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● A5 is out. It is the last assignment.
● Quiz 4 tomorrow

● Almost done with the course :(

Administrative
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Last time: Foundation Models

Language

ELMo
BERT
GPT
T5

Classification

CLIP
CoCa

LM + Vision

Flamingo
GPT-4V
Gemini

And More!

Segment Anything
Whisper
Dall-E
Stable Diffusion
Imagen

Chaining

LMs + CLIP
Visual Programming
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And More!

Segment Anything
Whisper
Dall-E
Stable Diffusion
Imagen

Next 2 lectures:

Language

ELMo
BERT
GPT
T5

Classification

CLIP
CoCa

LM + Vision

Flamingo
GPT-4V
Gemini

Chaining

LMs + CLIP
Visual Programming
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Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Supervised vs Unsupervised Learning

6

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

7

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

8

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

9

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

GRASS, CAT, 
TREE, SKY
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Supervised vs Unsupervised Learning

10

Self-Supervised Learning

Data: (x, y)
x is data, y is a proxy label

Goal: Learn a function to map x -> y

Examples: Inpainting, colorization, 
contrastive learning.

?
θ
=
?

attract
repel
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images left and right 
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Modeling p(x)

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

15

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

16

Data: x, Label: y
     

     , cat
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Sum of p(y | x) = 1 across C classes

Discriminative Model: Learn a 
probability distribution p(y|x) 

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

17

Data: x, Label: y
     

     , cat
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Sum of p(y | x) = 1 across C classes
Bias term of last linear layer learns p(y) 

Discriminative Model: Learn a 
probability distribution p(y|x) 

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

18

Data: x, Label: y
     

     , cat
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If the images contain classes not part 
of the vocabulary, outputs are 
uninterpretable.

Discriminative Model: Learn a 
probability distribution p(y|x) 

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

19

Data: x, Label: y
     

     , cat
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All possible images compete with each 
other for probability mass
Is a dog more likely to sit or stand? How 
about 3-legged dog vs 3-armed monkey?

Generative Model: Learn a probability 
distribution p(x) 

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

20

Data: x, Label: y
     

     , cat
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Recall Bayes’ Rule:

Conditional Generative Model: Learn 
p(x|y)

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

21

Data: x, Label: y
     

     , cat
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We can build a conditional generative 
model from other components!

Conditional Generative Model: Learn 
p(x|y)

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

A probabilistic interpretation of modeling

22

Data: x, Label: y
     

     , cat
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Discriminative Model: 
Learn a probability 
distribution p(y|x) 

Generative Model: Learn a 
probability distribution p(x) 

Conditional Generative 
Model: Learn p(x|y)

Density Function p(x) assigns a 
positive number to each possible x; 
higher numbers mean x is more 
likely.

Probabilities across all values of x 
sum up to 1

Putting them together:

23

Data: x, Label: y
     

     , cat
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Discriminative Model: 
Learn a probability 
distribution p(y|x) 

Generative Model: Learn a 
probability distribution p(x) 

Conditional Generative 
Model: Learn p(x|y)

Applications for Generative Models

24

1. Assign labels to data
2. Feature learning (with labels)
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Discriminative Model: 
Learn a probability 
distribution p(y|x) 

Generative Model: Learn a 
probability distribution p(x) 

Conditional Generative 
Model: Learn p(x|y)

Applications for Generative Models

25

1. Assign labels to data
2. Feature learning (with labels)

1. Detect outliers 
2. Feature learning (without labels) 
3. Sample to generate new data
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Discriminative Model: 
Learn a probability 
distribution p(y|x) 

Generative Model: Learn a 
probability distribution p(x) 

Conditional Generative 
Model: Learn p(x|y)

Applications for Generative Models

26

1. Assign labels to data
2. Feature learning (with labels)

1. Detect outliers 
2. Feature learning (without labels) 
3. Sample to generate new data

1. Assign labels, rejecting outliers! 
2. Generate new data conditioned on 

input labels
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Why Generative Models?

27

- Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful features for downstream tasks such as classification.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and 

reinforcement learning applications)
- Many more ...

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog. 

https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/
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The two objectives of generative models

28

Training data ~ pdata(x)

Objectives:
1. Learn pmodel(x) that approximates pdata(x) 
2. Sampling new x from pmodel(x)

learning
pmodel(x

)

sampling



Ali Farhadi, Sarah Pratt Lecture 17 - November 21, 2024

Generative Modeling

29

Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning
pmodel(x

)

sampling

Formulate as density estimation problems: 
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) without 

explicitly defining it. 



Ali Farhadi, Sarah Pratt Lecture 17 - November 21, 2024

Taxonomy of Generative Models

30

Generative models

Explicit density Implicit density

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Model can compute p(x)
Model does not compute p(x)
But can sample from p(x)

p(x) measures the 
likelihood of an image
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Taxonomy of Generative Models

31

Generative models

Explicit density

Tractable density Approximate density

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord

Implicit density
Model approximates p(x)

Model exactly 
calculates p(x)
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Taxonomy of Generative Models

32

Generative models

Explicit density Implicit density

Tractable density Approximate density

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Taxonomy of Generative Models

33

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN, 
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Q: Where would you place GPT4?

34

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN, 
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Taxonomy of Generative Models

35

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN, 
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 2 types of 
generative models today
More next lecture!

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Explicit density models 

36
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Explicit Density Estimation

Goal: Write down an explicit function for 
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Explicit Density Estimation

Goal: Write down an explicit function for 

Given dataset , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)
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Maximize probability of training data 
(Maximum likelihood estimation)

Log trick to exchange product for sum

39

Explicit Density Estimation

Goal: Write down an explicit function for 

Given dataset , train the model by solving:
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Explicit Density Estimation

Goal: Write down an explicit function for 

Given dataset , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)

Log trick to exchange product for sum

This will be our loss function! 
Train with gradient descent (backprop)
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Autorgressive models
(PixelRNN and PixelCNN)

41
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Explicit density: autoregressive models

Assume that x is made up of multiple parts:

For example, images are made up of pixels, language is made up of 
words/characters/tokens

Goal: Write down an explicit function for 
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Explicit density: autoregressive models

Assume that x is made up of multiple parts:

For example, images are made up of pixels, language is made up of 
words/characters/tokens

Goal: Write down an explicit function for 

Likelihood of 
image x

Joint likelihood of each 
part in the data
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Explicit density: autoregressive models

Assume that x is made up of multiple parts:

For example, images are made up of pixels, language is made up of 
words/characters/tokens

Goal: Write down an explicit function for 

Break down probability 
using the chain rule
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Explicit density: autoregressive models

Assume that x is made up of multiple parts:

For example, images are made up of pixels, language is made up of 
words/characters/tokens

Goal: Write down an explicit function for 

Break down probability 
using the chain rule

Probability of the next subpart given all the previous subparts
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Explicit density: autoregressive models

Assume that x is made up of multiple parts:

For example, images are made up of pixels, language is made up of 
words/characters/tokens

Goal: Write down an explicit function for 

Language modeling with RNNs is an autoregressive model
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We assume hidden state encodes all prior 
information x0, …, xt-1

x1

RNN

x2

x2

RNN

x3

x3

RNN

x4

...

xn-

1

RNN

xn

h1 h2 h3
h0
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

48
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

49
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

50
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Hidden state for each pixel is conditioned 
on the hidden states and RGB values from 
the left and from above

PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

51
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Hidden state for each pixel is conditioned 
on the hidden states and RGB values from 
the left and from above

At each pixel, predict red, then blue, then 
green: softmax over [0, 1, …, 255]

PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

52
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Drawback: sequential generation is slow 
in both training and inference!

Each pixel depends implicity on all pixels 
above and to the left.

PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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Drawback: sequential generation is slow 
in both training and inference!

Each pixel depends implicity on all pixels 
above and to the left.

PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

54
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Very slow during both training and 
testing; N x N image requires 2N-1 
sequential steps!

PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

55
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Q: Where else have we seen a similar 
processing of input images by iterating over 
patches of the image?

56
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PixelCNN - improvements to training time

[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

57
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PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of 
the network 1024 times for a single image

Softmax loss over pixel 
values at every location

58
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Generation Samples

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet

59
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PixelRNN and PixelCNN
Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute likelihood 

p(x)
- Easy to optimize
- Good samples

Con:
- Sequential generation => slow

60
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Taxonomy of Generative Models
Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord

61
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PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

So far...

62
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So far...
PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define an intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!

63
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!

Why latent z?

64
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Variational Autoencoders (VAE)
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Some background first: Autoencoders
Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

Input data

Features

Z should extract useful 
information (maybe object 
identities, properties, scene type, 
etc) that we can use for 
downstream tasks

66
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Some background first: Autoencoders

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why 
dimensionality 
reduction?

Encoder

67
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Q: Why 
dimensionality 
reduction?

A: Want features 
to capture 
meaningful 
factors of 
variation in data

Some background first: Autoencoders

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Encoder

68
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Some background first: Autoencoders

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

69

Q. How do we learn this 
z?
A. Reconstruct original 
input data:
“Autoencoding”
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Q. How do we learn this 
z?
A. Reconstruct original 
input data:
“Autoencoding”

Some background first: Autoencoders
Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

Input data

Features

Decoder

Learning objective: reconstruct 
the image and use l2 loss.

No labels are necessary!!

70
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Images reconstructed 
are blurry because z 
is smaller and doesn’t 
save pixel-perfect 
information

Some background first: Autoencoders

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data

71
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Some background first: Autoencoders

Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder

72

Similar to the self-supervised feature learning + transfer to downstream tasks
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Some background first: Autoencoders

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Transfer from large, unlabeled 
dataset to small, labeled dataset.

73
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Some background first: Autoencoders

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. 

But we can’t generate new 
images from an autoencoder 
because we don’t know the 
space of z.

How do we make autoencoder a  
generative model?

74
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the parameters 
given real training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

80

We want to estimate the parameters 
given real training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the parameters 
given real training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

Decoder 
network

We want to estimate the parameters 
given real training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.

Conditional p(x|z) is complex (generates 
image) => represent with neural network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

Decoder 
network

We want to estimate the parameters 
given real training data x.

 

Decoder must be probabilistic: 
Decoder inputs z, outputs mean μx|z and 
(diagonal) covariance ∑x|z

μx|

z

∑x|

z
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional How to train the model?

Decoder 
network

We want to estimate the parameters 
given real training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional How to train the model?

Learn model parameters to maximize likelihood 
of training dataDecoder 

network

We want to estimate the parameters 
given real training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional How to train the model?

Learn model parameters to maximize likelihood 
of training data

Q: What is the problem with this?
Intractable! Impossible to iterate over all z

Decoder 
network

We want to estimate the parameters 
given real training data x.
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔

Monte Carlo estimation is too high variance



Ali Farhadi, Sarah Pratt Lecture 17 - November 21, 202492

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
��✔ ✔

Another idea: Use Bayes rule
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
��✔ ✔

Another idea: We know how to calculate these
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Solution: In addition to modeling pθ(x|z), 
Learn qɸ(z|x) that approximates the true posterior pθ(z|x). 

94
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Another idea: But how do you calculate this?
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Another idea: x: 28x28 image = 784-dim vector 
z: 20-dim vector
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Variational Autoencoders

Using this approximation, we can derive a lower bound on the data likelihood 
p(x), making it tractable, therefore, possible to optimize.
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Variational Autoencoders

Taking expectation wrt. z 
(using encoder network) will 
come in handy later
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders

The expectation wrt. z (using 
encoder network) let us write 
nice KL terms
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Variational Autoencoders

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

We want to 
maximize the 
data 
likelihood

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. 
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term is differentiable)

We want to 
maximize the 
data 
likelihood
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the KL 
divergence between the estimated 
posterior and the prior given some data
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

This equation has an analytical solution
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Not part of the computation graph!
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 

Part of computation graph

Input to 
the graph
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Maximize likelihood of original 
input being reconstructed
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

For every minibatch of input 
data: compute this forward 
pass, and then backprop!
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE: 
use decoder network & sample z from prior!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 
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Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

125

Encoder network

Input Data
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Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

126

Encoder network

Sample z from

Input Data
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Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

127

Encoder network

Sample z from

Input Data

modified
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Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

4. Run modified z through 
decoder to get a distribution 
over data sample

128

Encoder network

Decoder network

Sample z from

Input Data

modified
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Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

4. Run modified z through 
decoder to get a distribution 
over data sample

5. Sample new data from (4)

129

Encoder network

Decoder network

Sample z from

Input Data

modified
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Editing images with VAEs

130
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Variational Autoencoders

131

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Variational model
- Maximize lower bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Comparing the two methods so far

Autoregressive model
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

132
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Next time: GANs and diffusion

133


