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Administrative

Grades for Assignment 3, 4 out
Grades for Quiz 4 out

Grades for Milestone out

A5 due 2 days ago

The rest of the course:
- Quiz 5 today!
- Poster Session on Thursday

- Grade reports posted to gradescope friday/saturday
Time to check over your late days/ any extensions etc
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Logistics

—_—

Arrive in lobby of allen building

2. Pick up poster from us (send by tomorrow at noon) or bring your printed
poster

Set up poster board and poster stand

We will come around and assign you group 1 or group 2
a. Group 1 presents poster in first half and looks at other poster second
b. Group 2 looks at posters in first half and presents second

5. In either the first or second half of the session, you will stand by your
poster and explain your project to us/ other students

W
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How to make a good poster/presentation

Start with a good presentation, make the poster to match

Ali Farhadi, Sarah Pratt Lecture 19 - December 03, 2024



How to make a good poster/presentation

Start with a good presentation. make the poster to match

Ali Farhadi, Sarah Pratt Lecture 19 - December 03, 2024




How to make a good presentation?

30 - 60 second overview
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How to make a good presentation?

30 - 60 second overview

1. High level intro (10 seconds)
1. What is the motivation for your work? What is not done yet that you
are solving? Make sure you set it up for why your project is necessary.
2. Explain your approach at a high level
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How to make a good presentation?

30 - 60 second overview

1. High level intro (10 seconds)
1. What is the motivation for your work? What is not done yet that you
are solving? Make sure you set it up for why your project is necessary.
2. Explain your approach at a high level
2. Details of your method (15 - 25 seconds)
1.  What are you actually doing specifically?
3. Results (15 - 25 seconds)
1.  What experiments did you run? What did you find?
2. How does this show that you solved the problem that you set up?
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How to make a good poster/presentation

Start with a good presentation, make the poster to maitch
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How to make a good poster?

Your poster is a tool to help you with your presentation
You don’t want just all the text of everything you are planning on saying aloud

Go through your presentation script and see which of the points could use a

visual component
- Adiagram of your model to reference as you are explaining it?

- The graph of your results?
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How to make a good poster?

1. High level intro (10 seconds)
1. What is the motivation for your work? What is
not done yet that you are solving? Make sure
you set it up for why your project is necessary.

Flow of visual elements 2. Explain your approach at a high level

in poster matches flow —— 2. Details of your method (15 - 25 seconds)

of presentation \ 1. What are you actually doing specifically?
3. Results (15 - 25 seconds)

1.  What experiments did you run? What did you
find?

2. How does this show that you solved the problem
that you set up?
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