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Lecture 18:
Generative AI Part 2
GANs & Diffusion
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Administrative

- Milestone was due last week
- Quiz 5 (last quiz) will take place last 30 minutes of next lecture
- Assignment 5 due Friday

- If you want us to print your poster, check the course website for details!
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Very slow during both training and 
testing; N x N image requires 2N-1 
sequential steps!

Generative AI so far: Autoregressive models

3

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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Encoder network

Decoder network

Sample z from

Input Data

Generative AI so far: Variational Autoencoders
Maximizing the likelihood lower bound
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Variational model
- Maximize lower bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

- (although not really)

Comparing the two methods so far

Autoregressive model
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

33
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Variational model
- Maximize lower bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

- (although not really)

Comparing the two methods so far

Autoregressive model
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes
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So far...

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

35

What if we didn’t try to model p(data) at all?
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Generative Adversarial 
Networks (GANs)
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). We want to learn a function that 
samples from pdata.
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). We want to learn a function that 
samples from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

43
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). We want to learn a function that 
samples from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!
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Real samples

Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). We want to learn a function that 
samples from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!

45

z G

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

Generator 
Network

D
fake

real

Train Discriminator Network D to 
classify data as real or fake (1/0)

Discriminator 
Network
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Real samples

Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). We want to learn a function that 
samples from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!
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z G

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

Generator 
Network

D
fake

real

Train Discriminator Network D to 
classify data as real or fake (1/0)

Jointly train G and 
D. Hopefully pG 
converges to pdata!

Discriminator 
Network
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

47
Real 

z G
Generator

D
fake

real

Discriminator
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

48
Real 

z G
Generator

D
fake

real

Discriminator

Discriminator wants 
D(x) = 1 for real data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

49
Real 

z G
Generator

D
fake

real

Discriminator

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

50
Real 

z G
Generator

D
fake

real

Discriminator

Generator wants 
D(x) = 1 for fake data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

51



A Farhadi, S Pratt, V Ramanujan November 26, 2024Lecture 18 -
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Train G and D using alternating gradient updates
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

54

We are not minimizing any 
overall loss! No training 
curves to look at!
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

55

At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Why is this a problem?

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

56

Gradients are near 0 when G 
produces a bad image

Gradients are high when 
generator produces good data
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
How do we fix this?

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

57

Gradients are near 0 when G 
produces a bad image

Gradients are high when 
generator produces good data
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Train G to minimize –log(D(G(z)), 
instead of log(1-D(G(z)). Then G gets strong 
gradients at start of training! (Wasserstein GAN)

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Train G to minimize –log(D(G(z)), 
instead of log(1-D(G(z)). Then G gets strong 
gradients at start of training!

Gradients are high

Gradients are low
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Generative adversarial networks

Once trained, throw away the discriminator and use G to generate new images

60

z G
Generator
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Generative Adversarial Nets

61

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

62

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Generative Adversarial Nets: Convolutional Architectures

63

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Radford et al,
 ICLR 2016

Samples 
from the 
model look 
much 
better!

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,
 ICLR 2016

Interpolating 
between 
random 
points in latent 
space

Generative Adversarial Nets: Convolutional Architectures
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https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips and tricks for 
trainings GANs

Since then: Explosion of GANs
“The GAN Zoo”

https://github.com/soumith/ganhacks
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Progressive GAN, Karras 2018.

GAN improvements: higher resolution
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GAN transformations

73

CycleGAN. Zhu et al. 2017.

Source->Target domain transfer

Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/
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BigGAN: 512x512 images

74

Brock et al., 2019
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019

76
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019
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Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

79

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

80

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Summary: GANs

84

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
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(Broader) Summary

85

Autoregressive models:
PixelRNN, PixelCNN

Van der Oord et al, “Conditional 
image generation with pixelCNN 
decoders”, NIPS 2016

Variational Autoencoders

Kingma and Welling, “Auto-encoding 
variational bayes”, ICLR 2013

Generative Adversarial 
Networks (GANs)

Goodfellow et al, “Generative 
Adversarial Nets”, NIPS 2014
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A problem with GANs: mode collapse

86
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A problem with VAEs: posterior collapse

87
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Enter Diffusion models

88
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Diffusion Models are outperforming GANs

89

Dhariwal & Nichol. “Diffusion Models Beat 
GANs on Image Synthesis”, OpenAI 2021

Ho et al. “Cascaded Diffusion Models for High 
Fidelity Image Generation”, Google 2021
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Text-to-Image (T2I) Generation

90

Ramesh et al. “Hierarchical Text-Conditional 
Image Generation with CLIP Latents” 2022

Saharia et al. “Photorealistic Text-to-Image 
Diffusion Models with Deep Language 
Understanding” 2022

ImagenDall-E2
“A group of teddy bears in suit in a corporate 
office celebrating the birthday of their friend. 
There is a pizza cake on the desk.”

“a teddy bear on a skateboard in times square”
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Text-to-Image (T2I) Generation

Mega thread on Twitter/X about Stable Diffusion

91

Stable Diffusion

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models” 2022

https://twitter.com/daniel_eckler/status/1572210382944538624
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But what is a diffusion model?

92
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GANs give up on explicitly modeling density and just learn to sample “real” data

What takeaways do we have from previous models?

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

93
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GANs give up on explicitly modeling density and just learns to sample “real” data

VAEs and GANs model in one forward step, but AR models use an iterative process

What takeaways do we have from previous models?

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

94
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VAEs for images look like this

- We learn 2 networks, one to encode and one to decode
- We ensure that z is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in 1 step

96

~

Encoder

Decoder
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The lower bound we derived last lecture

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 

97
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Two loss objectives for VAEs

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior

98
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Markovian Hierarchical VAEs

100

- We learn 2T networks, one to encode and one to decode
- We ensure that zT is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in T step

~

Encoder2 EncoderTEncoder1

Decoder2 DecoderTDecoder1
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Markovian Hierarchical VAEs - same derivation

101
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Markovian Hierarchical VAEs - same derivation
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This KL term (between 
Gaussians for encoder and z 
prior)

Markovian Hierarchical VAEs - same derivation

104

pθ(z|x) intractable but we 
know KL divergence always  
>= 0.

Reconstruction objective maximizes the 
likelihood of data pθ(x|z)
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Markovian Hierarchical VAEs

105

Keeping just the first two terms:
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Markovian Hierarchical VAEs

106

Keeping just the first two terms:
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Markovian Hierarchical VAEs

107

where the joint probability distribution is:

This is very similar to the autoregressive model formula

Keeping just the first two terms:
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Markovian Hierarchical VAEs

108

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:
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Markovian Hierarchical VAEs

109

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:

Why is this a hard objective to train?
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Markovian Hierarchical VAEs

110

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:

Why is this a hard objective to train?
1. There are too many networks to learn.
2. The objective function is expensive!
3. It collapses easily!
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Diffusion models are a special case
With a more interpretable, simpler objective.

111

~

Encoder2 EncoderTEncoder1

Decoder2 DecoderTDecoder1

Markovian Hierarchical VAEs
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How do we do this? Get rid of the encoders! We’re just transitioning to 
noise, how hard can it be?

112

~

Decoder2 DecoderTDecoder1

Markovian Hierarchical VAEs
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1. The latent dimension size is exactly equal to the 
data dimension

How do we do this??

113
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1. The latent dimension size is exactly equal to the 
data dimension

2. The encoders are pre-defined and not learned.

How are diffusion models different?

114
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1. The latent dimension size is exactly equal to the data 
dimension

2. The encoders are pre-defined and not learned.
3. Encoders are designed as a linear Gaussian model 

conditioned on the time step: Add noise at every time step

How are diffusion models different?

115
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4. The Gaussian parameters vary over time in such a 
way that the distribution of the latent at final step T is a 
standard Gaussian

How are diffusion models different?

116
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Note: reverse or backward here doesn’t mean the same thing as backpropagation

Terminology: Forward and backward process

117



A Farhadi, S Pratt, V Ramanujan November 26, 2024Lecture 18 -

The distribution perspective

Over time, as we add more noise sampled from a Gaussian distribution, it begins to look more like a 
unit normal

118
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Q. What do we have to learn to generate new samples from noise?

How do we define a loss objective?

119
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Q. What do we have to learn to generate new samples from noise?
A. We want to define a neural network to predict  

How do we define a loss objective?

120
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Q. How should we train ?

How do we define a loss objective?

121
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Q. How should we train ?
A. We can get it to match   !

How do we define a loss objective?

122
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Ok so our loss function is:

124

Q. How should we train ?
A. We can get it to match   !

Minimize the distance between the two distributions:
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Ok so our loss function is:

125

Q. How should we train ?
A. We can get it to match   !

Minimize the distance between the two distributions:

Problem: How do we estimate     ?
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The distribution at step t is a Gaussian

The forward diffusion step

126
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The distribution at step t is a Gaussian

The mean defined by xt-1:

𝞪t is a predefined value for each step t

The forward diffusion step

127
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The distribution at step t is a Gaussian

The mean defined by xt-1:

𝞪t is a predefined value for each step t

The covariance is independent of xt-1 (an assumption)

The forward diffusion step

128
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The distribution at step t is a Gaussian

So, given xt-1 we can sample xt using:

where

How the forward step was designed:

129
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Why was it designed like this?

130
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Why was it designed like this?

131

Substituting xt-1
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Why was it designed like this?

132

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Why was it designed like this?

133

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Why was it designed like this?

134

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Using the property:  

Why was it designed like this?

135

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Using the property: 

We can rewrite as  

Why was it designed like this?

136

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

137

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

138

Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

139

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

140

Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

141

Let 

Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Let 

Why was it designed like this?

142

xt is now a Gaussian characterized by x0

Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Takeaway from the previous slides:

We can instantly sample xt given any input data x0

143
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What about the reverse?

144
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What about the reverse?
Applying Bayes rule
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What about the reverse?

The first term is just a single forward diffusion process:
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What about the reverse?

The second term is also a Gaussian using the formula we just derived:
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What about the reverse?

The third term is also a Gaussian using the same formula:
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What about the reverse?

The product of these 3 Gaussian distributions simplify to a Gaussian as well!

Let’s call its mean                  and variance 
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Proof (out of scope for the class)
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Proof (out of scope for the class)
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Let’s go back to the Markovian VAE 

We are ready to set up a simple intuitive loss function to train the decoder!
Given an image x0:

We want to generate       to match the Gaussian we just derived:
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The loss function tries to match distributions
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The loss function
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We can model   as a Gaussian
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The loss function
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We can model   as a Gaussian
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The loss function
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Proof (out of scope for class)
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Ok we are close to the objective:

The loss we want to minimize is
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:

So, we can write the mean to be:
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:

So, we can write the mean to be:
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We can also set our predicted mean to be:

Why is this helpful?

Our neural network can predict noise instead!
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We can also set our predicted mean to be:

Why is this helpful? Because now our model needs to predict the noise that 
was injected, which turns out to be empirically more stable of an objective 
than predicting the image mean.

Our neural network can predict noise instead!
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The two loss objectives are equivalent

163

The loss function

Instead of predicting the mean image values
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The neural network can 
predict the added noise

The two loss objectives are equivalent

164

The loss function

Instead of predicting the mean image values
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Proof: (out of scope)

165



A Farhadi, S Pratt, V Ramanujan November 26, 2024Lecture 18 -

The final algorithm (DDPM)

166



A Farhadi, S Pratt, V Ramanujan November 26, 2024Lecture 18 -

Time representation: sinusoidal positional embeddings. 

Added in using: 

- h is the intermediate activations of the residual block following the first 
convolution in each layer, 

- y = [ys, yb] is obtained from a linear projection of the timestep

How is the time step input:
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Text-conditioned generation

A white cat with 
brown ears

168
CLIP text encoder

Simple idea: Train the model with text 
descriptions of the image
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In practice, a bit more complicated
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In practice, a bit more complicated
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A simplified diffusion algorithm (DDIM)
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A simplified diffusion algorithm (DDIM)
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Did we really need any of this? (cold 
diffusion)
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Did we really need any of this? (cold 
diffusion)

- Two components “restoration” network R, and a “degradation operator D. 
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The denoising architecture

Time representation: sinusoidal positional embeddings.
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How do we sample a new image?
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Application of diffusion: Image Super-resolution

Gif on this slide is not 
displayed in pdf

178

Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV 2021
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Application: super-resolution

Learn a superresolution diffusion model conditioned on a low resolution image.
y is a low resolution input image, x is a high resolution output image

179

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021
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Application: super resolution
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Saharia et al., Image Super-Resolution via Iterative Refinement, 2021
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Application: image editing

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022
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Latent diffusion models: perform diffusion 
over latent VAE encodings

182
Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Rom

Images are encoded with pretrained VAE.
So xt is now a d-dimensional VAE representation.
All diffusion steps occur in d-dimensional space 
Memory and compute efficient

VAE decoder

VAE encoder
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Stable diffusion - from Stability AI
● Open sourced diffusion model - main model used for research
● Produces 512x512 images
● UNet with 860M params
● ViT-L text encoder with 123M params
● Fits in 10GB VRAM - fits on most GPUs

183

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Rom
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Imagen examples

185
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Sora video diffusion model

https://openai.com/sora

How did they do it?
- More data (unknown data source)
- Replaced U-Net architecture with transformers

186

https://openai.com/sora
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Comparing the different generative models

Q. Which ones are VAEs good at?

187

VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

Fast sampling

High quality 
samples
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Comparing the different generative models

VAEs are bad at generating high quality samples

188

VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

✅

Fast sampling ✅
High quality 
samples

❌
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Comparing the different generative models

Q. Which ones are GANs good at?
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VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

✅

Fast sampling ✅
High quality 
samples

❌
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Comparing the different generative models

GANs suffer from mode collapse

190

VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌

Fast sampling ✅ ✅
High quality 
samples

❌ ✅
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Comparing the different generative models

Q. Which ones are Diffusion models good at?

191

VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌

Fast sampling ✅ ✅
High quality 
samples

❌ ✅
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Comparing the different generative models

Diffusion models are bad at sampling fast. 

192

VAEs GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌ ✅

Fast sampling ✅ ✅ ❌
High quality 
samples

❌ ✅ ✅
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Discrete token generation models
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Different “Stage 2” possibilities
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Can be scaled pretty well
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Next: Deep Reinforcement Learning
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