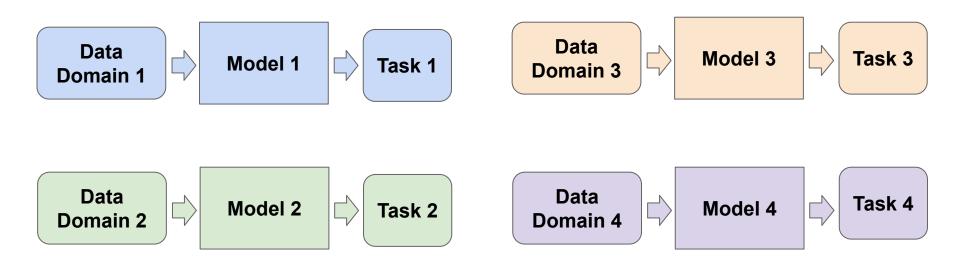
Lecture 16: Multi-Modal Foundation Models

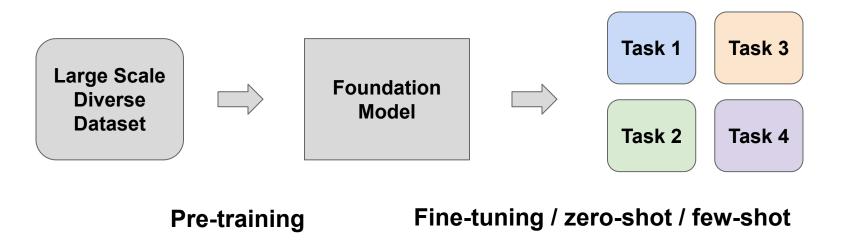
Administrative

- Milestone due today
- Quiz 4 Friday

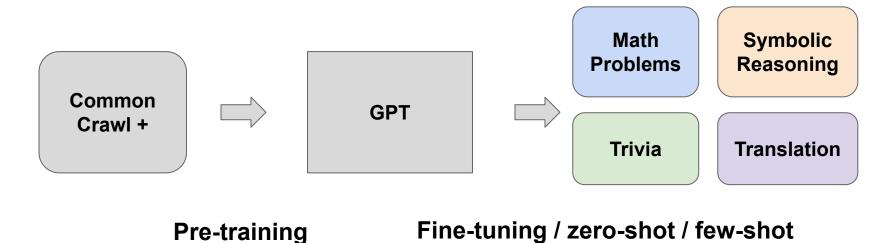
Old: train specialized models for each task



New: pre-train one model that acts as the foundation for many different tasks



Language



<u>Language</u>	<u>Classification</u>	LM + Vision	And More!	<u>Chaining</u>
ELMo BERT GPT T5	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

Always see with foundation models:

- general /robust to many different tasks

Often see with foundation models:

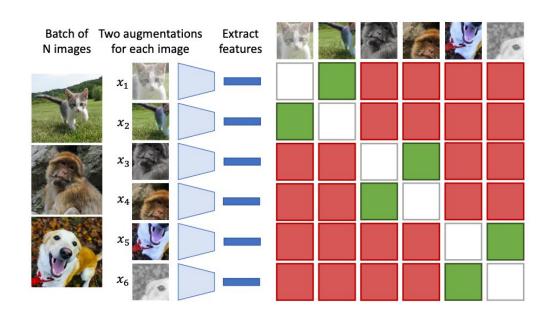
- Large # params
- Large amount of data
- Self-supervised pre-training objective

<u>Language</u>	<u>Classification</u>	LM + Vision	And More!	<u>Chaining</u>
ELMo BERT GPT T5	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

<u>Language</u> <u>C</u>	Classification	<u>LM + Vision</u>	And More!	Chaining
	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

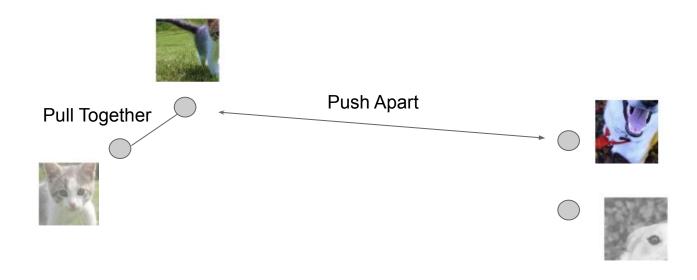
Classification LM + Vision And More! Language Chaining **ELMo** Flamingo **Segment Anything** LMs + CLIP **BERT** CoCa **GPT-4V** Whisper **Visual Programming GPT** Gemini Dalle **T5** Stable Diffusion Imagen

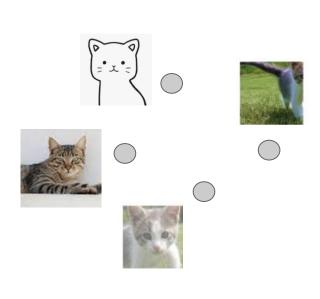
Previously...

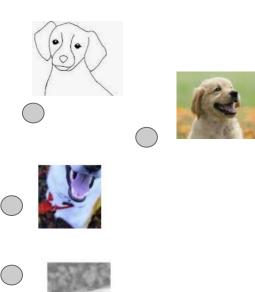


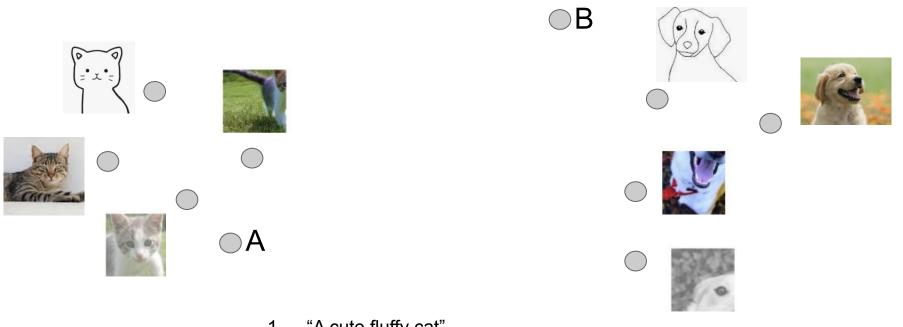
Use Self Supervised learning to learn good image features

Can train small classifiers on top of these features using supervised learning



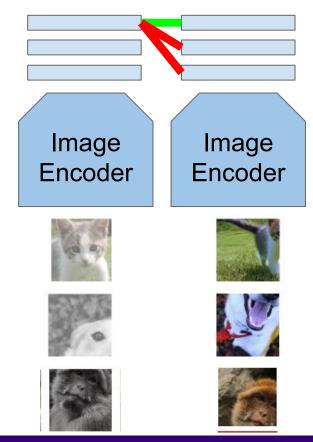




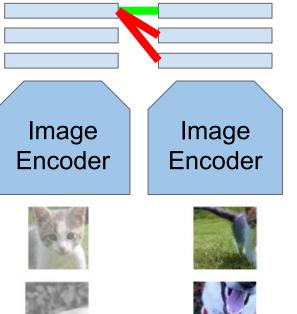


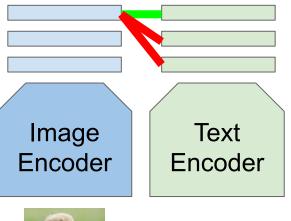
- 1. "A cute fluffy cat"
- 2. "My favorite dog is a golden retriever"

SimClr



SimClr





"My favorite dog is a golden retriever"

"A cute fluffy cat"

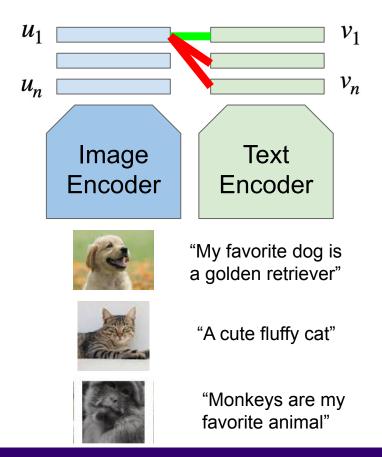
"Monkeys are my favorite animal"

Lecture 16 - 17

Nov 19, 2024

CLIP Training Objective

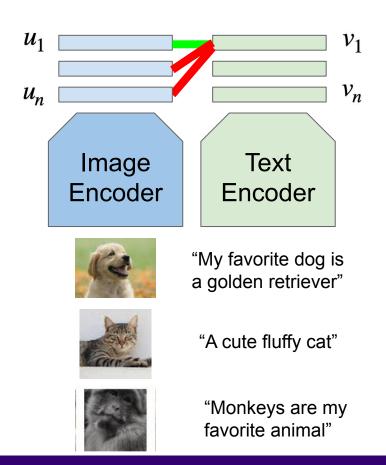
$$\sum_{i=1}^{n} -\log \left(\frac{e^{\langle u_i, v_i \rangle}}{\sum_{j=1}^{n} e^{\langle u_i, v_j \rangle}} \right)$$



CLIP Training Objective

$$\sum_{i=1}^{n} - \log \left(\frac{e^{\langle u_i, v_i \rangle}}{\sum_{j=1}^{n} e^{\langle u_i, v_j \rangle}} \right)$$

$$+\sum_{i=1}^{n}-\log\left(rac{e^{\langle u_i,v_i
angle}}{\sum_{j=1}^{n}e^{\langle u_j,v_i
angle}}
ight)$$



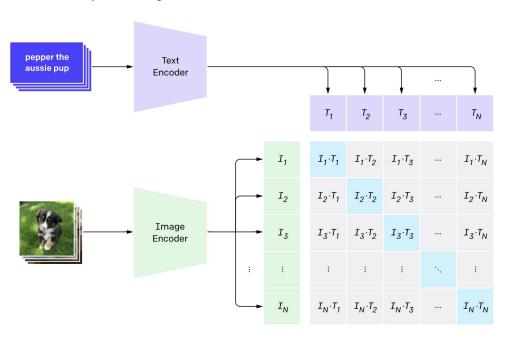
CLIP Training Data

Mount Rainier's northwestern slope viewed aerially just before sunset on September 6, 2020

Image-Text pairs scraped from the internet

CLIP Training Objective

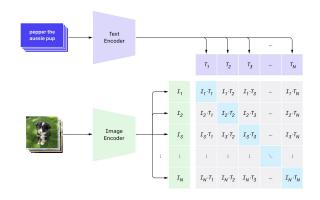
1. Contrastive pre-training



At the end of training, you have a model that will give you a similarity score between an image and a text

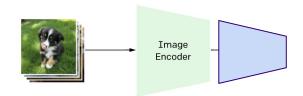
Using pre-trained models out of the box

Step 1: Pretrain a network on a pretext task that doesn't require supervision



Pre-training tasks:Contrastive Objective

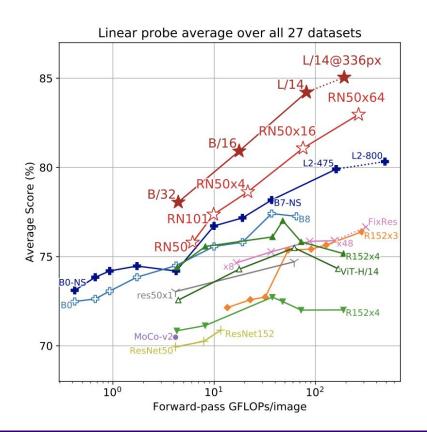
Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning

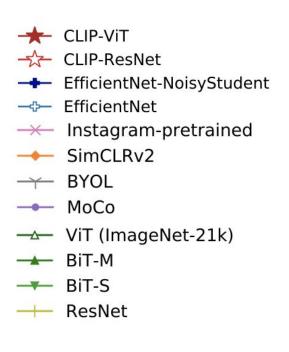


Downstream tasks:

Image classification, object detection, semantic segmentation

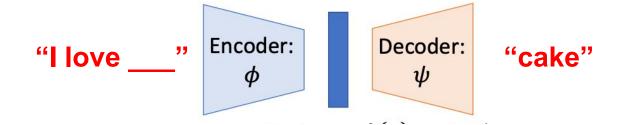
CLIP features w/ linear probe across datasets





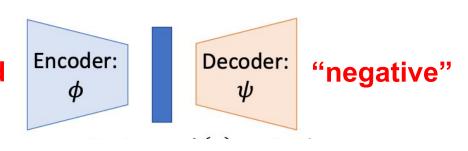
Using pre-trained models out of the box

Step 1: Pretrain a network on a pretext task that doesn't require supervision



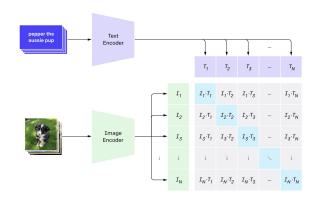
Step 2: Use the model out of the box in a creative way!

"The movie review 'I hated the movie' is



Using pre-trained models out of the box

Step 1: Pretrain a network on a pretext task that doesn't require supervision



Pre-training tasks:Contrastive Objective

Step 2: Use the model out of the box in a creative way!

Out of the box classification (No fine-tuning)

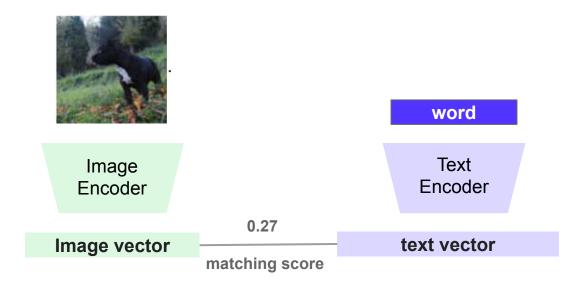


Image Encoder

Image vector

plane

dog

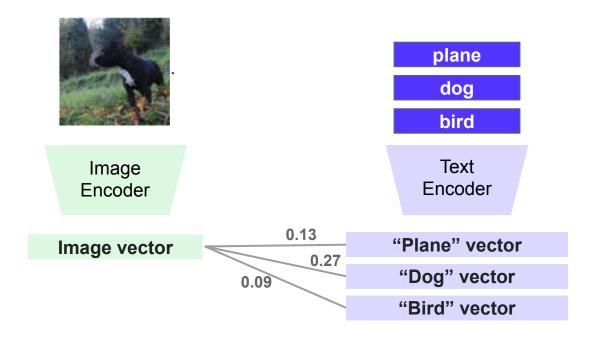
bird

Text Encoder

"Plane" vector

"Dog" vector

"Bird" vector



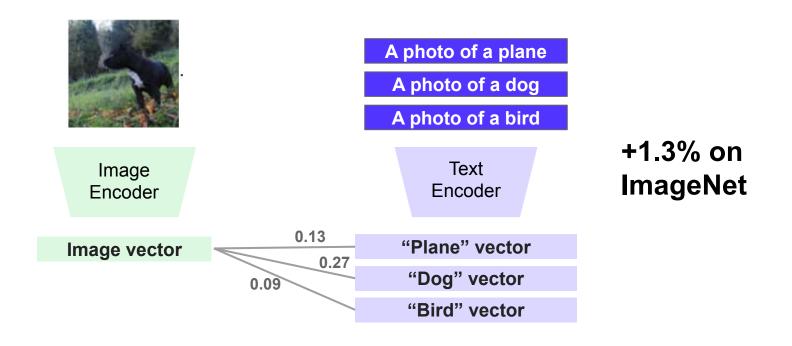
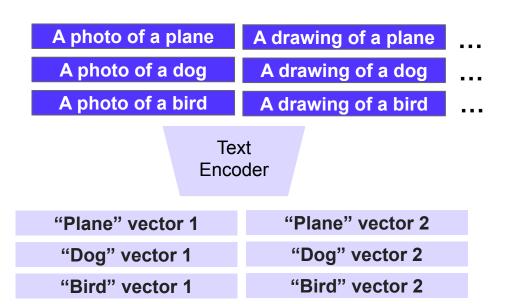
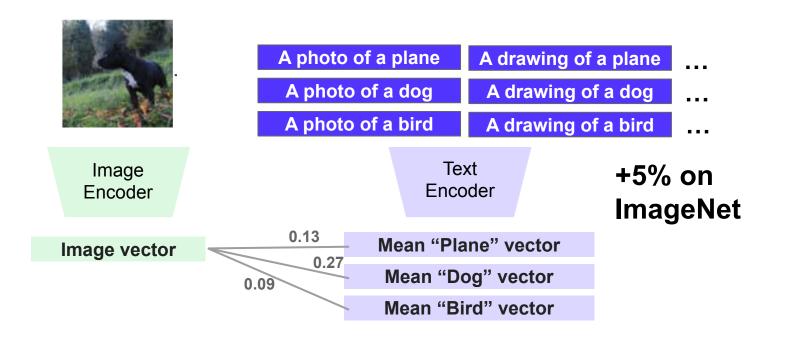


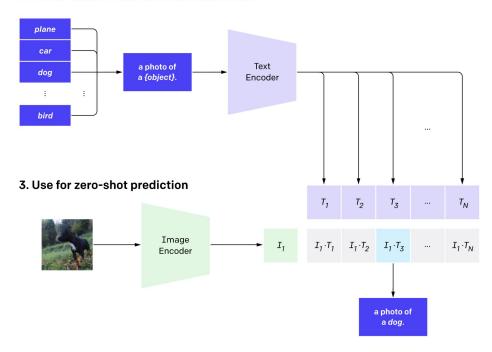
Image Encoder

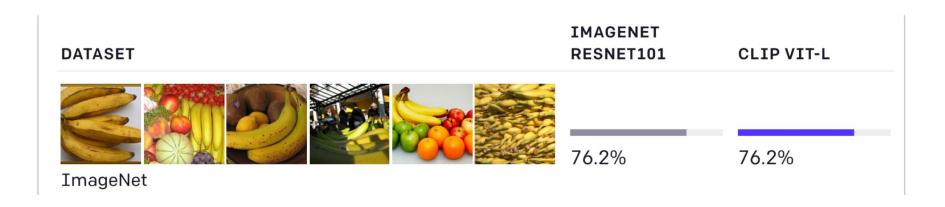
Image vector



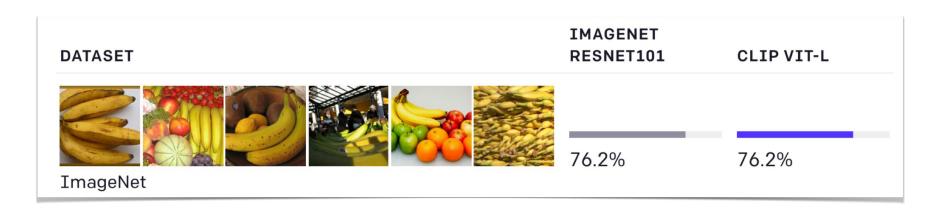


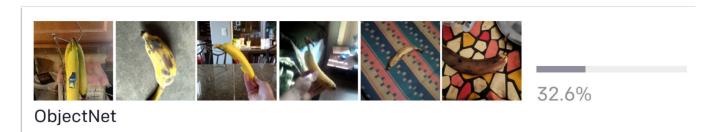
2. Create dataset classifier from label text

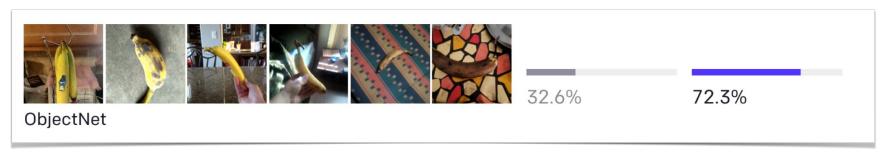




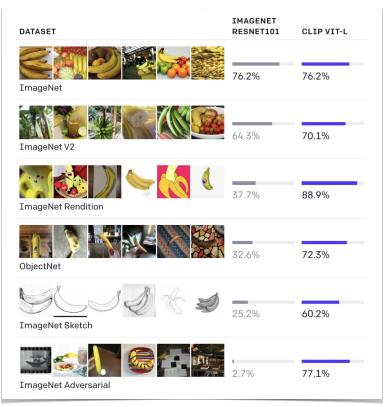
Matches the accuracy of of ResNet 101 that has been trained on human labeled data with no human labels at all!





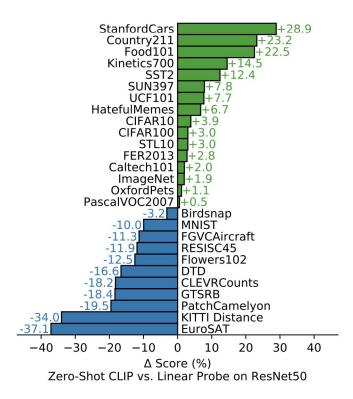


Imagenet Accuracy



Radford et al "Learning Transferable Visual Models From Natural Language Supervision"

Accuracy on other datasets



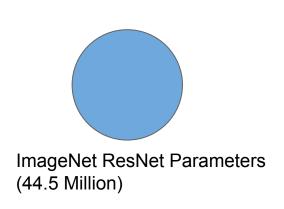
Radford et al "Learning Transferable Visual Models From Natural Language Supervision"

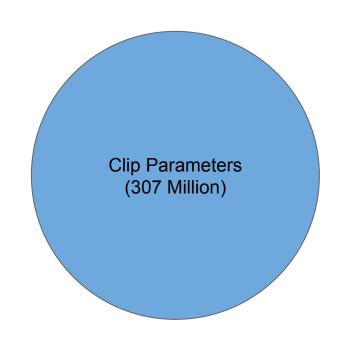
Key to high accuracy

How can no labels beat labels??

Scale!

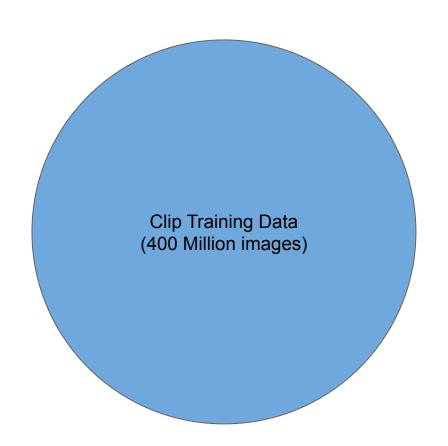
Model Scale

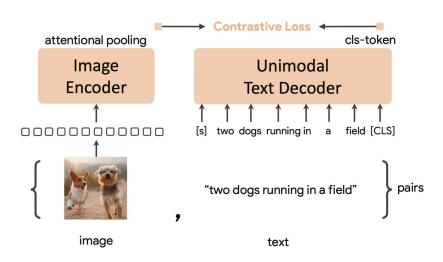


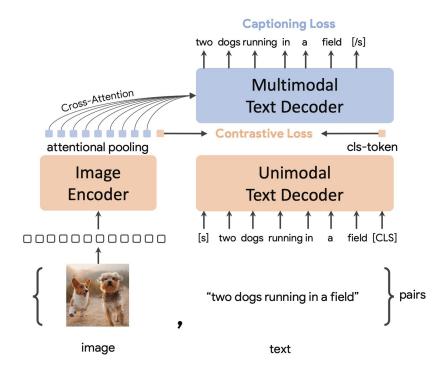


Data Scale

ImageNet ResNet Training Data (1.28 Million)



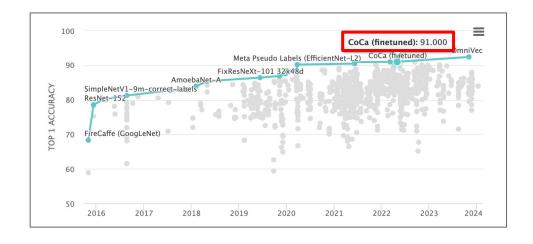




Model	ImageNet	ImageNet-A	ImageNet-R	ImageNet-V2	ImageNet-Sketch	ObjectNet	Average
CLIP [12]	76.2	77.2	88.9	70.1	60.2	72.3	74.3
ALIGN [13]	76.4	75.8	92.2	70.1	64.8	72.2	74.5
FILIP [61]	78.3	-	-	-	-	-	
Florence [14]	83.7	-	-	-	-	-	-
LiT [32]	84.5	79.4	93.9	78.7	-	81.1	_
BASIC [33]	85.7	85.6	95.7	80.6	76.1	78.9	83.7
CoCa-Base	82.6	76.4	93.2	76.5	71.7	71.6	78.7
CoCa-Large	84.8	85.7	95.6	79.6	75.7	78.6	83.3
CoCa	86.3	90.2	96.5	80.7	77.6	82.7	85.7

Table 4: Zero-shot image classification results on ImageNet [9], ImageNet-A [64], ImageNet-R [65], ImageNet-V2 [66], ImageNet-Sketch [67] and ObjectNet [68].

Model	ImageNet
ALIGN [13]	88.6
Florence [14]	90.1
MetaPseudoLabels [51]	90.2
CoAtNet [10]	90.9
ViT-G [21]	90.5
+ Model Soups [52]	90.9
CoCa (frozen)	90.6
CoCa (finetuned)	91.0



Foundation Models

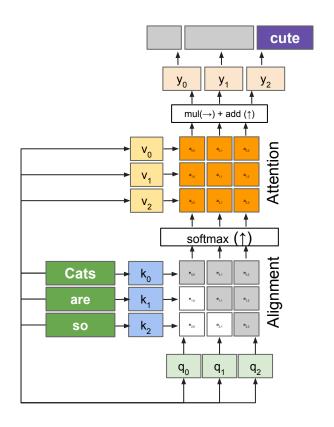
<u>Language</u>	<u>Classification</u>	<u>LM + Vision</u>	And More!	<u>Chaining</u>
ELMo BERT GPT T5	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

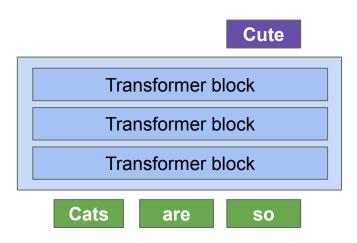
Motivation: CLIP is extremely general in its learned representation, but limited in its out-of-the box applications.

(only can output similarity scores between image and text)

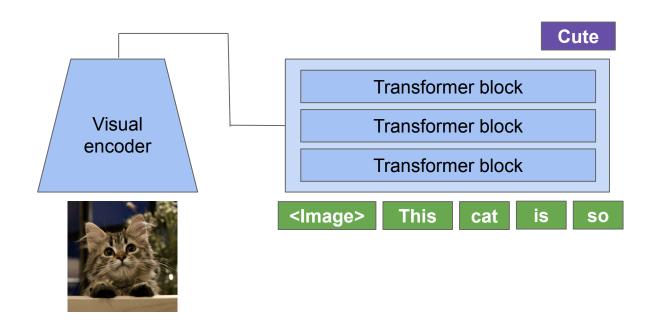
Motivation: Language models which do next token prediction can be applied to a wide variety of tasks at inference (Math, sentiment analysis, symbolic reasoning)

Can we build something like GPT but can accept images and text as input, and then output text?

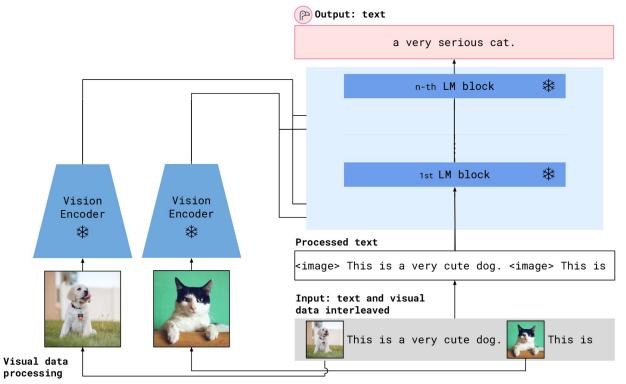




What kind of model is this? (think types of LLMs)

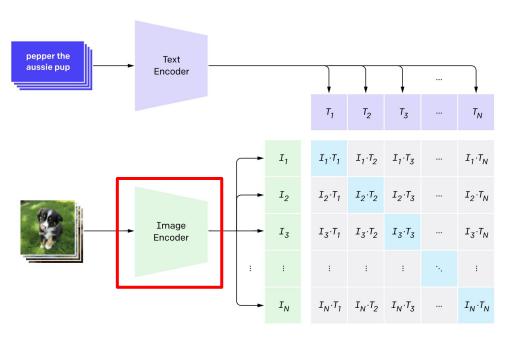


Pre-trained parts of Flamingo



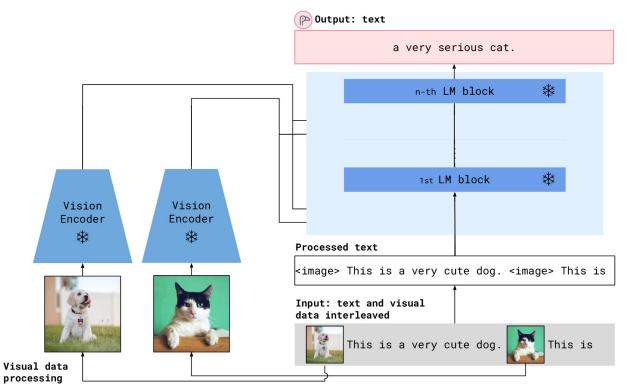
CLIP Training Objective

1. Contrastive pre-training

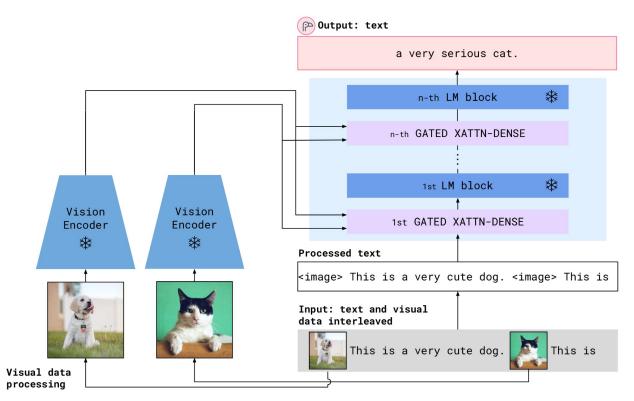


At the end of training, you have a model that will give you a similarity score between an image and a text

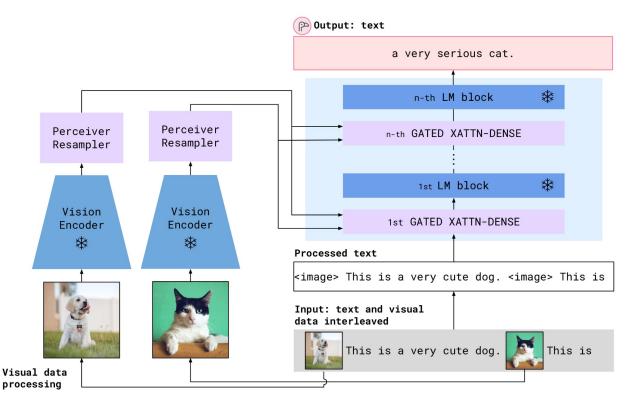
Pre-trained parts of Flamingo

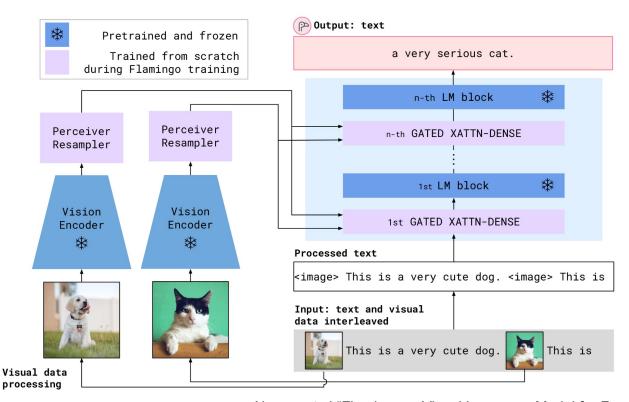


Learned parts of Flamingo

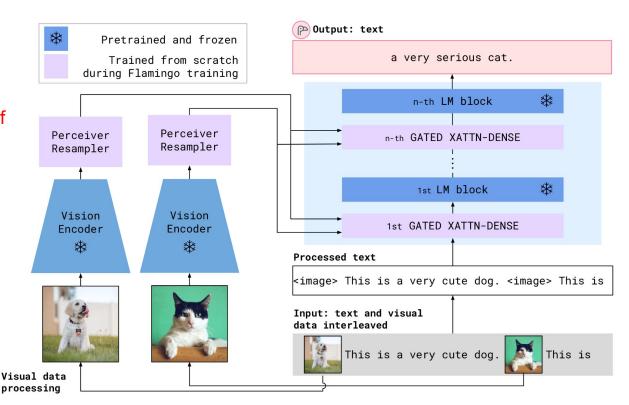


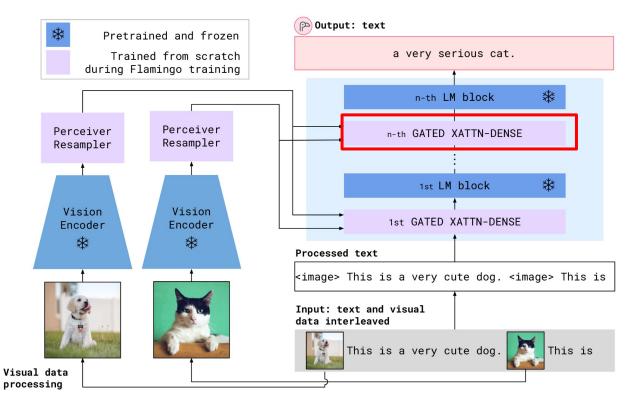
Learned parts of Flamingo



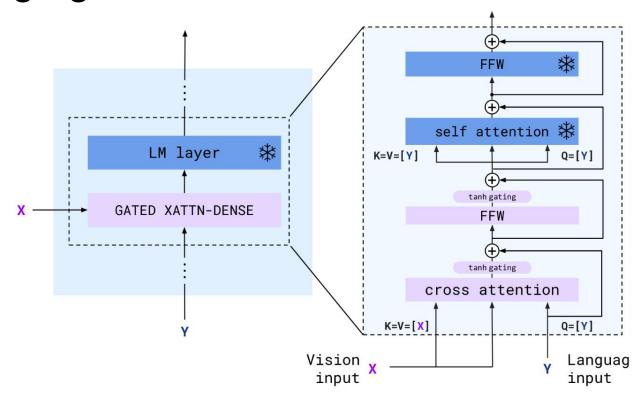


Learned method of down-sampling image/video representations

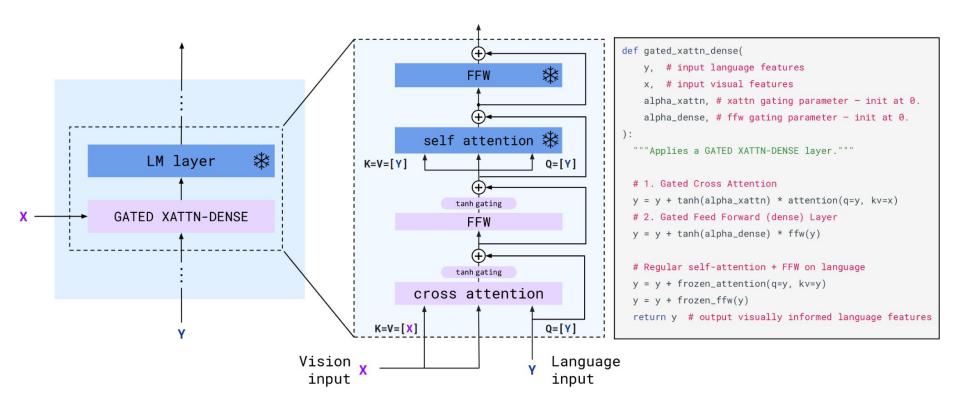




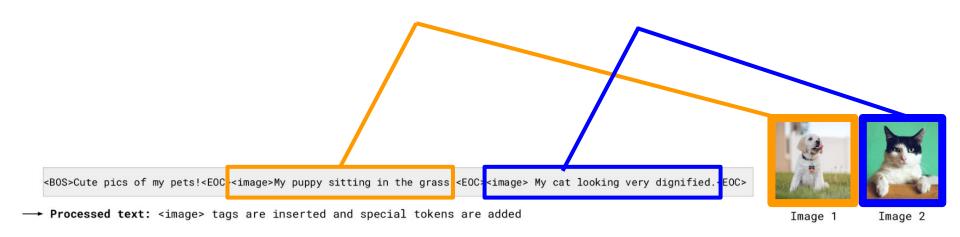
Flamingo gated cross-attention



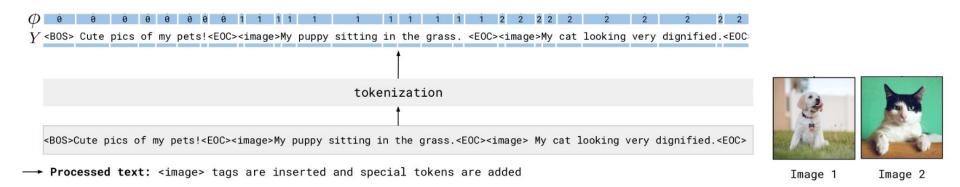
Flamingo gated cross-attention



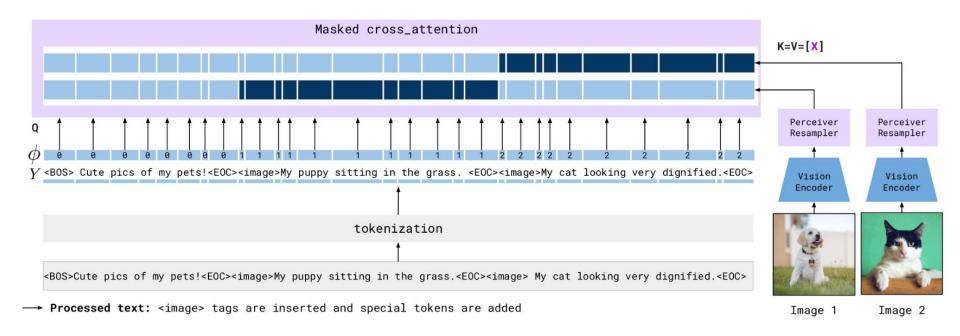
Flamingo masked attention

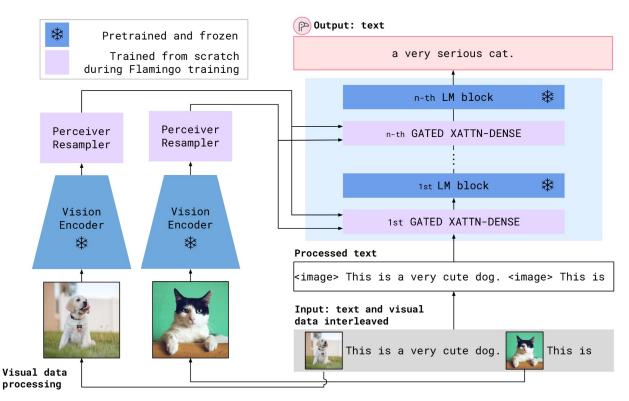


Flamingo masked attention

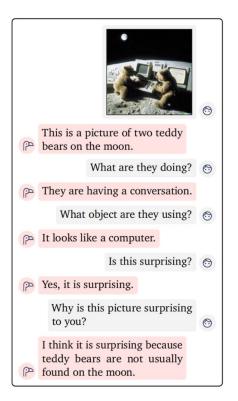


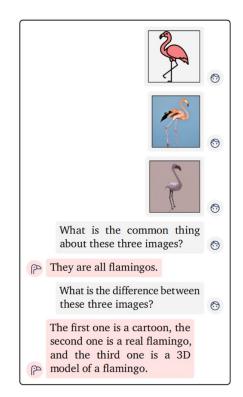
Flamingo masked attention

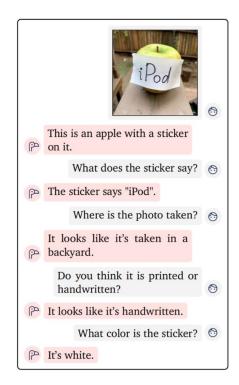




Flamingo results

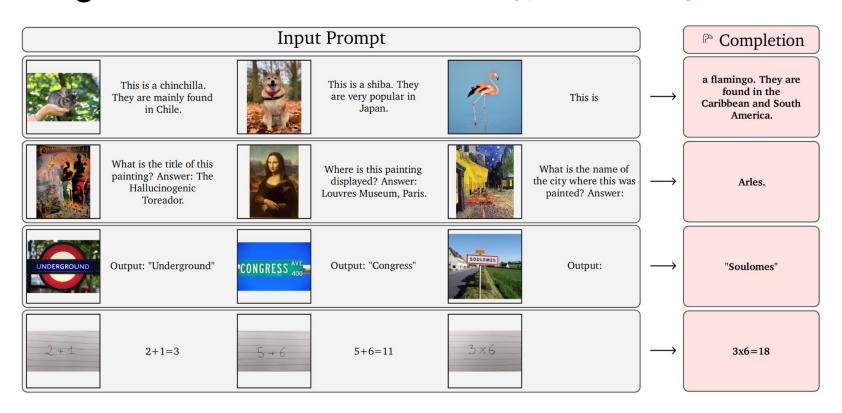




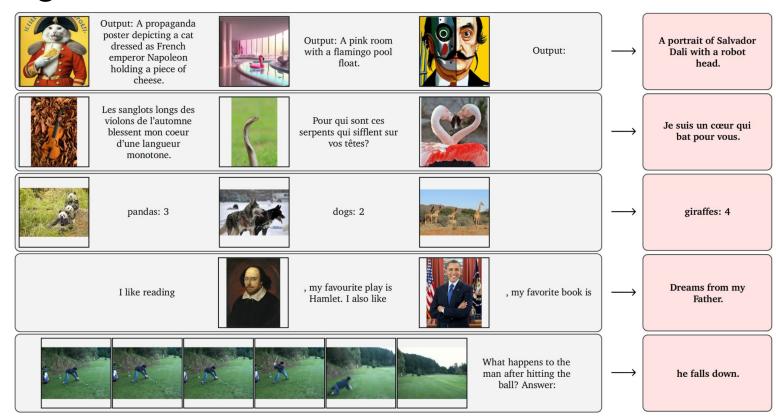


Flamingo results

What is this type of learning called?



Flamingo results



Results: zero & few shot

Method	FT	Shot	OKVQA	VQAv2	0000	MSVDQA	VATEX	VizWiz	Flick30K	MSRVTTQA	ivQA	YouCook2	STAR	VisDial	TextVQA	NextQA	HatefulMemes	RareAct
			[39]	[124]	[134]	[64]				[64]	[145]		[153]	[87]			[94]	[94]
Zero/Few	X		43.3	38.2	32.2	35.2	-	1.	-	19.2	12.2	-	39.4	11.6	-	-	66.1	40.7
shot SOTA		(X)	(16)	(4)	(0)	(0)				(0)	(0)		(0)	(0)			(0)	(0)
	X	0	41.2	49.2	73.0	27.5	40.1	28.9	60.6	11.0	32.7	55.8	39.6	46.1	30.1	21.3	53.7	58.4
	X	4	43.3	53.2	85.0	33.0	50.0	34.0	72.0	14.9	35.7	64.6	41.3	47.3	32.7	22.4	53.6	-
Flamingo-3B X X X	X	8	44.6	55.4	90.6	37.0	54.5	38.4	71.7	19.6	36.8	68.0	40.6	47.6	32.4	23.9	54.7	-
	X	16	45.6	56.7	95.4	40.2	57.1	43.3	73.4	23.4	37.4	73.2	40.1	47.5	31.8	25.2	55.3	-
	X	32	45.9	57.1	99.0	42.6	59.2	45.5	71.2	25.6	37.7	76.7	41.6	OOC	30.6	26.1	56.3	-
	X	0	44.7	51.8	79.4	30.2	39.5	28.8	61.5	13.7	35.2	55.0	41.8	48.0	31.8	23.0	57.0	57.9
	×	4	49.3	56.3	93.1	36.2	51.7	34.9	72.6	18.2	37.7	70.8	42.8	50.4	33.6	24.7	62.7	-
Flamingo-9B	X	8	50.0	58.0	99.0	40.8	55.2	39.4	73.4	23.9	40.0	75.0	43.4	51.2	33.6	25.8	63.9	-
	X	16	50.8	59.4	102.2	44.5	58.5	43.0	72.7	27.6	41.5	77.2	42.4	51.3	33.5	27.6	64.5	-
	X	32	51.0	60.4	106.3	47.2	57.4	44.0	72.8	29.4	40.7	77.3	41.2	OOC	32.6	28.4	63.5	-
	X	0	50.6	56.3	84.3	35.6	46.7	31.6	67.2	17.4	40.7	60.1	39.7	52.0	35.0	26.7	46.4	60.8
	X	4	57.4	63.1	103.2	41.7	56.0	39.6	75.1	23.9	44.1	74.5	42.4	55.6	36.5	30.8	68.6	-
	X	8	57.5	65.6	108.8	45.5	60.6	44.8	78.2	27.6	44.8	80.7	42.3	56.4	37.3	32.3	70.0	-
	X	16	57.8	66.8	110.5	48.4	62.8	48.4	78.9	30.0	45.2	84.2	41.1	56.8	37.6	32.9	70.0	-
	X	32	57.8	67.6	113.8	52.3	65.1	49.8	75.4	31.0	45.3	86.8	42.2	OOC	37.9	33.5	70.0	-
Pretrained			54.4	80.2	143.3	47.9	76.3	57.2	67.4	46.8	35.4	138.7	36.7	75.2	54.7	25.2	75.4	
FT SOTA	V		[39]	[150]	[134]	[32]	[165]	[70]	[162]	[57]	[145]	[142]	[138]	[87]	[147]	[139]	[60]	-
II JOIN		(X)	(10K)	(444K)	(500K)	(27K)	(500K)	(20K)	(30K)	(130K)	(6K)	(10K)	(46K)	(123K)	(20K)	(38K)	(9K)	

Results: zero & few shot

Method	FT	Shot	OKVQA	VQAv2	0000	MSVDQA	VATEX	VizWiz	Flick30K	MSRVTTQA	iVQA	YouCook2	STAR	VisDial	TextVQA	NextQA	HatefulMemes	RareAct
Zana /Farir			[39]	[124]	[134]	[64]				[64]	[145]		[153]	[87]			[94]	[94]
Zero/Few shot SOTA	X		43.3	38.2	32.2	35.2	-	-	-	19.2	12.2	-	39.4	11.6	-	-	66.1	40.7
SHOL SOIA		(X)	(16)	(4)	(0)	(0)				(0)	(0)		(0)	(0)			(0)	(0)
9	X	0	41.2	49.2	73.0	27.5	40.1	28.9	60.6	11.0	32.7	55.8	39.6	46.1	30.1	21.3	53.7	58.4
	X	4	43.3	53.2	85.0	33.0	50.0	34.0	72.0	14.9	35.7	64.6	41.3	47.3	32.7	22.4	53.6	-
Flamingo-3B	X	8	44.6	55.4	90.6	37.0	54.5	38.4	71.7	19.6	36.8	68.0	40.6	47.6	32.4	23.9	54.7	-
	X	16	45.6	56.7	95.4	40.2	57.1	43.3	73.4	23.4	37.4	73.2	40.1	47.5	31.8	25.2	55.3	-
	X	32	45.9	57.1	99.0	42.6	59.2	45.5	71.2	25.6	37.7	76.7	41.6	OOC	30.6	26.1	56.3	-
	X	0	44.7	51.8	79.4	30.2	39.5	28.8	61.5	13.7	35.2	55.0	41.8	48.0	31.8	23.0	57.0	57.9
	X	4	49.3	56.3	93.1	36.2	51.7	34.9	72.6	18.2	37.7	70.8	42.8	50.4	33.6	24.7	62.7	-
Flamingo-9B	X	8	50.0	58.0	99.0	40.8	55.2	39.4	73.4	23.9	40.0	75.0	43.4	51.2	33.6	25.8	63.9	-
	X	16	50.8	59.4	102.2	44.5	58.5	43.0	72.7	27.6	41.5	77.2	42.4	51.3	33.5	27.6	64.5	-
	X	32	51.0	60.4	106.3	47.2	57.4	44.0	72.8	29.4	40.7	77.3	41.2	OOC	32.6	28.4	63.5	-
	X	0	50.6	56.3	84.3	35.6	46.7	31.6	67.2	17.4	40.7	60.1	39.7	52.0	35.0	26.7	46.4	60.8
	X	4	57.4	63.1	103.2	41.7	56.0	39.6	75.1	23.9	44.1	74.5	42.4	55.6	36.5	30.8	68.6	-
Flamingo	X	8	57.5	65.6	108.8	45.5	60.6	44.8	78.2	27.6	44.8	80.7	42.3	56.4	37.3	32.3	70.0	-
	X	16	57.8	66.8	110.5	48.4	62.8	48.4	78.9	30.0	45.2	84.2	41.1	56.8	37.6	32.9	70.0	-
·	X	32	57.8	67.6	113.8	52.3	65.1	49.8	75.4	31.0	45.3	86.8	42.2	OOC	37.9	33.5	70.0	-
Pretrained			54.4	80.2	143.3	47.9	76.3	57.2	67.4	46.8	35.4	138.7	36.7	75.2	54.7	25.2	75.4	
FT SOTA	V		[39]	[150]	[134]	[32]	[165]	[70]	[162]	[57]	[145]	[142]	[138]	[87]	[147]	[139]	[60]	-
1.1 201V		(X)	(10K)	(444K)	(500K)	(27K)	(500K)	(20K)	(30K)	(130K)	(6K)	(10K)	(46K)	(123K)	(20K)	(38K)	(9K)	

Foundation Models

<u>Language</u>	<u>Classification</u>	<u>LM + Vision</u>	And More!	Chaining
ELMo BERT GPT T5	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

Segment Anything Model (SAM)

What does it mean to have a segmentation foundation model?

Masking model trained on dataset of specific number of objects (80 in COCO)

Model outputs masks of all objects in that image that is one of the categories of interest

Images: He et al. Mask R-CNN. 2017

What does it mean to have a segmentation foundation model?

Masking model trained on a dataset of a huge number of categories

Model outputs mask of any objects that the user cares about

What does it mean to have a segmentation foundation model?

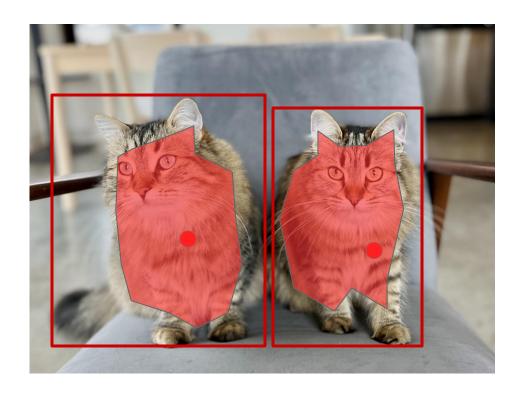
Masking model trained on a dataset of a huge number of categories

How to get this?

Model outputs mask of any objects that the user cares about

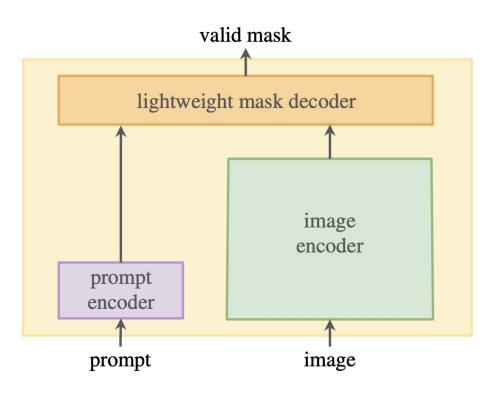
How to know this?

How to know what to mask?

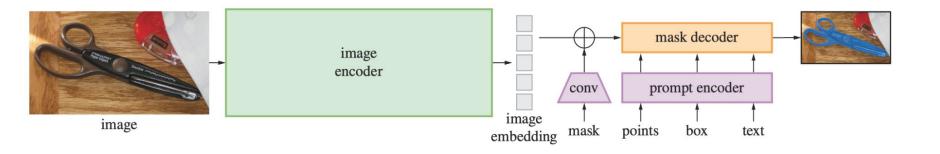


"Cats"

Basic SAM Architecture



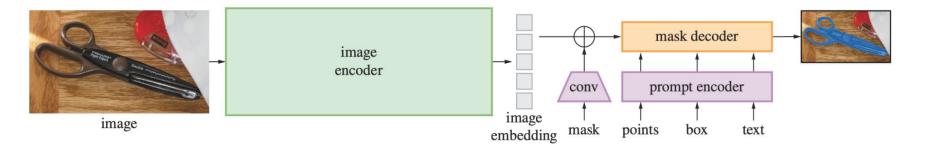
SAM Architecture



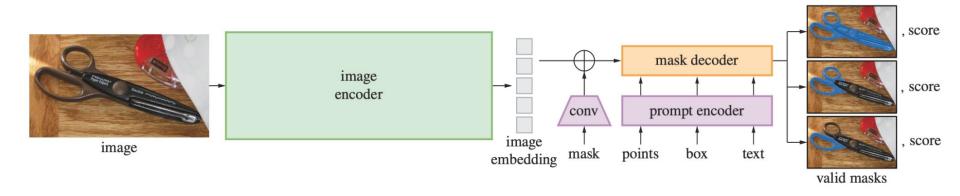
Ambiguity in correct prompt

Ambiguity in correct prompt

SAM Architecture



Basic SAM Architecture



- 1. Loss only calculated with respect to best mask
- 2. Model also trained to output confidence score for each mask

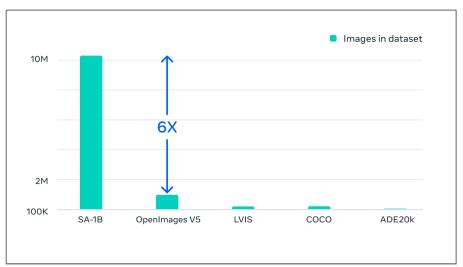
What does it mean to have a segmentation foundation model?

Masking model trained on a dataset of a huge number of categories

How to get this?

Model outputs mask of any objects that the user cares about

How to know this?



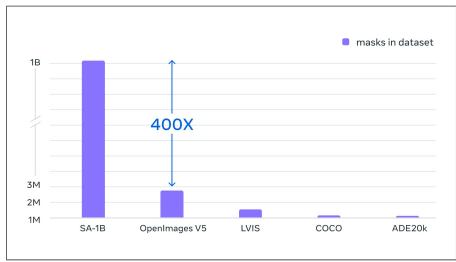
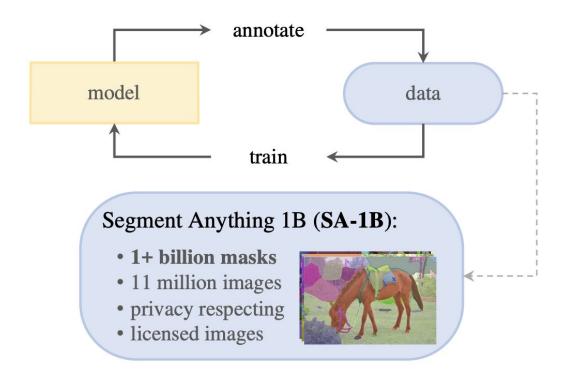
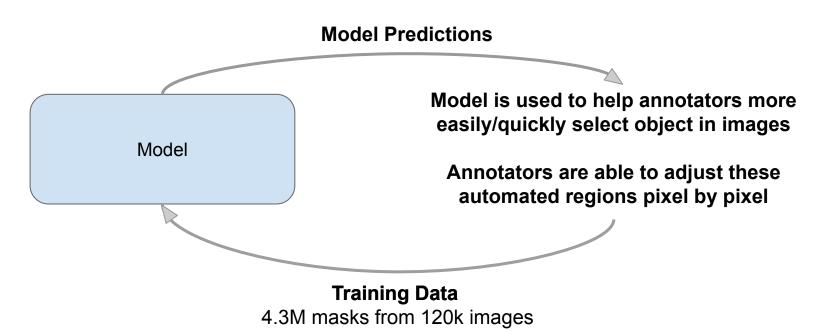


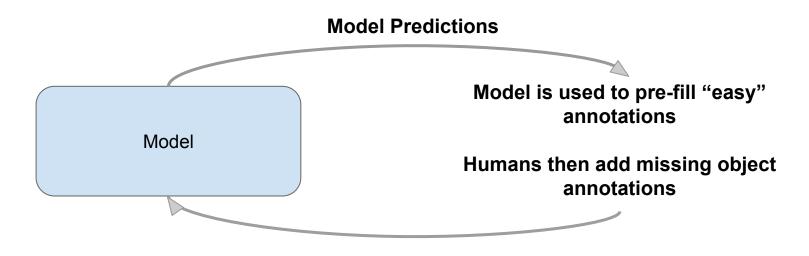
Image Source: https://segment-anything.com/



Assisted-manual stage

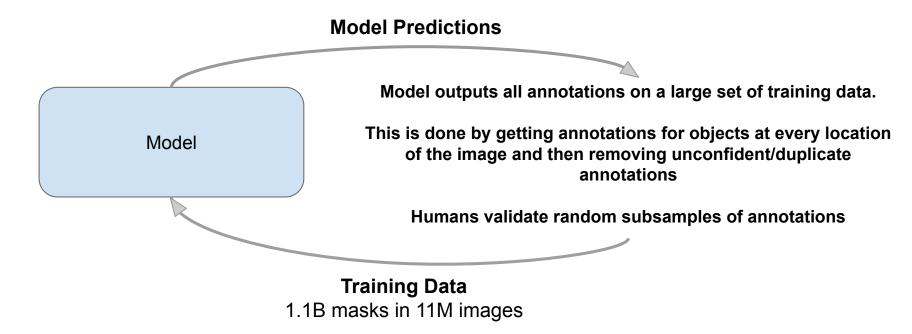


Semi-automatic stage



Training Data5.9M masks in 180k images

Fully automatic stage



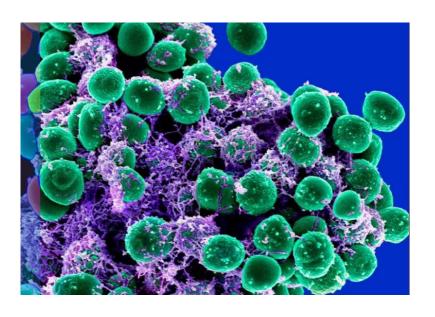
SAM Results

Image Source: Kirillov et al. Segment Anything. 2023

SAM Results

Image Source: Kirillov et al. Segment Anything. 2023

Zero-Shot with SAM



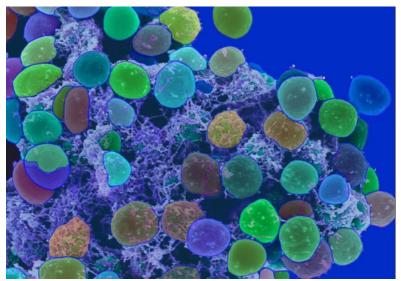


Image Source: https://segment-anything.com/

Zero-Shot with SAM

Image Source: https://segment-anything.com/

Foundation Models

<u>Language</u>	<u>Classification</u>	<u>LM + Vision</u>	And More!	Chaining
ELMo BERT GPT T5	CLIP CoCa	Flamingo GPT-4V Gemini	Segment Anything Whisper Dalle Stable Diffusion Imagen	LMs + CLIP Visual Programming

A photo of a marimba A photo of a viaduct A photo of a papillon A photo of a lorikeet

- "A marimba is a large wooden percussion instrument that looks like a xylophone."
- "A viaduct is a bridge composed of several spans supported by piers or pillars."
- "A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears."
- "A lorikeet is a small to medium-sized parrot with a brightly colored plumage."

Lorikeet

Marimba

Viaduct

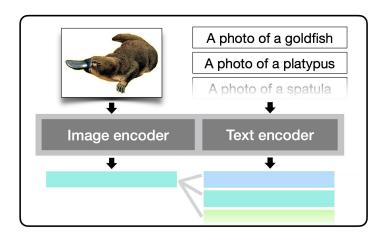
Papillon

[&]quot;A marimba is a large wooden percussion instrument that looks like a xylophone."

[&]quot;A viaduct is a bridge composed of several spans supported by piers or pillars."

[&]quot;A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears."

[&]quot;A lorikeet is a small to medium-sized parrot with a brightly colored plumage."



LLM-prompts:

"What does a { lorikeet, marimba, viaduct, papillon } look like?"

Image-prompts:

"A lorikeet is a small to medium-sized parrot with a brightly colored plumage."

"A marimba is a large wooden percussion instrument that looks like a xylophone."

"A viaduct is a bridge composed of several spans supported by piers or pillars."

"A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears."

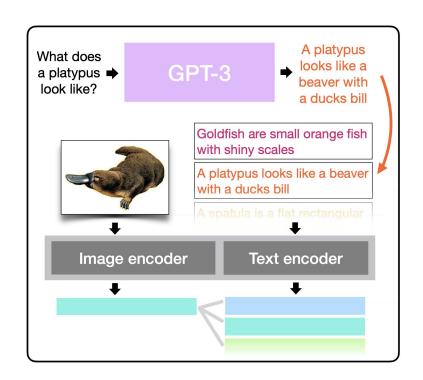
Lorikeet

Marimba

Viaduct

Papillon





	ImageNet	DTD	Stanford Cars	SUN397	Food101	FGVC Aircraft	Oxford Pets	Caltech101	Flowers 102	UCF101	Kinetics-700	RESISC45	CIFAR-10	CIFAR-100	Birdsnap
std # hw	75.54 80	55.20 8	77.53 8	69.31 2	93.08 1	32.88 2	93.33 1	93.24 34	78.53 1	77.45 48	60.07 28	71.10 18	95.59 18	78.26 18	50.43
CuPL (base) Δ std # hw		58.90 +3.70 3													

Many Visual Question
Answering models which
have been trained to do
this type of task

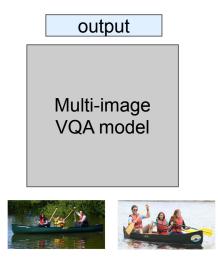
Are there 3 people in the boat?

LEFT:

RIGHT:

Statement: The left and right image contains a total of six people and two boats.

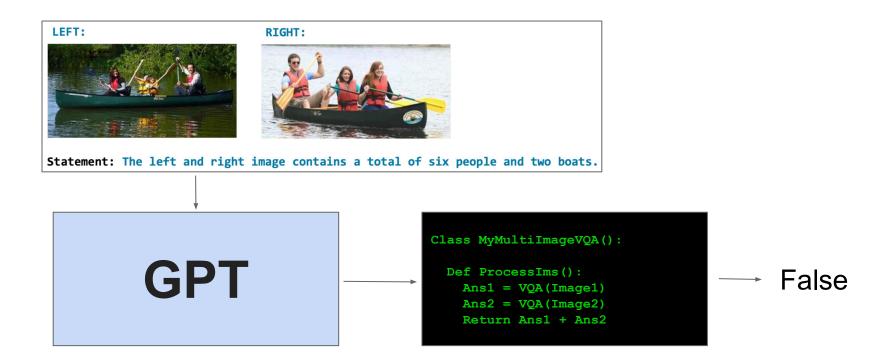
Train a new model for your task



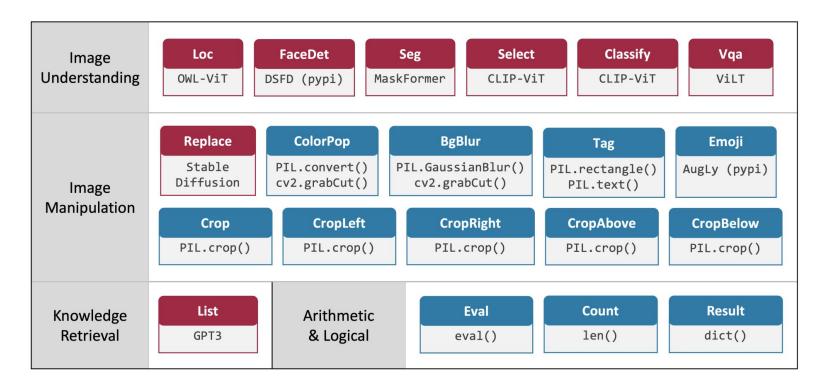
Write a python script with the models you have

```
Class MyMultiImageVQA():
   Def ProcessIms():
    Ans1 = VQA(Image1)
   Ans2 = VQA(Image2)
   Return Ans1 + Ans2
```

General to 2 images now, but not beyond that



```
Instruction: Hide the face of Nicole Kidman with :p
Program:
OBJ0=Facedet(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query='Nicole Kidman')
IMAGE0=Emoji(image=IMAGE, object=OBJ1, emoji='face with tongue')
RESULT=IMAGE0
Instruction: Create a color pop of the white Audi
Program:
OBJ0=Seg(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query='white Audi')
IMAGE0=ColorPop(image=IMAGE, object=OBJ1)
RESULT=IMAGE0
Instruction: Replace the red car with a blue car
Program:
OBJ0=Seg(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, querv='red car')
IMAGE0=Replace(image=IMAGE, object=OBJ1, prompt='blue car')
RESULT=IMAGE0
Instruction: Replace the BMW with an Audi and cloudy sky with clear sky
Program:
              Prompt
                              GPT-3
                                            Program
OBJ0=Seg(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query='BMW')
IMAGE0=Replace(image=IMAGE, object=OBJ1, prompt='Audi')
OBJ1=Seg(image=IMAGE0)
OBJ2=Select(image=IMAGE0, object=OBJ1, query='cloudy sky')
IMAGE1=Replace(image=IMAGE0, object=OBJ2, prompt='clear sky')
RESULT=IMAGE1
```



Natural Language Visual Reasoning

LEFT:

Prediction: False

RIGHT:

Statement: The left and right image contains a total of six people and two boats. Program:

ANSWER0=Vqa(image=LEFT, question='How many people are in the image?')

ANSWER1=Vqa(image=RIGHT, question='How many people are in the image?')

ANSWER2=Vqa(image=LEFT, question='How many boats are in the image?')

ANSWER3=Vqa(image=RIGHT, question='How many boats are in the image?')

ANSWER4=Eval('{ANSWER0} + {ANSWER1} == 6 and {ANSWER2} + {ANSWER3} == 2')

RESULT=ANSWER4

Factual Knowledge Object Tagging

IMAGE:

Prediction: IMAGE0

Instruction: Tag the 7 main characters on the TV show Big Bang Theory
Program:

OBJ0=FaceDet(image=IMAGE)

LISTO=List(query='main characters on the TV show Big Bang Theory', max=7)

OBJ1=Classify(image=IMAGE, object=OBJ0, categories=LIST0)

IMAGE0=Tag(image=IMAGE, object=OBJ1)

RESULT=IMAGE0

IMAGE:

Instruction: Replace desert with lush green grass

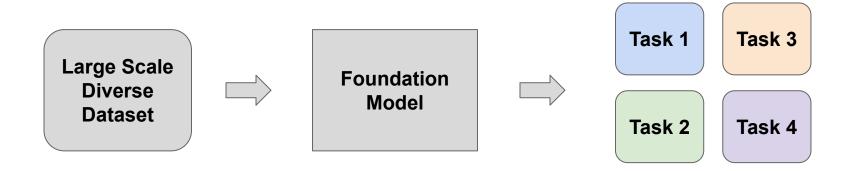
Program:

OBJ0=Seg(image=IMAGE)

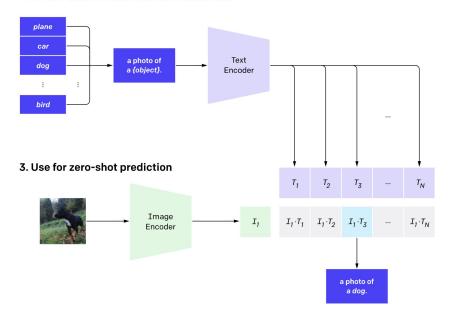
OBJ1=Select(image=IMAGE, object=OBJ0, query='desert', category=None)

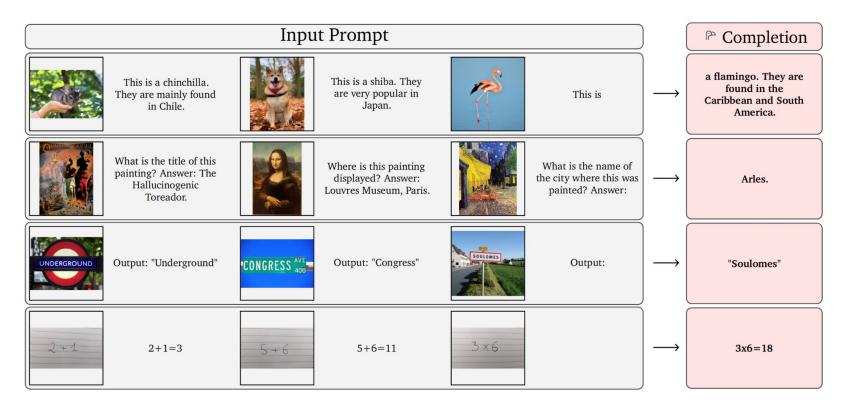
IMAGE0=Replace(image=IMAGE, object=OBJ1, prompt='lush green grass')

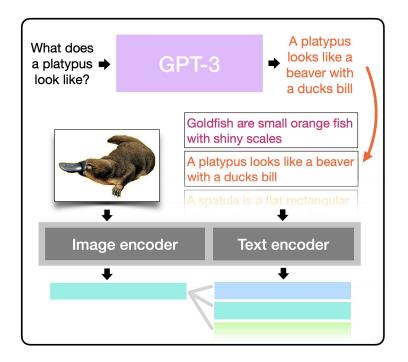
RESULT=IMAGE0

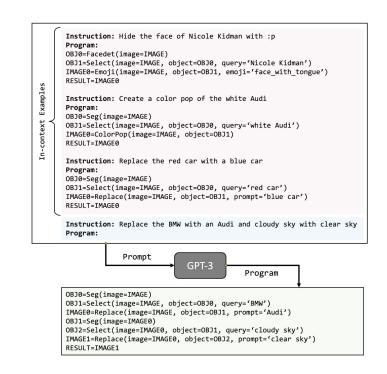


2. Create dataset classifier from label text









Next time: Generative models