Lecture 3:
Loss Functions
Optimization
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Administrative: Assignment O
- Due tonight by 11:59pm
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Administrative: Assignment 1
Due 10/10 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
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Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm
Final Project + More Python

Presenter: Tanush
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Last time: Image Classification: A core task in Computer Vision

(assume given a set of labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Recall from last time: Challenges of recognition

Viewpoint [llumination Deformation

Occlusion

e RS
This image is CC0 1.0 public domain This image by Umberto Salvagnin This image by jonsson is licensed
is licensed under CC-BY 2.0 under CC-BY 2.0

Clutter ~Intraclass Variation

This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Recall from last time: data-driven approach, kNN

airplane B il o ER b = 5 s 1-NN classifier 5-NN classifier
auomobie [ 5 0 0 T 2 - - - -
bird A EETH

cat 0 T o 0 0 Y

deer hmézan ~;

o BN R B

g EESa®”RESE

orse i e B O A R

ship | o e R R

ruck o 8 N el A o s (B

train test

train validation test
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Recall from last time: Linear Classifier

10 numbers giving f(X,W) — WX + b

class scores

g sl
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters
or weights
Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint _ _
Class 1: Class 1:
1<=L2norm <=2 Three modes
Class 2: Class 2:
f(X,W) = Wx One template Hyperplanes Everything else Everything else

per class cutting up space

Stretch pixels info column plane ar bird at deer
! =l
A" 02| -05/01 20 | 14 6.8 | Cat score < -
86 17230, 1 231 | et
[ G 15 13 | 24 ‘ 00 32 7.9 | Dog score g frog horse ship truck
Fal ) 2
. 025| 02 | 03 & ip score i
Input image
W "
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Interpreting a Linear Classifier: Visual Viewpoint

airplane ‘ )ﬁ= =--. Input image
automoblle.a mﬁmﬂﬁ

bird SR SETHNE \

cat ! uggnngﬂ Y \ Y
deer .A’ﬂ ﬂ..-E " 0.2 | 05 15 | 13 0 | 25
dog iﬂ \!Enlm 01 | 20 21 | 0.0 0.2 | 03
wp BN & DI 2 I
horse gy i PO P I % R 5 > N - s
ship E . ﬁ e . . i B a E Score | -9.8 437.9 61.95
wuck @ Rl s @

horse

plane deer

. ' . ! |
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Visual Viewpoint

Algebraic Viewpoint

Input image

\v( 3
’Qé’ }?ﬂ‘w
f(x,W) = Wx e
24 527
T
Stretch pixels into column v
v
56 02 | 0.5 15 | 1.3 0 .25
J!“:xm% 02 (05| 01 | 20 o 1.1 -96.8 | Cat score W
2l 2 SR R0 22T |72 | Pogscore 01 | 2.0 21 | 0.0 02 | -0.3
lnpm,ir‘nag'e 0 025| 02 | -03 , 1.2 61.95 | Ship score
W b \ \ \
b 1.1 3.2 1.2
Score -96.8 437.9 61.95
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Interpreting a Linear Classifier: Geometric Viewpoint

T
% '.5“ S S
R
RSSO SSS
RS TS e

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Linear Classifier
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Parametric Approach

Image

> f(x,W)
Array of 32x32x3 numbers
(3072 numbers total) VV
parameters
or weights

Ali Farhadi, Sarah Pratt

>

10 numbers giving

class scores

Lecture 3- 13

Oct 03, 2024



Parametric Approach: Linear Classifier

f(x,W) = WXx

Image

- 10 numbers givin
P o > f(x,W) - IVing
/ T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1

10x1  10x3072

e 10 numbers givin
7 - (x,W) - bers giving
/, T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1
f(x,W)|=|WK +b | 10x1
10x1 10x3072

- f(x,W) > 10 numbers giving
T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights

Image
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Neural Network

Linear
classifiers

This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Linear layers
Oct 03, 2024
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Recall CIFAR10

airplane

automobile §
bird
cat 50,000 training images
deer each image is 32x32x3
dog 10,000 test images.
frog

horse

ship

QAR B

truck
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\w s
\ ﬂ?rf'- sr
ﬂg ;333% 231
7Y~
24 & 24
| ti
nput image 2
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\23 0.2 | -05| 01 | 2.0 1.1 -96.8 | Cat score
7= 1.5 | 1.3 | 21 | 0.0 4+ | 32 | = | 4379 | Dog score
24 502
i .S 24
= 0 [025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\23 0.2 | -0.5 | 01 | 2.0 1.1 -96.8 | Cat score
o Yo 1.5 | 1.3 | 21 0.0 4+ | 3.2 | = | 437.9 | Dog score
244275
RS 24
T 0 0.25 | 0.2 | -0.3 -1.2 61.95 | Ship score
Input image

2
(2,2) W b 3,)

(4,)

(3,4) (3,)
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

5 & ; ,.:;f‘?{
Y4
o 4

Vg,

56

Likelihood of being a cat

{ g

= % i‘~
24

e

f

Wi

231

1.1

Input image

Ali Farhadi, Sarah Pratt

02 | 05| 01 | 2.0
1.5 | 1.3 | 21 | 0.0
0 |025| 0.2 | -0.3

24

3.2

Lecture 3 - 23

-96.8 | (at score
437.9 | Dog score
61.95 | Ship score
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\%,‘5 > 02 | -0.5 | 0.1 2.0 1.1 -96.8 | (at score
ﬂgé% _{’34,,. 231
T 15 | 1.3 | 21 | 0.0 4+ | 32 | = | 437.9 | Dog score
24 5"N27 24
G Y
= 0 [025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

W b

Cat template
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Algebraic viewpoint: Bias trick to simply computation

Flatten tensors into a vector

56

231

\A§3 02 | 05| 01 | 20 | 11
T Y= 1.5 | 1.3 | 21 | 0.0 | 3.2
24 3 2
— 0 |025| 02 |-03]-1.2
Input image

24

W:b

(3,5)

Ali Farhadi, Sarah Pratt

1

(5.)

Lecture 3 - 25

-96.8

437.9

61.95

Cat score

Dog score

Ship score

Oct 03, 2024




Visual Viewpoint: learning templates

Input image

v
Algebraic viewpoint: 02 | 05 15 | 13 0 | .25
w
Stretch pixels into column 0.1 2.0 21 0.0 02 | -0.3
" : : .
N2 02 |05 01|20 11 96.8 1.1 3.2 42
b - b
A J‘; 15 | 1.3 | 21 | 00 4|32 |= | @379 v v v
" =2 24
0 |o025| 02 |03 12 61.95 Score -96.8 437.9 61.95
Input image >
(2.2) W 6.4 b (3)

4,
(4) 3)
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Visual Viewpoint: learning templates

airplane )ﬁ= - ﬁpﬁ. Input image

bird g 5N e

cat B ’ i ﬁﬂ Y k \d
deer : - ﬁ 02 | -05 15 | 1.3 0 | .25
dog ES ! - ﬂ#‘ = 01 | 20 21 | 00 02 | -03
frog % ‘ 4 ﬁ. v v v
horse E A H b 1: 3*.2 .1:
ship | g Score | -9638 437.9 61.95
truck i ek |,
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Visual Viewpoint: learning templates

airplane ‘ )ﬁ= =--. Input image
automoblle.g mﬁmﬂﬁ

bird ST EETHKE \

cat ! uggnngﬂ Y \ Y
deer .A’ﬂ ﬂ..-E " 0.2 | 05 15 | 13 0 | 25
dog iﬂ \!Enlm 01 | 20 21 | 0.0 0.2 | 03
wy BN & DG 2 I
horse gy e PO P20 I % R 5 > N - s
ship E . ﬁ e . . i B a E Score | -9.8 437.9 61.95
wuck @ Rl M s @

horse

plane deer

. ' . ! |
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Visual Viewpoint: learning templates

airplane ')ﬁ==-i.
automoblle. EQ@GE
bird = ..fﬁ.
cat T et 0 R
deer . ' .--E
dog whiRRFEDOR AN
frog u ’ ..f?.
horse R 12 5 TR
ship ..i.ﬁg
truck ‘E
plane d

Ali Farhadi, Sarah Pratt

Input image

\J A \
02 | -05 1.5 | 1.3 0 25
W
01 | 2.0 21 | 0.0 02 | -0.3
\ \ \
b 1.1 3.2 12
v v v
Score -96.8 437.9 61.95
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Visual Viewpoint: learning templates

airplane ' )ﬁ= =--. Input image

=

LT

Tal] BETH M

) 0 T et R B ! , |
A’ﬂ ﬂ..-E - 02 | 05 15 | 1.3 0 | 25
H \!Enlm 01 | 2.0 21 | 0.0 02 | 0.3
BSae"REEE ; ; .
o v B e R D I 5 TR b f -
Eﬁ e . i . a E Score | -9.8 437.9 61.95
EhadWresln

a

Ali Farhadi, Sarah Pratt Lecture 3- 30 Oct 03, 2024



Geometric Viewpoint: linear decision boundaries

o

airplane classifie/ &
Array of 32x32x3 numbers
deer classifier (3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Geometric Viewpoint: linear decision boundaries

airplane classifie/ g
-

deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Geometric Viewpoint: linear decision boundaries

Array of 32x32x3 numbers
(3072 numbers total)

/

4
airplane classifier/ &%
NN N\
T :
00‘::::” > v
“" NN ‘$"‘“&
4 8%
& S

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0

Ali Farhadi, Sarah Pratt Lecture 3- 33 Oct 03, 2024



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard cases for a linear classifier

Class 1: Class 1: Class 1:

First and third quadrants 1<=L2norm<=2 Three modes
Class 2 Class 2.: Class 2.:
Second and fourth quadrants Everything else Everything else
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Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

ENEEIT]
0 0 0 ‘
0 1 1
1 0 1
i 1 0 X

I
i
!
i1
18
k
i
|
i
b
11
i
'
i
’l
i
.
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Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint

f(x,W) = Wx
Stretch ph INto colu
¥
1 | s
02 | 05/ 01|20 im (1)
15 13|21 | 00| | +]3%2(=
| 24 1
o |02s| 02 | 03 ‘ : 12|
w b

Ali Farhadi, Sarah Pratt

-96.8

4379

61.95

Cat score

Dog score

Ship score

Visual Viewpoint

One template
per class

plane car bard cat deer
u
dog frog horse ship truck

Geometric Viewpoint

Hyperplanes
cutting up space
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Next: How to train the weights in a Linear Classifier

TODO:

1. Define a loss function that quantifies our unhappiness with the scores
across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the
loss function. (optimization)
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Example output for CIFAR-10:

e Arandom W produces
the following 10 scores
for the 3 images to the

airplane -3.45 -0.51 3.42 |eft

automobile -8.87 6.04 4.64

. G s . e 10 scores because there
cat 2.9 —4.22 5 1 are 10 classes.

deor 4.48 ~4.19 2.64 e First column bad because
dog 232 3.58 5.55 dog is highest.

= g _44' 4397 ‘_41' 354 e Second column good.

i ~0.36 5 58 e e Third column bad

truck =072 -2.93 6.14 because frog is highest

Cat image by Nikita CC-BY 2.0; Car image is CC0 1.0 Frog image
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3
car 5.1 4.9 2.5
frog -1.7 20 -31
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Suppose: 3 training examples, 3 classes.

) A loss function tells how good
With some W the scores f(z, W) =Wz are:

our current classifier is

cat 3.2 1.3
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Ali Farhadi, Sarah Pratt

A loss function tells how good
our current classifier is

Given a dataset of examples
N

1=1
Where x; is image and
Y; s (integer) label

Lecture 3 - 41
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Suppose: 3 training examples, 3 classes.

) A loss function tells how good
With some W the scores f(z, W) =Wz are:

our current classifier is
Given a dataset of examples

{(zi, i) Nl

Where x; is image and

cat 32 1.3 29 y; is (integer) label

car 5 1 49 25 Loss over the dataset is a
' ' average of loss over examples:

ZL :EM ) yz)
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0 -3.1

Ali Farhadi, Sarah Pratt

Multiclass SVM loss:

Given an example (:Bi, yi)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the

scores vector: s = f(zi, W)

the SVM loss has the form:

Sj — 8y, +1 otherwise

= Z max(0, s; — sy, + 1)

J#Yi
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (a:i, yi)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
cat . . .
3.2 1322 1 —
car 5.1 4.9 25 7 % 5; — 5y, + 1 | otherwise
frog -1.7 2.0 -3.1 =D max(0,s5; = sy, + 1)

J#Yi
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (a:i, yi)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 13
car 5 1 49 25 iy
frog -1.7 2.0 -3.1 =D max(0,s5; = sy, + 1)

J#Yi

L—Z 'O 1f8y1283—|—1
i = \ :
lsj — 8y, +1 otherwise
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (a:i, yi)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 13
car 5 1 49 25 iy
frog -1.7 2.0 -3.1 =D max(0,s5; = sy, + 1)

J#Yi

' \ Sj — 8y, +1 otherwise
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Loss

Sy,— S

difference in
scores between
correct and
incorrect class

{O if s, > s;+1

cat 3.2 1.3 .
car 51 49 25 "
frog -1.7 2.0 -3.1 = > max(0,55 = sy, + 1)

J#Yi

Sj — 8y, +1 otherwise
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Loss

Sy;— Sj
W—J difference in
1 scores between

correct and
incorrect class

{ if 5, > s;+ 1

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0 -3. 1

— 8y, +1 otherwise

=2,

Ay

j{: x(0,8; — 8y, +1)
J#Yi
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Loss

Sy,— Sj
W—J difference in
1 scores between

correct and
incorrect class

{ if 5, > 55+ 1

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0 -3. 1

— 8y, +1 otherwise

=2,

Ay

j{: x(0,8; — 8y, +1)
J#Yi
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat 3.2 13 22 oo
car 5.1 49 25 -
tog <17 20 3.1
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (a:i, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 il = Z#yi max(0,s; — sy, + 1)
car 51 49 2. ) = max(0,[5.1[-3.2/+ 1)

frog 17 20 -3.1 +max(0, -1.7-3.2 + 1)
Losses: | 2.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (a:i, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 il = Z#yi max(0,s; — sy, + 1)
car 51 49 25 =max(0,5.1-3.2+1)

frog _1 7 20 _31 +max(0, 41.7]-13.2|+ 1)
Losses: | 2.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 il = Z#yi max(0,s; — sy, + 1)
car 51 49 25 =max(0,5.1-3.2+1)

+max(0, -1.7-3.2+ 1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)

Losses: | 2.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 il = Z#yi max(0,s; — sy, + 1)
car 51 49 25 =max(0,5.1-3.2+1)

+max(0, -1.7-3.2+ 1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)

=2.9+0
Losses: | 2.9 5
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (a:i, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

= max(0, 1.3]-14.9/+ 1)
+max(0,[2.0]- 4.9+ 1)

cat 3.2 1.3
car 5.1 4.9

frog -1.7 2.0 -3.1 = max(0, -2.6) + max(0, -1.9)
Losses: 2.9 0 ot
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 : ?'23_9+ 6.6

Ali Farhadi, Sarah Pratt Lecture 3 - 56 Oct 03, 2024




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

cat 3.2 1.3 2.2
car 5 1 4'9 2 5 Loss over full dataset is average:
frog -1.7 2.0 -3.1 L=%% L

: L=(29+0+12.9)/3
Losses: 2.9 0 12.9 i
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores W) =Wz are:
| f(z, W) i L = Zj#yi max(0, s; — sy, + 1)

Q1: What happens to loss if car
scores decrease by 0.5 for this
training example?

cat 1.3
car 4.9
frog 2.0
Losses: 0
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores W) =Wz are:
| f(z, W) i L = Zj#yi max(0, s; — sy, + 1)

Q1: What happens to loss if car
scores decrease by 0.5 for this
training example?

cat 1.3 Q2: what is the min/max possible
' SVM loss L ?

car 4.9

frog 2.0

Losses: 0
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores W) =Wz are:
| f(z, W) i L = Zj#yi max(0, s; — sy, + 1)

Q1: What happens to loss if car
scores decrease by 0.5 for this
training example?

cat 13 Q2: what is the min/max possible
SVM loss L.?
car 4.9
20 Q3: At initialization W is small so
frog ' all s = 0. What is the loss L,
Losses: 0 assuming N examples and C
ag?
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

car 5.1 4.9 2.9 Q4: What if the sum
frog -1.7 2.0 -3.1 was over all classes?

Losses: 2.9 0 12.9 (including j = y_i)
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

car S.1 4.9 2.9 Q5: What if we used
frog -1.7 2.0 -3.1 mean instead of

Losses: 2.9 0 12.9 sum?
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Bi, yi)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

Q6: What if we used

L; = ijéyi max (0, s; — Sy, + 1)°

car

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

0SS

Sy,— Sj
difference in
scores between

1 correct and
Cat incorrect class
car

Q6: What if we used
frog -1.7 2.0 -3.1 i

Losses: 2.9 0 12.9
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Multiclass SVM Loss: Example code

Li = Zj?éyi maX(O, Sj — Sy, T 1)

def L_i vectorized(x, y, W):
scores = W.dot(x) # First calculate scores
margins = np.maximum(0, scores - scores[y] + 1) #Thencchamthenun@ns%-sw+1
margins[y] = 0 #only sum j is nqt Yy, so when j =y, set to zero.
loss i = np.sum(margins) ElilEross all
return loss 1
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flx, W) =Wx

L=1YY >, max(0,f(zi; W); — f(zi; W)y, + 1)

Q7. Suppose that we found a W such that L = 0.
Is this W unique?
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flx, W) =Wx
L=1YY >, max(0,f(zi; W); — f(zi; W)y, + 1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!
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Suppose: 3 training examples, 3 classes. Li = ,,, max(0,s; — sy, + 1)
With some W the scores f(z, W) =Wz are: z

Before:

=max(0,1.3-49+1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0
cat 3.2 1.3 2.2 With W twice as large:
w51 | 49| 25 | O,
frog -1.7 2.0 -3.1 : g‘iXéO, -6.2) + max(0, -4.8)
Losses: 2.9 0 =0
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flx, W) =Wx
L=1YY >, max(0,f(zi; W); — f(zi; W)y, + 1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!
How do we choose between W and 2W?
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Regularization

N ZL xza yz)
N J

~

Data loss: Model predictions
should match training data
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Regularization

= ZL (i, W), :) + AR(W)

. Wy W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization intuition: toy example training data

O
O
© @
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Regularization intuition: Prefer Simpler Models

f
y : g
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Regularization: Prefer Simpler Models

Regularization pushes against fitting the data
too well so we don't fit noise in the data
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Regularization

= ZL (i, W), :) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Occam’s Razar: Among multiple competing
hypotheses, the simplest is the best
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Regularization )\ = regularization strength
(hyperparameter)

N ZL (3, W), y;) + AR(W)

. Wy W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization )\ = regularization strength
(hyperparameter)

N ZL (3, W), y;) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = >, >, W,

L1 regularization: R(W) = >, >, |[Wy

Elastic net (L1 + L2): R(W) = >, >, BW;, + [Wi|
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Regularization )\ = regularization strength
(hyperparameter)

= ZL (i, W), :) + AR(W)

N ~ J W_/

Data loss: Model predictions  Regularization: Prevent the model

should match training data from doing foo well on training data
Simple examples More complex:
L2 reqularization: R(W) = >, >, W, Dropout
L1 regularization: R(W) = >, >, |[Wi,| Batch normalization

Elastic net (L1 + L2): R(W) = >, >, 8W;, + |Wi| Stochastic depth, fractional pooling, etc
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Regularization )\ = regularization strength
(hyperparameter)

- N ZL (3, W), y;) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk ZZ Wk:2,l

Which of w1 or w2 will
the L2 regularizer prefer?

= |1 1 15 1]
wy = [1,0,0,0]

we = [0.25,0.25,0.25,0.25]

7 LI/ | S
wlaz—’wzw—l
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Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk ZZ Wk:2,l

Which of w1 or w2 will
the L2 regularizer prefer?

0.25,0.25,0.25, 0.25] L2 regularization likes to

“spread out” the weights

= |1 1 15 1]
1,0,0,0]

S
||

$
||

7 LI/ | S
wlaz—’wzw—l
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Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk Zl Wk:2,l

Which of w1 or w2 will
the L2 regularizer prefer?

= |1 1 15 1]
1,0,0,0]

S
||

Wy = 0.25.0.25.0.25 025] L2 regularization likes to
d i : i “spread out” the weights
wTa: — me — ] Which one would L1
1 2 regularization prefer?
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Softmax classifier
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities

cat
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(a‘,‘z; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

cat
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

cat 3.2

car 51 —164.0

frog -1.7

Ali Farhadi, Sarah Pratt

~ Want to interpret raw classifier scores as probabilities

s = f(zi; W)

Probabilities
must be >=0

24.5

exp

0.18

unnormalized
probabilities

P(Y =klX =) =

ek _| Softmax
>-; €7 | Function
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
R must be >=0 must sum to 1

cat 3.2 24.5 0.13

exp normalize
car 5.1 —164.0|—— 0.87
o 1.7 0.18 0.00
g
unnormalized probabilities
probabilities
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1
cat 3.2 24.5 0.13
exp normalize
car 5.1 —164.0——| 0.87
frog -1.7 0.18 0.00
Unnormalized unnormalized probabilities

log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Pobsites  Pubaes 1, oep(y i -2
cat 3.2 24.5 0.13 | - L =-log(0.13)
car 51 [7-164.0|~™=| 0.87 - 20
tog | -1.7 0.18 0.00
Unnormalized unnormalized probabilities

log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 Li = —log P(Y = 4| X = zi)
cat 24.5 0.13 | - L =-log(0.13)
eXp normalize =2.04

car 51 2-164.0|=™" 0.87
fog | 17 018 0.00 | Meximum Liettond Eetimaton

likelihood of the observed data

Unnormalized unnormalized probabilities
log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

RS o0 mesemi L= —lePY =ulX =2)

cat 3.2 24.5 0.13 > compare <—| 1,00
car 51 |—-{164.0™ 0.87 0.00
frog -1.7 0.18 0.00 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits  probabilities orobs
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Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 L= —log PLY =l X =)
cat 3.2 24.5 0.13 [ compare <—1 1 00

car 5.1 ——[164.0|"™=% 0.87 | “Gesens | 0.00
fog | -1.7 | |0.18 0.00 | =<1 0.00

. : P(y)log
Unnormalized unnormalized probabilities ; Q(y) Correct

log-probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
must be >= 0 mustsumto 1 ¢ = ~10g P(Y = [ X = z:)
cat 3.2 24.5 0.13 [ comeare~— 1,00
exp I
car 51 —+164.0|——| 0.87 | crossenrory | 0.00
H(P,Q) =
fog | -1.7 0.18 0.00 |, =5 +oy| 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(a‘,‘z; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

& . o Maximize probability of correct class Putting it all together:
= —logP(Y:yi|X:wi) L;: = —lOg( e%Yi )
cat 3.2 :

car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(a‘,‘z; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

j , o & Maximize probability of correct class Putting it all together:
L; =—10gP(Y=yi|X=.’Bi) L: = —1lo e%Yi ‘
cat 3.2 Z 8 3 €7 )
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(a‘,‘z; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

j , o & Maximize probability of correct class Putting it all together:
L; =—10gP(Y=yi|X=.’Bi) L: = —1lo e%Yi ‘
cat 3.2 Z 8( > € )
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
fro 17 Q2: At initialization all 8, will be approximately equal;
9 what is the softmax loss L, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
_ e = — ».) — €% | Softmax
= f(w7,7 W) P(Y - le N ml) B Zj e’ Function

j \;» g Maximize probability of correct class Putting it all together:
s s i o g 5Y;
Li = —logP(Y =4l X =2:) [, = —log( Ze =)
cat 3.2 j €

5 1 Q2: At initialization all s will be
car : . _ .
approximately equal; what is the loss?

frog -1.7 | A:-log(1/C) = log(C),
If C =10, then L. =1og(10) = 2.3
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Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
08 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | -045 | -0.2 | 0.03 -44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
%4 56 b
ex normalize
> | 0.86 _p. 236 |— 5 |0631 | -109(0353)
w’t (to sum =
to one) 0.452
0.28 1.32 0.353
Y | 2
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Softmax vs. SVM

L; = —log( gjye] ) i = Dz, max(0,85 — sy, +1)
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Softmax vs. SVM

L log( gyy ) Lz — E]#yz max(O, S — S5 T+ ]‘)

assume scores: Q: What is the SVM loss?
10, -2, 3]

10,9, 9]

10, -100, -100]

and y, =0
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Softmax vs. SVM

L log( Z c;] ) LZ — E]#yz maX(O, Sj — Sy, —+ ]_)
assume scores: Q: What is the SVM loss?

» 0, -2, 3] Q: Is the Softmax loss zero for
: 0,9, 9] any of them?

10, -100, -100]

and 1y, =0
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Softmax vs. SVM

Li = - log( Zs: N ) Li = Zj;éyz. maX(Oa Sj — Sy, T 1)
assume scores: Q: What is the SVM loss?

:20’ -2, 3] Q: Is the Softmax loss zero for
;20’ 9, 9] any of them?

20, -100, -100]

and wy, =0 | doubled the correct class

score from 10 -> 207
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Recap

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L == log( Z e ) SVM regularization loss

Lz = Z]#yz maX(O, S] — Syz + 1) W scorefunctnorluf(xi,w‘)l e =£

= -]17 Zf\il L; + R(W) Eullloss i)
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Recap How do we find the best W?

- We have some dataset of (x,y) a
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L; = —log(=

Z 8 SVM regularization loss

Lz = Z]#yz maX(O, S] — Syz + 1) W scorefunctnorluf(xi,w‘)l e =£

= -]17 Zf\il L; + R(W) Eullloss i)
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Optimization
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This image is CC0 1.0
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Walking man image is CC0 1.0
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http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
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Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols) #
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df@) . f@+h) - f()
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347
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current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

.o

(1.25322 - 1.25347)/0.0001
=-2.5

af(z) _ . f@+h) - f(@)
h

dx h —0
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . f@+h)~f(@)
-1.5, -1.5, T
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Ali Farhadi, Sarah Pratt

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

N

1.25347 - 1.25347)/0.0001

af(z) _ . f@+h) - f(@)
h

dx h —0
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current W: W + h (third dim): gradient dW:

[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, 0,
0.12, 0.12, ?,
0.55 0.55 -
’ ’ Numeric Gradient
2.81, 2.81, - Slow! Need to loop over
-3.1, -3.1, all dimensions
-1.5, -1.5, - Approximate
0.33,...] 0.33,...] 7]

loss 1.25347 | loss 1.25347

Ali Farhadi, Sarah Pratt Lecture 3- 119 Oct 03, 2024



This is silly. The loss is just a function of W.

N
L=535L+X, W

Li =) ,,, max(0,s; — sy, +1)
s= f(z; W) =Wz

want Vy L
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This is silly. The loss is just a function of W.
L=+ Li+YX,W

Li = ,., max(0,s; — sy, +1)

s= f(z; W) =Wz

want Vy L

Use calculus to compute an
analytic gradient
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https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg

current ¥y: gradient dW:
[0.34, [-2.5,
-1.11, dW = ... | 0.6.
0.78, (some function 0.

0.12, data and W) 0.2
0.55, 0.7
281, \ s
-3, 1.1,
-1.5, 1.3,
0.33,...] 21,
loss 1.25347
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
iImplementation with numerical gradient. This is called a
gradient check.
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Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad - '
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original W

o

negative gradient direction
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https://docs.google.com/file/d/1K6WIScYlWA7yhOCZ3l4K4DyERAgB0fIx/preview

Stochastic Gradient Descent (SGD)

1 XN Full sum expensive
L(W) = > Li(wi, i, W) + AR(W) when N is large!
i=1

1 N Approximate sum
VwL(W) = + Y " VwLi(zi, ys, W) + AVw R(W) gi:r?];er:mlbatch of

i=1 32 /64 /128 common

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad * i
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Next time:

Introduction to neural networks

Backpropagation
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