2.0 **-3.1** -1.7 frog $j \neq y_i$

Ali Farhadi, Sarah Pratt Lecture 3 - 47 Oct 03, 2024

Suppose: 3 training examples, 3 classes. **Interpreting Multiclass SVM loss:** With some W the scores $f(x, W) = Wx$ are: \mathbf{w} Losswhere is the (integer) label, where \vert and the shorthand for (000) scores vector: difference in scores between correct and the SVM correct and
incorrect class **3.2** 1.3 2.2 cat $L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 2.5 5.1 **4.9** car $= \sum \max(0, s_j - s_{y_i} + 1)$ 2.0 **-3.1** -1.7 frog $j \neq y_i$

Ali Farhadi, Sarah Pratt Lecture 3 - 48 Oct 03, 2024

Interpreting Multiclass SVM loss:

Ali Farhadi, Sarah Pratt Lecture 3 - 49 Oct 03, 2024

cat

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Ali Farhadi, Sarah Pratt **Lecture 3 - 50** Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= max(0, 5.1 - 3.2 + 1)
+ max(0, -1.7 - 3.2 + 1)

Ali Farhadi, Sarah Pratt **Lecture 3 - 51** Cot 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

$$
= max(0, 5.1 - 3.2 + 1)+ max(0, -1.7 - 3.2 + 1)
$$

Ali Farhadi, Sarah Pratt **Lecture 3 - 52** Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= max(0, 5.1 - 3.2 + 1)
+ max(0, -1.7 - 3.2 + 1)

 $= max(0, 2.9) + max(0, -3.9)$

Ali Farhadi, Sarah Pratt Lecture 3 - 53 Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= max(0, 5.1 - 3.2 + 1)
+ max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

Ali Farhadi, Sarah Pratt Lecture 3 - 54 Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Ali Farhadi, Sarah Pratt Lecture 3 - 55 Oct 03, 2024

where x_i is where y_i is where y_i is and using the score sector				
Car	3.2	1.3	2.2	$L_i = \sum_{j \neq y_i} 1$ where y_i is conces vector
2.5	$L_i = \sum_{j \neq y_i} 1$ $= max(0, 2, 4)$ $= max(0, 2, 5)$ $= max(0, 6, 4)$ $= 6.3 + 6.6$ $= 12.9$ \n			

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= max(0, 2.2 - (-3.1) + 1)
+ max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)

$$
= 6.3 + 6.6
$$

= 12.9

Ali Farhadi, Sarah Pratt **Lecture 3 - 56** Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Loss over full dataset is average:

$$
L = \tfrac{1}{N}\textstyle\sum_{i=1}^N L_i
$$

= **5.27**

Ali Farhadi, Sarah Pratt Lecture 3 - 57 Oct 03, 2024

cat

car

frog

Multiclass SVM loss:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Ali Farhadi, Sarah Pratt **Lecture 3 - 58** Oct 03, 2024

$$
\text{Multiclass SVM loss:} \\ \boxed{L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)}
$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: what is the min/max possible SVM loss L_i ?

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 59 Cot 03, 2024

Multiclass SVM loss: $\left|L_i\right|=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)\right|$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: what is the min/max possible SVM loss L_i ?

Q3: At initialization W is small so all s \approx 0. What is the loss $L_{i'}$ assuming N examples and C classes?

Ali Farhadi, Sarah Pratt National Lecture 3 - 60 Oct 03, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Q4: What if the sum was over all classes? Losses: 2.9 0 12.9 (including $j = y_i$)

Ali Farhadi, Sarah Pratt National Lecture 3 - 61 Oct 03, 2024

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Q5: What if we used mean instead of

Ali Farhadi, Sarah Pratt National Lecture 3 - 62 Oct 03, 2024

cat

car

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Q6: What if we used

$$
L_i=\textstyle\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)^2
$$

Ali Farhadi, Sarah Pratt National Lecture 3 - 63 Oct 03, 2024

Multiclass SVM loss:

Ali Farhadi, Sarah Pratt Lecture 3 - 64 Oct 03, 2024

cat

car

frog

Multiclass SVM Loss: Example code

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

```
def L_i vectorized(x, y, W):
scores = W.dot(x)# First calculate scores
                                                               # Then calculate the margins s_j - s_{yi} + 1# only sum j is not y_i, so when j = y_i, set to zero.
margins[y] = 0# sum across all jloss i = np.sum(margins)return loss i
```
Ali Farhadi, Sarah Pratt **Lecture 3 - 65** Cot 03, 2024

 $f(x,W)=Wx$ $L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

$Q7.$ Suppose that we found a W such that $L = 0$. Is this W unique?

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 66 November 2024,

 $f(x,W)=Wx$ $L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?

No! 2W is also has L = 0!

Ali Farhadi, Sarah Pratt National Lecture 3 - 67 November 2024.

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

 $= max(0, 1.3 - 4.9 + 1)$ $+max(0, 2.0 - 4.9 + 1)$ $= max(0, -2.6) + max(0, -1.9)$ $= 0 + 0$ $= 0$ **Before: With W twice as large:** $= max(0, 2.6 - 9.8 + 1)$ $+max(0, 4.0 - 9.8 + 1)$ $= max(0, -6.2) + max(0, -4.8)$ $= 0 + 0$ $= 0$

Ali Farhadi, Sarah Pratt National Lecture 3 - 68 Oct 03, 2024

 $f(x,W)=Wx$ $L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?

No! 2W is also has L = 0! How do we choose between W and 2W?

Ali Farhadi, Sarah Pratt National Lecture 3 - 69 November 2024.

Regularization

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)
$$

Data loss: Model predictions should match training data

Lecture 3 - 70

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 70 Cectus Control 103, 2024

Regularization

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Lecture 3 - 71

Ali Farhadi, Sarah Pratt **Lecture 3 - 71** Oct 03, 2024

Regularization intuition: toy example training data

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 72 Cot 03, 2024
Regularization intuition: Prefer Simpler Models

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 73 Cost 03, 2024

Lecture 3 - 73

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data *too* well so we don't fit noise in the data

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 74 Cot 03, 2024

Lecture $3 - 74$

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Lecture $3 - 75$

Occam's Razar: Among multiple competing hypotheses, the simplest is the best

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 75 Cot 03, 2024

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Lecture $3 - 76$

Ali Farhadi, Sarah Pratt National Lecture 3 - 76 Cott 03, 2024

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Lecture 3 - 77

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Ali Farhadi, Sarah Pratt National Lecture 3 - 77 Cot 03, 2024

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ **More complex**: Dropout Batch normalization Stochastic depth, fractional pooling, etc

Ali Farhadi, Sarah Pratt **Lecture 3 - 78** Oct 03, 2024

Lecture $3 - 78$

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Ali Farhadi, Sarah Pratt National Lecture 3 - 79 Cot 03, 2024.

79

Regularization: Expressing Preferences

$$
x=[1,1,1,1] \\ w_1=[1,0,0,0]
$$

L2 Regulation
$$
R(W) = \sum_{k} \sum_{l} W_{k,l}^2
$$

Which of w1 or w2 will the L2 regularizer prefer?

Lecture $3 - 80$

$$
\boldsymbol{w_2}=[0.25, 0.25, 0.25, 0.25]
$$

$$
w_1^Tx=w_2^Tx=1\\
$$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 80 Cost 03, 2024

Regularization: Expressing Preferences

$$
\begin{aligned} x & = [1,1,1,1] \\ w_1 & = [1,0,0,0] \\ w_2 & = [0.25,0.25,0.25,0.25] \end{aligned}
$$

L2 Regularization $R(W) = \sum_k \sum_l W_{k,l}^2$

L2 regularization likes to "spread out" the weights Which of w1 or w2 will the L2 regularizer prefer?

Lecture $3 - 81$

$$
w_1^Tx=w_2^Tx=\mathbf{1}
$$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 81 (2004) 06 03, 2024

Regularization: Expressing Preferences

 0.25

$$
x = [1,1,1,1] \\ w_1 = [1,0,0,0] \\ w_2 = \fbox{\hskip-2pt [0.25,0.25,0.25,}
$$

L2 Regularization $R(W) = \sum_k \sum_l W_{k,l}^2$

L2 regularization likes to "spread out" the weights Which of w1 or w2 will the L2 regularizer prefer?

$$
w_1^Tx=w_2^Tx=1\\
$$

Which one would L1 regularization prefer?

Lecture $3 - 82$

Ali Farhadi, Sarah Pratt **Lecture 3 - 82** Oct 03, 2024

Softmax classifier

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 83 Cost 03, 2024

Lecture $3 - 83$

Want to interpret raw classifier scores as **probabilities**

Ali Farhadi, Sarah Pratt Lecture 3 - 84 Oct 03, 2024

Want to interpret raw classifier scores as **probabilities**

$$
s=f(x_i;W)\\
$$

$$
P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \begin{array}{|l|} \text{Softmax} \\ \text{Function} \end{array}
$$

Ali Farhadi, Sarah Pratt Lecture 3 - 85 Oct 03, 2024

-1.7

$$
\begin{array}{r}\n\text{must be >= 0} \\
\hline\n24.5 \\
164.0 \\
0.18 \\
\text{unnormalized probabilities}\n\end{array}
$$

Probabilities

 $s = f(x_i;W)$

Want to interpret raw classifier scores as **probabilities**

$$
\left| P(Y=k|X=x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \right| \stackrel{\text{Softmax}}{\text{Function}}
$$

cat

car

frog

Ali Farhadi, Sarah Pratt Lecture 3 - 86 Oct 03, 2024

Ali Farhadi, Sarah Pratt Lecture 3 - 87 Oct 03, 2024

Ali Farhadi, Sarah Pratt **Lecture 3 - 88** Oct 03, 2024

Ali Farhadi, Sarah Pratt **Lecture 3 - 89** Oct 03, 2024

Ali Farhadi, Sarah Pratt Lecture 3 - 90 Oct 03, 2024

Want to interpret raw classifier scores as **probabilities**

Ali Farhadi, Sarah Pratt Lecture 3 - 92 Oct 03, 2024

Want to interpret raw classifier scores as **probabilities**

Want to interpret raw classifier scores as **probabilities**

$$
\ket{s=f(x_i;W)}
$$

$$
P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \begin{array}{c} \text{Softmax} \\ \text{Function} \end{array}
$$

Maximize probability of correct class Putting it all together:

$$
L_i = -\log P(Y=y_i|X=x_i)
$$

cat

\n
$$
3.2\n\begin{cases}\n\text{car} & 5.1 \\
\text{from} & -1.7\n\end{cases}
$$

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}})
$$

Ali Farhadi, Sarah Pratt Lecture 3 - 94 Oct 03, 2024

frog

3.2

5.1

-1.7

Want to interpret raw classifier scores as **probabilities**

$$
\vert s=f(x_i;W)
$$

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}\ \text{Softmax}}\\ \text{Function}}
$$

Maximize probability of correct class Putting it all together:

$$
L_i = -\log P(Y=y_i|X=x_i) \quad \ \ L_i = -\log(\tfrac{e^{s y_i}}{\sum_j e^{s_j}})
$$

Q1: What is the min/max possible softmax loss L_i ?

Lecture $3 - 95$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 95 Cot 03, 2024

cat

car

frog

3.2

5.1

-1.7

Want to interpret raw classifier scores as **probabilities**

$$
s=f(x_i;W)\\
$$

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}\ \text{Softmax}}}
$$

Maximize probability of correct class Putting it all together:

$$
L_i = -\log P(Y=y_i|X=x_i) \quad \ \ L_i = -\log(\tfrac{e^{s y_i}}{\sum_j e^{s_j}})
$$

Q1: What is the min/max possible softmax loss L_i ?

 $Q2$: At initialization all s_j will be approximately equal; what is the softmax loss L_{i} , assuming C classes?

Ali Farhadi, Sarah Pratt National Lecture 3 - 96 Oct 03, 2024.

cat

car

frog

Want to interpret raw classifier scores as **probabilities**

$$
s=f(x_i;W)\\
$$

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}\ \text{Softmax}}}
$$

Maximize probability of correct class Putting it all together:

$$
L_i = -\log P(Y=y_i|X=x_i) \quad \ \ L_i\, = -\log(\tfrac{e^{s_{y_i}}}{\sum_{j} e^{s_j}})
$$

cat frog car **3.2** 5.1 -1.7

Q2: At initialization all s will be approximately equal; what is the loss? A: $-log(1/C) = log(C)$, If C = 10, then L = $log(10) \approx 2.3$

Ali Farhadi, Sarah Pratt Lecture 3 - 97 Oct 03, 2024

Ali Farhadi, Sarah Pratt Lecture 3 - 98 Oct 03, 2024

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}})
$$

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 99 Cot 03, 2024

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}}) \hspace{1cm} L_i = \textstyle \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

assume scores:
\n
$$
[10, -2, 3]
$$

\n $[10, 9, 9]$
\n $[10, -100, -100]$
\nand $y_i = 0$

Q: What is the **SVM loss?**

Ali Farhadi, Sarah Pratt **Lecture 3 - 100** Oct 03, 2024

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_{j} e^{s_j}})
$$

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

assume scores: $[10, -2, 3]$ [10, 9, 9] [10, -100, -100] and $y_i = 0$

Q: What is the **SVM loss?**

Q: Is the **Softmax** loss zero for any of them?

Ali Farhadi, Sarah Pratt **Lecture 3 - 101** Oct 03, 2024

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}})
$$

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

assume scores: [20, -2, 3] [20, 9, 9] [20, -100, -100] and $y_i=0$

Q: What is the **SVM loss?**

Q: Is the **Softmax** loss zero for any of them?

I doubled the correct class score from 10 -> 20?

Ali Farhadi, Sarah Pratt **Lecture 3 - 102** Oct 03, 2024

Lecture $3 - 102$

Recap

- We have some dataset of (x,y)
- We have a **score function:**
- We have a **loss function**:

$$
\begin{aligned} L_i &= -\log(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}) \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + R(W) \text{ Full loss} \end{aligned}
$$

e.g.

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 103 Cort 03, 2024

Recap

How do we find the best W?

e.g.

- We have some dataset of (x,y)
- We have a **score function:**
- We have a **loss function**:

$$
\begin{aligned} L_i&=-\log(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}})\\ L_i&=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)\\ L&=\frac{1}{N}\sum_{i=1}^NL_i+R(W) \text{ Full loss}\end{aligned}
$$

$$
s=f(x;W)=Wx
$$

Ali Farhadi, Sarah Pratt Lecture 3 - 104 Oct 03, 2024

Optimization

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 105 Cost 03, 2024

[This image](http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) public domain

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 106 Cort 03, 2024

[Walking man image](http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) public domain

Ali Farhadi, Sarah Pratt $\frac{10}{7}$ Lecture 3 - $\frac{10}{7}$ Oct 03, 2024

Strategy #1: A first very bad idea solution: **Random search**

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parametersloss = L(X \text{ train}, Y \text{ train}, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = lossbestW = Wprint 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```
Ali Farhadi, Sarah Pratt **Lecture 3 - Ali Farhadi, Sarah Pratt**

8
Lets see how well this works on the test set...

```
# Assume X test is [3073 x 10000], Y test [10000 x 1]
scores = Whest.dot(Xte cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte predict = np. argmax(scores, axis = 0)# and calculate accuracy (fraction of predictions that are correct)
np.macan(Yte predict == Yte)# returns 0.1555
```
15.5% accuracy! not bad! (SOTA is ~99.7%)

 $9[°]$

Ali Farhadi, Sarah Pratt **Lecture 3 - Oct 03, 2024**

Strategy #2: **Follow the slope**

Ali Farhadi, Sarah Pratt Natural Lecture 3 - 110 Cot 03, 2024

Strategy #2: **Follow the slope**

In 1-dimension, the derivative of a function:

$$
\frac{df(x)}{dx}=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Ali Farhadi, Sarah Pratt Lecture 3 - 111 Oct 03, 2024

gradient dW:

Ali Farhadi, Sarah Pratt National Ali Property Recture 3 - 112

Oct 03, 2024

Ali Farhadi, Sarah Pratt **Lecture 3 - 113** Oct 03, 2024

Ali Farhadi, Sarah Pratt **Lecture 3 - 114** Oct 03, 2024

gradient dW:

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 115 Cort 03, 2024

Ali Farhadi, Sarah Pratt National Lecture 3 - 116 Oct 03, 2024

gradient dW:

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 117 Cot 03, 2024

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 118 Cort 03, 2024

Ali Farhadi, Sarah Pratt Natural Lecture 3 - 119 Cot 03, 2024

This is silly. The loss is just a function of W:

$$
\begin{aligned} L &= \tfrac{1}{N}\sum_{i=1}^N L_i + \sum_k W_k^2 \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ s &= f(x; W) = Wx \end{aligned}
$$

want $\nabla_W L$

Ali Farhadi, Sarah Pratt **Lecture 3 - 120** Oct 03, 2024

This is silly. The loss is just a function of W:

$$
\begin{aligned} L &= \tfrac{1}{N}\sum_{i=1}^N L_i + \sum_k W_k^2 \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ s &= f(x; W) = Wx \end{aligned}
$$

want $\nabla_W L$

Use calculus to compute an **analytic gradient**

[This image](https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg) is in the public domain This image is in the public domain

Ali Farhadi, Sarah Pratt Lecture 3 - 121 Oct 03, 2024

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,…] **loss 1.25347**

[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,…] $dW = ...$ (some function data and W)

gradient dW:

Ali Farhadi, Sarah Pratt Lecture 3 - 122 Oct 03, 2024

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Ali Farhadi, Sarah Pratt National Lecture 3 - 123 Oct 03, 2024.

Gradient Descent

```
# Vanilla Gradient Descent
while True:
  weights grad = evaluate gradient(\text{loss fun}, data, weights)weights += - step size * weights grad # perform parameter update
```
Ali Farhadi, Sarah Pratt Lecture 3 - 124 Oct 03, 2024

negative gradient direction

Ali Farhadi, Sarah Pratt National Lecture 3 - 125 Oct 03, 2024

Ali Farhadi, Sarah Pratt Natural Lecture 3 - 126 Oct 03, 2024

Stochastic Gradient Descent (SGD)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)
$$

$$
\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)
$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
  data batch = sample training data(data, 256) # sample 256 examples
  weights grad = evaluate gradient (loss fun, data batch, weights)
  weights += - step size * weights grad # perform parameter update
```
Ali Farhadi, Sarah Pratt National Lecture 3 - 127 Cot 03, 2024 Lecture 3 - 127

Next time:

Introduction to neural networks

Backpropagation

Ali Farhadi, Sarah Pratt National Ali Lecture 3 - 128 Cort 03, 2024

Lecture $3 - 128$