Lecture 3: Loss Functions Optimization

Administrative: Assignment 0

- Due **tonight** by 11:59pm

Administrative: Assignment 1

Due 10/10 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Final Project + More Python

Presenter: Tanush

Last time: Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of labels) {dog, cat, truck, plane, ...}

dog bird deer truck

Recall from last time: Challenges of recognition

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Recall from last time: data-driven approach, kNN

Recall from last time: Linear Classifier

$$f(x,W) = Wx + b$$

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Class 1:

Class 2 Everything else

1 <= L2 norm <= 2

Class 1:

Three modes

Class 2

Everything else

Interpreting a Linear Classifier: Visual Viewpoint

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Linear Classifier

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Neural Network

This image is CC0 1.0 public domain

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector 56 231 24 24 Input image 2

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic viewpoint: Bias trick to simply computation

Algebraic viewpoint:

Geometric Viewpoint: linear decision boundaries

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Geometric Viewpoint: linear decision boundaries

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Geometric Viewpoint: linear decision boundaries

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1:

Three modes

Class 2

Everything else

Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

Х	Υ	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Next: How to train the weights in a Linear Classifier

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Example output for CIFAR-10:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

- A random W produces the following 10 scores for the 3 images to the left.
- 10 scores because there are 10 classes.
- First column bad because dog is highest.
- Second column good.
- Third column bad because frog is highest

With some W the scores f(x, W) = Wx are:

	*			
	1			
	N.	K		
1				
E		Modelli -		
			1	400

cat

3.2

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

7 2.0

-3.1

A **loss function** tells how good our current classifier is

	-			
1		Y .		
			F- Paid	

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

7 2.0

-3.1

3.2 cat

1.3

2.2

5.1 car

4.9

2.5

-1.7 frog

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

3.2

2.2

5.1 car -1.7 frog

cat

A **loss function** tells how good our current classifier is

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

3.2

1.3

2.2

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

3.2

1.3

2.2

5.1 **4.9**

2.5

frog -1.7

2.0

-3.1

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: 2.2 3.2 1.3 cat

 $L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

-3.1

-1.7 frog

2.0

cat

3.2

5.1

1.3

2.22.5

car

frog

-1.7

4.9

2.0 **-3.1**

Interpreting Multiclass SVM loss:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

2.2

2.5

cat

car

frog

5.1

3.2

-1.7

7 2

2.0

1.3

4.9

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

2 4

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

car 5.1

frog -1.

Losses: 2.9

3.2

4.9

2.0

1.3

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

1.3 2.2

5.1 car

cat

4.9

2.5

-1.7 frog

Losses:

2.9

3.2

2.0 -3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 5.1 3.2 + 1)$
 - $+\max(0, -1.7 3.2 + 1)$
- $= \max(0, 2.9) + \max(0, -3.9)$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

car

frog

Losses:

5.1

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

car

frog

5.1

-1.7

Losses: 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

$$L_i = \sum_{j
eq y_i} \max (0, s_j - s_{y_i} + 1)$$

- $= \max(0, \frac{1.3}{4.9} + 1)$
 - $+\max(0,2.0-4.9+1)$
- $= \max(0, -2.6) + \max(0, -1.9)$
- = 0 + 0
- = 0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

2.2 1.3 3.2 cat

> 4.9 2.5 5.1

car $+\max(0, 2.5 - (-3.1) + 1)$ -3.1 2.0 -1.7 frog

2.9 12.9 Losses: = 12.9

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

3.2 cat

1.3

2.2

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average: $L = rac{1}{N} \sum_{i=1}^{N} L_i$

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$
$$= 5.27$$

-1.7

2.9

- 4.9
- 2.5

-3.1

2.0

12.9

Ali Farhadi, Sarah Pratt

car

frog

Losses:

Multiclass SVM loss:

$$f(x,W)=Wx$$
 are:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

1.3 cat

4.9 car frog

2.0

Losses:

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to loss if car scores decrease by 0.5 for this

1.3

training example?

cat

Q2: what is the min/max possible SVM loss L_i?

4.9

2.0

Losses:

car

frog

Ali Farhadi, Sarah Pratt

Lecture 3 - 59

Oct 03, 2024

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

1.3

4.9

SVM loss L_i? 2.0

classes?

Q1: What happens to loss if car scores decrease by 0.5 for this

Multiclass SVM loss:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

training example? Q2: what is the min/max possible

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_i ,

assuming N examples and C

2.0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

2 1.3

2.2

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

car 5.1

4.9

2.5 **-3.1**

Q4: What if the sum was over all classes? (including j = y i)

the SVM loss has the form:

frog -1.7 Losses: 2.9

.9

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

cat **3.2**

car

frog

2 1.3

3 2.2 9 2.5

5.1 **4.9** 2.5 -1.7 2.0 **-3.1**

Losses: 2.9 0 12.9

5.1

-1.7

2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

cat **3.2**

car

frog

Losses:

2 1.3

3 2.2 3 2.5

4.9 2.5 2.0 **-3.1**

12.9

With some W the scores f(x, W) = Wx are:

3.2 cat

car

1.3 5.1

4.9

-3.1

2.5

2.2

-1.7 frog Losses:

2.9

2.0

12.9

Multiclass SVM loss:

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$f(x, W) = Wx$$

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)$$

Q7. Suppose that we found a W such that L = 0. Is this W unique?

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$

Before:

- = max(0, 1.3 4.9 + 1)+max(0, 2.0 - 4.9 + 1)= max(0, -2.6) + max(0, -1.9)= 0 + 0
- = 0

With W twice as large:

- $= \max(0, 2.6 9.8 + 1)$ $+ \max(0, 4.0 - 9.8 + 1)$ $= \max(0, 6.2) + \max(0, 6.2)$
- $= \max(0, -6.2) + \max(0, -4.8)$
- = 0 + 0
- = (

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! How do we choose between W and 2W?

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization intuition: toy example training data

Regularization intuition: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data *too* well so we don't fit noise in the data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Occam's Razar: Among multiple competing hypotheses, the simplest is the best

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

L1 regularization:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$
 Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

Regularization: Expressing Preferences

$$x = egin{array}{c} [1,1,1,1] \ w_1 = egin{array}{c} [1,0,0,0] \end{array}$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Regularization: Expressing Preferences

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \end{aligned}$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Which one would L1 regularization prefer?

Softmax classifier

Want to interpret raw classifier scores as probabilities

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

 $P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Probabilities must be >= 0

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

5.1 car

-1.7 frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

5.1 car

cat

3.2

-1.7 frog

Q1: What is the min/max possible softmax loss L_i?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car

5.1

frog -1.7

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

car

5.1

-1.7 frog

Q2: At initialization all s will be approximately equal; what is the loss? A: $-\log(1/C) = \log(C)$,

If C = 10, then $L_i = log(10) \approx 2.3$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

$$L_i = -\log(rac{e^{sy_i}}{\sum_{i}e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is the **SVM loss?**

assume scores: [10, -2, 3] [10, 9, 9][10, -100, -100] and $y_i = 0$

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

[10, -100, -100] and
$$y_i = 0$$

Q: Is the **Softmax** loss zero for

Q: What is the **SVM loss?**

any of them?

101 Oct 03, 2024

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [20, -2, 3]

[20, 9, 9]

and $y_i = 0$

[20, -100, -100]

Q: Is the **Softmax** loss zero for

Q: What is the **SVM loss?**

score from 10 -> 20?

I doubled the correct class

Oct 03, 2024

any of them?

Recap

- We have some dataset of (x,y)
- We have a **score function**: $s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function**: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Optimization

 $\underline{\text{This image}} \text{ is } \underline{\text{CC0 1.0}} \text{ public domain}$

Walking man image is CC0 1.0 public domain

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~99.7%)

Strategy #2: Follow the slope

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347 Lecture 3 - 112 Oct 03, 2024 Ali Farhadi, Sarah Pratt

gradient dW:

current W:

[0.34,

[0.34 + 0.0001,[0.34,-1.11, -1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] loss 1.25347 loss 1.25322 Oct 03, 2024 Lecture 3 - 113 Ali Farhadi, Sarah Pratt

gradient dW:

W + h (first dim):

[0.34 + 0.0001,[0.34,**-2.5**, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.00010.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim_{x \to 0} \frac{f(x+h) - f(x)}{f(x+h)}$ -3.1, -3.1, -1.5, -1.5, [0.33,...]0.33,...?,...] loss 1.25347 loss 1.25322

Lecture 3 - 114

gradient dW:

Oct 03, 2024

W + h (first dim):

current W:

Ali Farhadi, Sarah Pratt

[0.34,[0.34,[-2.5, -1.11, -1.11 + 0.00010.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] 0.33,...?,...] loss 1.25347 loss 1.25353 Ali Farhadi, Sarah Pratt Lecture 3 - 115 Oct 03, 2024

gradient dW:

W + h (second dim):

gradient dW: [0.34, [0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.00012.81, 2.81, = 0.6-3.1, -3.1, -1.5, -1.5, 0.33,...0.33,... $?,\ldots$ loss 1.25347 loss 1.25353

W + h (second dim):

[0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] 0.33,...?,...] loss 1.25347 loss 1.25347 Ali Farhadi, Sarah Pratt Lecture 3 - 117 Oct 03, 2024

gradient dW:

W + **h** (third dim):

W + h (third dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, (1.25347 - 1.25347)/0.00012.81, 2.81, = 0-3.1, -3.1, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -1.5, -1.5, 0.33,...0.33,...*'* , . . . | loss 1.25347 loss 1.25347

current W: **W** + **h** (third dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0, 0.12, 0.12, 0.55, 0.55, **Numeric Gradient** 2.81, 2.81, - Slow! Need to loop over -3.1, -3.1, all dimensions -1.5, -1.5, - Approximate 0.33,...] 0.33,...] *'*,...| loss 1.25347 loss 1.25347

Lecture 3 - 119

Oct 03, 2024

Ali Farhadi, Sarah Pratt

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

[0.34,[-2.5, dW = ...-1.11, 0.6, (some function 0.78, 0, data and W) 0.12, 0.2, 0.55, 0.7, 2.81, -0.5, -3.1, 1.1, -1.5, 1.3, [0.33,...]-2.1,....] loss 1.25347 Lecture 3 - 122 Ali Farhadi, Sarah Pratt Oct 03, 2024

gradient dW:

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
```

while True:

```
data_batch = sample_training_data(data, 256) # sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update
```

Next time:

Introduction to neural networks

Backpropagation

Ali Farhadi, Sarah Pratt Lecture 3 - 128