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Administrative

- Assignment 4 due tonight
- A5 out
- Some edits to class schedule
- RL lecture removed to make room for diffusion
- Assignments adjusted accordingly
- Last 1.5 lectures done by Vivek (TA + researcher in
diffusion)
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SImCLR: mini-batch training 5 = 3
’ IEARIE
“Affinity matrix” ’

encoder R2N xD
_\

list of positive pairs I — .
. encoder —/ .
Each 2k and 2k + 1
element is a positive pair

2N

*We use a slightly different formulation in the assignment. .= classification label for each row
You should follow the assignment instructions.

2N
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Momentum Contrastive Learning (MoCo)

: Key differences to SimCLR:
contrastive loss 1o grad

e Keep arunning queue of keys
similarity / (negative samples).
q kO kl k2 e Compute gradients and update the
encoder only through the queries.
queue
e Decouple min-batch size with the
oy number of keys: can support a large
encoder encoder number of negative samples.

e The key encoder is slowly progressing
query key key key through the momentum update rules:
X

Lo 1 e O — mby + (1 — m)bg

Source: He et al., 2020
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https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training
on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020
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https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet VOC detection : : :

case MLP aug+ cos epochs acc. APsg AP APrys ¢ Non-lmear prOJeCtIOn head and )
supervised 765 | 813 535 588 strong data augmentation are crucial
MoCo vl 200 60.6 81.5 559 62.6 for Contrastlve |earn|ng

(a) v 200 66.2 82.0 564 62.6

®) v 200 63.4 822 56.8 632

(©) v v 200 67.3 82.5 572 639

(d v v o v 200 67.5 824 570 63.6

(e) v v oo v 800 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Source: Chen et al., 2020
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https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet
case MLP aug+ cos epochs batch acc. e Non-linear projection head and
MoCo vl [6] 200 256 60.6 ; :
SmCLR 2] | v s o 500 558 | @b strong data.augmen.tatlon are crucial
SimCLR [2] | v v v 200 8192 | 66.6 for contrastive learning.
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow: ] Decou pllng mini-batch size with
SimCLR [2] v v v 1000 4096 69.3 : :
TS v va— A S et negative sample size allows

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy MoCo-V2 1o OUtperform SIMCLR with

(ResNet-50, 1-crop 224 x<224), trained on features from unsuper- smaller batch size (256 vs. 81 92)-
vised pre-training. “aug+” in SImCLR includes blur and stronger

color distortion. SimCLR ablations are from Fig. 9 in [2] (we

thank the authors for providing the numerical results).

Source: Chen et al., 2020
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https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

e Non-linear projection head and
strong data augmentation are crucial

mechanism  batch  memory / GPU  time / 200-ep. for contrastive learnin g.
MoCo 256 5.0G 53 hrs

end-to-end 256 7.4G 65 hrs : . : .

endoend 4006 93 0Gt " e Decoupling mini-batch size with

negative sample size allows
MoCo-V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. : based on our estimation.

e ... all with much smaller memory
footprint! (“end-to-end” means
SImMCLR here)

Source: Chen et al., 2020
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https://arxiv.org/pdf/2002.05709.pdf

Problem with MoCoV2: Need to keep around a
set of negatives

contrastive loss

simllarity
q ko kl k2 Do we need these
queue negatives?
ancoder momentum
encoder
ke ke ke
g Ty Ty Ty ...

Ali Farhadi, Sarah Pratt Lecture 15- 9 Nov 14, 2024



Solution: DINO: self-distillation with no labels

loss:
@ -p2log pi e Similar to SImMCLR and MOCO but with
sg

one big difference: no negatives
| softmax l ppifina | e Reformulates contrastive learning as
centering knowledge distillation between a

ema student and a teacher model.
student gpgs — || teacher gg

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Solution: DINO: self-distillation with no labels

loss:
@ - p2log pi @ e The teacher model is not trained: sg
= 8 stands for stop-gradient: meaning that
|__softmax | softmax | gradients are prevented from flowing
centering back.

céma
student gpgs — || teacher gg ‘

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
(b))  -pelogp e The teacher model s like the
58

momentum encoder. It is a running
[ softmax | softmax | average of the student model
centering

. 0, — 20, + (1 — 2)0,
“ student gpgs | teacher g6t ‘

Q e The teacher sees a global view
G augmentation of the image
° e Student only sees augmented local

crops of the image

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
] Global augmented
@ p2 log p1 Local augmented ) views
sg

crops

| softmax | softmax | S g VY
|
centering

cma s a2
student ggg — || teacher gg; X
1

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
@ -pzlogpi @ Training tricks:

== e Centering: prevents one dimension
| softmax [ Soithany | from dominating.
centering o A constant value c is added to all
- | dimensions of the teacher’s
student ggs | — | teacher gg; OUtpUt
° Q o cis arunning average of outputs
1
° gelx) &« gelx) + ¢; c=me + {1 — m)EZ?n 9o, (x;)

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
@ -pzlogpi @ Training tricks:

== e Sharpening:
[ sofimax [_softmax ] o Atemperature (Tau)
centering hyperparameter is used to
ema | sharpen the distributions towards
student gpgs — | teacher gg one dimension.

() (x2) exp(go, ()@ /7.)
() K explgs, ()P /7a)

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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DINO code

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

loss:
- PJ I“L'; PI P" # gs, gt: studgnt and teacher networks
! : # C: center (K)
# tps, tpt: student and teacher temperatures
Sg # 1, m: network and center momentum rates
gt.params = gs.params
X I E— @ X ‘ B for x in loader: # load a minibatch x with n samples
soltmax soltmax x1l, x2 = augment (x), augment (x) # random views
] o sl, 82 = gs(xl), gs(x2) # student output n-by-K
('l'lll('l'lllg tl, t2 = gt(x1l), gt(x2) # teacher output n-by-K
s loss = H(tl, s2)/2 + H(t2, sl)/2
ema loss.backward() # back-propagate
«
e — sache
ltdth('r gﬁl # student, teacher and center updates

update (gs) # SGD
gt.params = lxgt.params + (l1l-1)+gs.params @
C = mxC + (1l-m)*cat([tl, t2]) .mean(dim=0)

def H(t, s):

t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen @

return - (t * log(s)).sum(dim=1) .mean ()
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Results: DINO

Method Arch. Param. 1m/s Linear k-NN
Supervised RN50 23 1237 79.3 79.3
SCLR [12] RN50 23 1237 69.1 60.7
MoCov2 [15] RNS50 23 1237 711 619
InfoMin [67] RNS50 23 1237 73.0 65.3
BarlowT [£1] RNS50 23 1237 73.2 66.0
OBoW [27] RN50 23 1237 73.8 61.9
BYOL [30] RN50 23 1237 744 64.8
DCv2 [10] RNS50 23 1237 752 67.1
SwAV [10] RN50 23 1237 75.3  65.7
DINO RN50 23 1237 753 67.5
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Instance vs. Sequence Contrastive Learning

Predictions

| ‘ * *
2t+2 Zt+3 Zt+4
/g\ /g\/g\/g\ /g\/g\ Jac\ [\

| -3 | T2 | Tt-1 | Ty T4l | T2 | Teqsz | Tigd |

| l\\ At~ s IW e

W"\

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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https://arxiv.org/abs/1807.03748

Contrastive Predictive Coding (CPC)

Predictions

n i B == st Contrastive: contrast between
é o) NN RN “right” and “wrong” sequences
\ ) 3 using contrastive learning.

+ H; I SO A S i Predictive: th del has t
oo fom [ [ [ [ [ [0\ et fture patterns given the
e T R B current context.

’j, c 7 Coding: the model learns useful

. m positive feature vectors, or “code”, for
7 downstream tasks, similar to other

context [5 _QE l self-supervised methods.

negative

Figure source Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Predictions 1. Encode all samples in a sequence
' ‘ into vectors z, = g__ (x,)

B e

B
/\/\/\/\/\/\/\/\

T3 | Ty—2 | XTy—1 | Ty | T4 $t+2 \ T3 $t+4

C 7
m positive
context ;5 Q l

negative

Figbre source - Source: van den Oord et al., 2018,

£ bm(s )-m
—»re-
—»re
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https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Predictions

,/'/ i
|ad—
/

.\.\ A\\
\ ) \
; * + ‘
2t ?3t+1 Zt42 2t43 ? Zt+4
. J
I I | I
/gcnc\ /gonc\ /gcnc\ /gcnc\ /gcnc\ /gonc\ /gcnc\ /gcnc

-3 | Tp—2 | Te—1 | T | T Tey2 | Ti43 Tiya |

7B
4

a positive
ontext ;5 Q l

negative

Figure source

1. Encode all samples in a sequence
into vectors z, = g__ (x,)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g, ). The
original paper uses GRU-RNN here.

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

R

Predictions

\ 3 :
.\ .. Y '.
3 Y
,/«t+l Zt+2 2t43 ’~t+4

Tt—3 | Ty—2 | XTp—1 |

context

Figure source

Tt

Ali Farhadi, Sarah Pratt

| T4 Tt+2 ‘\ Ti43 xtf4 ‘\

L 7
positive

5 & &
negative
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1. Encode all samples in a sequence

into vectors z, = g__ (x,)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g, )

3. Compute InfoNCE loss between the
context ¢, and future code z,,, using
the following time-dependent score
function:

Sk (Zeik,ct) = Wic

, Where Wk is a trainable matrix.

t+k

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Predictions 1. Encode all samples in a sequence

into vectors z, = g__ (x,)
‘ @ 5 2. Summarize context (e.g., half of a
‘,w ‘,m? *m; éw sequence) into a context code ¢, using

an auto-regressive model (g_)

v g\ Jge\ / g\ / g\ / g\ / g\ / g\ 3 Predict 2. using ¢ and tr;’inable

R e e L ms | e | weights. Loss is similarity to true z,,,
c -7 . value over similarity to constrastng
L ‘ option
positive
context z 5 @ l
negatiuvé
Figure source Source: van den Oord et al., 2018,

Ali Farhadi, Sarah Pratt Lecture 15 - 23 Nov 14, 2024


https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

CPC example: modeling audio sequences

Predictions

; ; ; ; ‘\'\. ~\'\.
Zt+1 Zt42 2t+3 Zt4-4
genc genc genc /genc\ /genc\ /genc\ /genc\ genc
Tt—1

| T¢-3 Tt4+1 Ti+2 Tt+3 | Tttd |

MMMWWMWWWWWWWW *‘WWWVWWWW*MWWWW

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748

CPC example: modeling audio sequences

; o
2k . B 2
T ”i"k“““ O
o Rus, T medrrey .

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Ali Farhadi, Sarah Pratt
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Method | ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 97.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom
as a sequence. l.e., use top rows as context to predict bottom rows.

gar - output
Genc - output
o,
| id
__ T
7
64 pX _/-//'/'
— - o
Aaw ] nat il I 4
Zt+3| |« T -7 Predictions
Ztﬂ‘4 - T
|
256 px: :
v input image |

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748

CPC example: modeling visual context

e Compares favorably with other pretext

Method | Top-1 ACC _ :
Using AlexNet convs task-b?sed self-supervised learning method.
Video [28] 29.8 e Doesn’t do as well compared to newer
Relative Position [11] 30.4 instance-based contrastive learning
BiGan [35] 34.8 h . f .
Colorization [10] 359 methods on image feature learning.
Jigsaw [29] * 38.1
- % Supervised -%SimCLR (4x)
Using ResNet-V2 <2l HSImCLR (2x)
Motion Segmentation [36] 27.6 e )
Exemplar [36] 31.5 S 70F %simCLR omc dMoCo )
Relative Position [36] 36.2 e oPIRL-c2x o -~
Colorization [36] 39.6 T 65 m pIRL_onSMoCo (2X)
CPC 48.7 P B J—
3 eof o0 =
Table 3: ImageNet top-1 unsupervised classifi- >
cation results. *Jigsaw is not directly compa- E ssf-giinic °Rotation
rable to the other AlexNet results because of A . . . —
25 50 700 200 400 626

architectural differences.

Number of Parameters (Millions)

Source: van den Oord et al., 2018,
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https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score( f(z), f(xz™)) >> score(f(z), f(z7))

InfoNCE loss: N-way classification among positive and negative samples

exp(s(f(z), f(z))
exp(s(f(@), f(z 1)) + X0  exp(s(f (), f(z;))

L=-Ex |log

Commonly known as the INfONCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(x), f(z*)] - log(N) > —L
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https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive wp o hiMFRRgEOmENE
representation learning g(.)T Tg(')
e Key ideas: non-linear projection head to

allow flexible representation learning hi <— Representation —» h;

e Simple to implement, effective in learning £0) £0)
visual representation

e Requires large training batch size to be
effective; large memory footprint p -
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using contrastive loss
momentum sample encoder similatity
e Decouples negative sample size from
minibatch size; allows large batch training q ko k1 k2 ...
without TPU queue
e MoCo-v2 combines the key ideas from —
SImCLR, i.e., nonlinear projection head, _nceden encoder
strong data augmentation, with momentum

contrastive learning pauery pkey ey ey
0 1 g v
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”

sequence.

e InfoNCE loss with a time-dependent score
function. (

e (Can be applied to a variety of learning
problems, but not as effective in learning ¢C 7
image representations compared to . ﬂ positive
instance-level methods. e I's @ .

negative
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Other examples: will be covered in next lecture

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text
plane
pepper the Text
e pup Encoder Text
1 1 1 1 Encoder
T 0> T T
— I ATl T Tl T T 7Ty
— I I, T, IpT, IyTy - I, Ty 3. Use for zero-shot prediction
“ iz
b " 4 i Image i i E L
A |l -
"3 i I e s IsTy I3T, IzTy - I3y
S M. Image
: : : : : : w,.‘ d S O - Lo o T.T
— Iy InTy InT, IyTy - IyTy \

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021
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Other examples
Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (e) Direct Multi Object (f) Synthetic Multi Object

7

Dense Object Net, Florence et al., 2018
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Other examples

(@)

Dense Object Net, Florence et al., 2018
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Other examples

M

;robot ther grasps the best match
ce-specific descrlptor
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http://www.youtube.com/watch?v=L5UW1VapKNE

LLMs
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Recap: Self-Supervised

|dentify different textures
|dentify different colors
Skills needed to |[dentify which pixels are parts of an object
Understand parts of objects which make up the whole
Understand the context of the object/animal in the image
Understand lighting conditions
Understand objects close up/far away
Have common-sense reasoning skKills
Learn which features are associated with which dog

classify dogs
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Recap: Self-Supervised

|dentify different textures

General visual |dentify different colors

modelling skills |[dentify which pixels are parts of an object

(Can be learned with | Understand parts of objects which make up the whole
Self Supervised) Understand the context of the object/animal in the image

Understand lighting conditions

Understand objects close up/far away

Have common-sense reasoning skKills

Specific (Supervised) | Learn which features are associated with which dog
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Self-Supervised for Language

Knowledge of words/letters
Knowledge of grammar

Skills needed to  Meanings of words

: Understanding context of words

ClaSS|fy book Keeping track of entities over time

genres Understanding expressions/idioms
Understanding tone
Learning which features are associated with each genre
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Self-Supervised for Language

Knowledge of words/letters

General language Knowledge of grammar

modelling skills Meanings of words

(Can be learned with | Understanding context of words
Self Supervised) Keeping track of entities over time

Understanding expressions/idioms
Understanding tone
Specific (Supervised) | Learning which features are associated with each genre
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Self-Supervised for Language

Knowledge of words/letters

General language Knowledge of grammar

modelling skills Meanings of words

(Can be learned with | Understanding context of words
Self Supervised) Keeping track of entities over time

Understanding expressions/idioms
Understanding tone
Specific (Supervised) | Learning which features are associated with each genre

Want: model with general understanding of language (Language model!)

Ali Farhadi, Sarah Pratt Lecture 15 - 41 Nov 14, 2024



LLMs

Building LLMs: Pre-training objectives + architectures
- Encoder only
- Decoder only
- Encoder Decoder

GPT

Gradient-Free Performance Improvement
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LLMs

Building LLMs: Pre-training objectives + architectures
- Encoder only
- Decoder only
- Encoder Decoder

GPT

Gradient-Free Performance Improvement
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Last time

Pre-training tasks

rotation in-painting | Colorization

: il
< L

Source: Google Al blog post

Gidaris et al. 2018) Pathak et al., 2016z

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://arxiv.org/abs/1803.07728
https://arxiv.org/pdf/1604.07379.pdf

Last time

Pre-training tasks

rotation in-painting Cglorization

90° rotation

What to use as pre-training task for language?
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Encoder only LLMs

It's cold today! Don’t forget to wear a

The is a popular tourist attraction in Seattle.
| missed ____ bus.
| had 3 pencils and lost one so now | have pencils.

Ali Farhadi, Sarah Pratt Lecture 15 - 46 Nov 14, 2024



Encoder only LLMs

It's cold today! Don’t forget to wear a jacket / coat / sweater.

The Space Needle is a popular tourist attraction in Seattle.

| missed the bus.

| had 3 pencils and lost one so now | have 2 / two pencils.
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Encoder only LLMs

It's cold today! Don’t forget to wear a jacket / coat / sweater. =~ Common Sense

The Space Needle is a popular tourist attraction in Seattle. Factual knowledge
| missed the bus. Grammar
| had 3 pencils and lost one so now | have 2 / two pencils. Math/ Reasoning
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LLMs

Encoder Only:

ENCIED

Decoder Only:

ENEZ

Encoder-Decoder:

0 BT
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LLMs

Encoder Only:

Decoder Only:

Encoder-Decoder:
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ELMo (Embeddings from Language Models)

Pre-training task

This wall needs another coat of paint

Predict words based on
previous words

wall needs another coat

f ! T r

! i i !

=] =] |—=|

i f t i
| | | | |

i | t f
This wall needs another

Predict words based on
following words

coat of
! I

|~

i f
t

f
! :
of paint

Peters et al. Deep contextualized word representations. 2018.
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ELMo (Embeddings from Language Models)
Application to downstream tasks

This wall needs another coat of paint

1 : ; ; o e— T i

! T ! i t ‘ ” Ty ! | ! N ! |
| : N : N : N : | | : 3 “coat’ ; 1{ 3
This  wall needs another coat representation coat 0 paint

Peters et al. Deep contextualized word representations. 2018.
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ELMo (Embeddings from Language Models)
Application to downstream tasks

This wall needs another coat of paint

| ] ]| — Task Specific Model

—  Output

“Coat”
representation

Fine-tune

Peters et al. Deep contextualized word representations. 2018.
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Vision: Pre-train and then fine-tune

Step 1: Pretrain a '
network on a pretext Encoder: Decoder: Loss:
task that doesn’t ¢ Y L®,y)
require supervision |

Input Image: x Features: ¢(x)  Prediction: y
Step 2: Transter Downstream tasks:
encoder to _ Encoder: Image classification,
downstream tasks via ) object detection,
linear C|assifier3, semantic segmentation

KNN, finetuning Inut Ige: X Features: ¢(x)
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Language: Pre-train and then fine-tune

Step 1: Pretrain a V\;all nee?ds ano*ther cciat coat  of
network on a pretext : ; E ; E : E : :

task that doesn’t = EE
require supervision This wall needs another of  paint

Step 2: Transfer - _
—— Task Specific | . Downstream tasks:

encoder 1o — Model Output Sentiment

downstream tasks via “coat” classification, NLI,

linear classifiers, represen _

KNN, finetuning tation Fine-tune
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Encoder only LLMs

0.286
0.792
-0.177
. . coat = ~0.107
This wall needs another coat of paint 0.109
-0.542
0.349
0.271

It's cold today! Don’t forget to wear a coat.

Glove embeddings use the same vector for every instance of a
word, no matter the context!
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Elmo Results

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 92.22 £0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 + 0.5 3.3/6.8%

Source: Peters et al. Deep contextualized word representations. 2018.
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https://arxiv.org/abs/1802.05365

E n COder O n I_V Bert (Bidirectional Encoder Representations from Transformers)

Input: Text sequence
Output: Feature Vector

Yo y, Y, Outputs:
F 1 context vectors: y (shape: ' )
| mui)+add() |
*
= VO 800 , 2, .5
> V1 §
1= V2 20 2 222 2
Pt 4
| softmax (1) |
L
C
Ky GEJ
Ky 5
K, o] <
t t
9% | 9 9

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert

Input: Text sequence
Output: Feature Vector

» 7 y Outputs:
0 1 2
) 5 context vectors: y (shape: 1)
| mui)+add() |
?
= VO L 24 %2 .5
> V1 §
£ V2 21 222 2
t t ¢
| softmax (1) |
N I
C
K, GEJ
. K, _5,
K, ol e | <
t
9 || 9 | 9%

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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ELMo (Embeddings from Language Models)

wall

T

needs another

! T

coat
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Encoder Only: Bert

Input: Text sequence mmm
Output: Feature Vector
Yy Y, Y, Outputs:
¥ § 1 context vectors: y (shape: )
| mui)+add() |
?
- ] > 20 B B2 C
What information do s S
the y vectors contain? Lo £
> V2 2, 2,
bttt
| softmax (1) |
N
K, o
£
ove fll 5
K, R
t t
a [ 9, | 9,

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.

Ali Farhadi, Sarah Pratt Lecture 15 - 61 Nov 14, 2024



Encoder Only: Bert

Input: Text sequence mmm
Output: Feature Vector
Yy Y, Y, Outputs:
¥ § 1 context vectors: y (shape: )
| mui)+add() |
*
- ] > 20 B B2 C
What information do s S
the y vectors contain? Lo £
> V2 2, 2,
| tt t |
Just copying input sotmax (1) ]
K, o
£
: i 5
K, R
t t
a [ 9, | 9,

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert
Input: Text sequence 1 | Love | Cake

Output: Feature Vector bt
Yy Y, Y, Outputs:
¥ § 1 context vectors: y (shape: )
| mui)+add() |
?
- v, ~ = ~]5
o v, <
> V2 20 2 2 2
Randomly select 15% of | :oﬁm:x (g) |
tokens.
80% - [MASK] K, é
10% - random token . K, =
10% - keep same « =
t t
G [ 94 | 9,

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert

Input: Text sequence
Output: Feature Vector 1 Masked Language Model

O T T

Transformer

s [ cake

Randomly select 15% of tokens.
80% - [MASK]
10% - random token
10% - keep same

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert

Input: Text sequence

Output: Feature Vector 1 Masked Language Model
2. Next Sentence Prediction

Does sentence 2 follow sentence 1?

o] J o ] ocae Joserr ] s ] oo ] good ] seri

Transformer

1] masa _sep] J s § so | | [SEP] |
Randomly select 15% of tokens.
80% - [MASK]
10% - random token
10% - keep same

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert

Input: Text sequence

Output: Feature Vector 1 Masked Language Model
2. Next Sentence Prediction

Does sentence 2 follow sentence 1?

o ] oo Jocake Joiserr Jioies | o ] good ]I (sePI

Transformer

1] masa _sep] J s § so | | [SEP] |
Randomly select 15% of tokens.
80% - [MASK]
10% - random token
10% - keep same

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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Encoder Only: Bert

Application to downstream tasks

m:’ Mask LM Mask LM \
& s *

Le ) o] ) ()
BERT

Leem | & Jo B [ B[ & | [0

= 3 e e -

@[mm ] [TokN]{ [SEP] \”Tom 1 [TokM]
Masked Sentence A Masked Sentence B

N o 4
Unlabeled Sentence A and B Pair
Pre-training

Image Source: Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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https://arxiv.org/abs/1810.04805

Encoder Only: Bert

Application to downstream tasks

& Mask LM Masfk LM \ /mLI /@@AD Start/End SpaN
®x *

00—
L)) e )] (W) - e ) - (]
BERT afs = 2 n n u» N CRECH O ER BERT
|EICL81 ” E, | I Ex H E[SEP] H E1’ I I Ey | Eicus) IE] | Ey || E[SEF‘I || E | I Ew I
i L o =~ g e e i o
(o) () .. (o) (o ) [r) .. (o) ! v [ (e ) (o) . (o)
Masked Sentence A Masked Sentence B Question Paragraph
PN *
\\ Unlabeled Sentence A and B Pair / \\\\\ Question Answer Pair /
Pre-training Fine-Tuning

Image Source: Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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https://arxiv.org/abs/1810.04805

ELMO: Two step process

Step 1: Pretrain a well negas anciher coat coat  of
network on a pretext : ; E ; E : E : :

task that doesn’t s e - EE
require supervision This wall needs another of  paint

Step 2: Transfer

S Task Specific | . Downstream tasks:
encoder to . —_—— Model Output Sentiment
downstream tasks via “coat” classification, NLI,
linear classifiers, represen .

tation Fine-tune

KNN, finetuning
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BERT: Two step process

Step 1: Pretrain a (0 e @)
network on a pretext BERT 2
task that doesn’t

Masked Sentence A Masked Sentence B

require supervision

Unlabeled Sentence A and B Pair

Pre-training

Step 2: Transfer

Downstream tasks:

encoder to | Sentiment
downstream tasks via classification, NLI,
linear classifiers, M. S,

KNN, finetuning | oo

Fine-Tuning

Image Source: Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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https://arxiv.org/abs/1810.04805

BERT Results

System Dev Test
EM F1 EM Fl
System Dev Test ——TonLaadarhanrd Quetame (Mec 10th 2012
Human - - 823 912
ESIM+GloVe 519 52.7 #1 Ensemble - nlnet E - 86.0 91.7
ESIM+ELMo 59.1 592 #2 Ensemble - QANet 5 - 845 90.5
OpenAl GPT - 78.0 Published
BiDAF+ELMo (Single) - 856 - 858
BERTgAsE 816 - R.M. Reader (Ensemble) 812 87.9 823 88.5
BERTLARGE 86.6 86.3
Ours
Human (expert)T = 850 BERT3asE (Single) 80.8 88.5 2 B
. BERT; ingl 4.1 X - -
Human (5 annotations)! -  88.0 BERILARE G:‘E (‘ESI,,nsgme)h]E\ §< Q 2(1)2 N

BERTLarGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8
BERTLarce (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 4: SWAG Dev and Test accuracies. "Human per-

formance is measured with 100 samples, as reported in

the SWAG paper. Table 2: SQuAl? 1.1 res1'11ts. The BERT. ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

Image Source: Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
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https://arxiv.org/abs/1810.04805

LLMs

Encoder Only:

-mm ELMO: Bi-directional next word prediction,
BERT: Masked language objective, Next Sentence Prediction
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LLMs

ELMO: Bi-directional next word prediction,
BERT: Masked language objective, Next Sentence Prediction

Decoder Only:

ENEZ
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Decoder Only: GPT

Input: Text sequence
Yo Y Y,
t ¢
| mui)+add() |
?
> V0 0, 02 5
- v, §
t ot ot
| softmax (1) |
oyt =
ko e qE_)
K, 5
K, w e | <
t t
Y Y Y Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
Cak
Output: Completed text sequence p
yo y1 y2
t ¢t
| mui)+add() |
> V0 2, 2 8
> V2 LY 22 2
t ot ¢t
| softmax (1) |
ot -
Ky qE_)
K, 5
K, w | <
t t f
% | 9 | 9%
A T Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
k
Output: Completed text sequence —
yo y1 y2
rf
Cons: Need to process Lo e |
entire sentence in order to get Y% R S
loss from one word - not very gz g
much signal for the amount of o N -
processing | sotings 1) |
£
i 5
K, w |l | <
t t
G [ 94 | 9,
Y Y Y Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
k
Output: Completed text sequence —
yo y1 y2
rf
Cons: Need to process [t sasety |
entire sentence in order to get Y% R S
loss from one word - not very gl g
much signal for the amount of o N -
processing | sotings 1) |
E
Solution: predict each word i o
= = OVE k L o2 o2
given previous words so far kN
(10 (11 (12 Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
Output: Completed text sequence q
Yo 2 Y,
£t
Cons: Need to process Lot aaa |
entire sentence in order to get 1% I 5
loss from one word - not very TV T g
much signal for the amount of o N -
processing | sofmax (1) HI
Solution: predict each word A %
given previous words so far el = P
(10 (11 (12 Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
L Cak
Output: Completed text sequence q
Yo || ¥4 Y,
r t ¢
What’s wrong with this? | ey |
>V 2 %2 c
g 0
- v, ﬂc—)’
> V2 2 %2 2
t ot ot
| softmax (1) |
oyt =
ko e qE_)
i 5
K, w e | <
t t f
9% | 9 | 9
Iy Iy Iy Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
L Cak
Output: Completed text sequence q
Yo Y, Y,
I )
What’s wrong with this? | ey |
>V 2 %2 c
D .8
It can see the answer! Y g
> V2 2 %2 <
bt ot
| softmax (1) |
I A
K, 5
£
k1 5
K, w |l | <
t t
a [ 9, | 9,
Iy Iy Iy Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence
L (0821 ¢
Output: Completed text sequence q
Yo Y, Y,
Pt
What’s wrong with this? EETEEN
>V 2 20 o
0 S
It can see the answer! Y I3
> V2 2, 22 <
_ bt ot
Solution: zero out values from | sofmx (Tf) |
future words . " E’
k1 5
K, o W | <
tt
G [ 94 | 9,
FF 1 Brown et al. Language Models are
Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence

L (0821 ¢
Output: Completed text sequence q
Yo V2 Y,
1 f
What’s wrong with this? | . —— |
> v > - c
0 e
It can see the answer! B o
1> V2 > -,
Solution: zero out values from | sofmx (Tf |
future words o [~ [~ - ‘g,
k1 5
K, - <
t t
G [ 94 | 9,
A T Brown et al. Language Models are

Few-Shot Learners. 2020.
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Decoder Only: GPT

Input: Text sequence

Output: Completed text sequence q
Yo 2 Y,
£t f
| mAul(—)):addiT) |
To pre-train: predict next == :
words from previous Apvl (o o
words for large text ot (1)
Ft 1 _
corpus : o[- 1] &
k1 5
K, v e | <
t t
a [ 9, | 9,
A T Brown et al. Language Models are

Few-Shot Learners. 2020.
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LLMs

ELMO: Bi-directional next word prediction,
BERT: Masked language objective, Next Sentence Prediction

Decoder Only:

- GPT: next token prediction (autoregressive)
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LLMs

ELMO: Bi-directional next word prediction,
BERT: Masked language objective, Next Sentence Prediction

GPT: next token prediction (autoregressive)

Encoder-Decoder:

0 BT
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

ST o | o
tr Y
Yo \Z Y,
Y y y.
0 1 T 2 T ? ?
| mul(—) + add (1) | | mul(—) + add (1) |
a——
{ v, » . . S >V, > - 5
Vv —> :E' > V1 o GC)
1 g
V2 2 o 2 - V2 = -
bt s
| softmax (1) |
| SOftm?X 1) | N
1= K 5
Ko Qo e
E k c
k c 1 [@))
1 9) =
. = Ky <
: Fo1f tt
9 | a, a, % || 9 9
A
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

Yo || v Y,
Y, y y
0 1 ? 2 ? ? ?
| muio)+add () |
| mui—)+add (1) |  S——
> - . c
J v, -T-15 Y o
= o v HH . c
" - ; 1 :
= >V > e
V. o o | <C 2
I —t—t
| Soﬁm?X | | s?oftm?x (Tf) |
1= K 5
Ko Qo e
E k C
k e 1 [@))
1 =) <_E
k2 . | <C I(2
£ |
a q, a, ) 9, 9,
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

yo y1 y2 yo y1 y2
R (N
| mul(—) + add (1) | | mul(—) + add (1) |
f A A A
c > vy B g
Yo |0 o
= > > - c
V4 S g . Q
5 R Y .
e - < : A y —Y
bohot ——
| softmax (1) | | softmax (1) |
A N
< K, S
Ko sm. o 2
S . =
k < 1 [@))
1 5 2
k < K,
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

Yo Y4 Y,

Yo Ys Y2

| mui)+add() |

> v >

> o,

Q< o<
£
Attention
a< o
Attention

>V 2

Alignment [_|
Alignment [_|
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

Yo Y4 Y,

Yo Ys Y2

| mui)+add() |

> v >

> o,

Q< o<
£
Attention
a< o
Attention

>V 2

Alignment [_|
Alignment [_|
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Encoder-Decoder: Generate text based on previously generated
text and the meaning of a separate sequence

Objective Inputs Targets

Prefix language modeling Thank you for inviting me to your party last week .

BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

Deshuffling party me for your to . last fun you inviting week Thank (original text)

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week . (original text)

Li.d. noise, replace spans Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>

Image Source: Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019
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LLMs

Encoder Only:
-m ELMO: Bi-directional next word prediction,

BERT: Masked language objective, Next Sentence Prediction
Decoder Only:

- - GPT: text token prediction
love

Encoder-Decoder:

T5: Masked language objective

0 BT
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LLMs

Building LLMs: Pre-training objectives + architectures
- Encoder only
- Decoder only
- Encoder Decoder

GPT

Gradient-Free Performance Improvement
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Using pre-trained models out of the box

Encoder: Decoder:
¢ Y

Input Image: x Features: ¢(x) Prediction: y

Step 1: Pretrain a
network on a pretext
task that doesn’t
require supervision

2: Transfer

Step ansie Downstream tasks:
encoder to | Encoder: Image classification,
downstream tasks via ) object detection,
linear classifiers, U semantic segmentation
KNN, finetuning Input Image: x Features: ¢ (x)
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Using pre-trained models out of the box

Step 1: Pretrain a reference frame

network on a pretext T
Encoder: Decoder: M=z
¢ ¥ 2 .

task that doesn’t
~ Source: Vondrick et al., 2018
downstream tasks via

require supervision
Downstream tasks:
Encoder: Image classification,
¢ object detection,
linear classifiers, semantic segmentation

KNN, finetuning Inut Ige: X Features: ¢(x)

Step 2: Transfer
encoder to
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https://arxiv.org/abs/1806.09594

Using pre-trained models out of the box

Step 1: Pretrain a reference frame
network on a pretext '
task that doesn’t
require supervision

Encoder: "Decoder:

~ Source: V(;ndrick etal., 2018

Step 2: Use the
model out of the box
in a creative way!

Source: Google Al blog post
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https://arxiv.org/abs/1806.09594
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Decoder Only: GPT

Input: Text sequence

Output: Completed text sequence q
Yo V2 Y,
I
| mAul(—)):addiT) |
To pre-train: predict next el I :
words from previous L - B
words for large text [ sommax (1)
P
corpus , o)-[- 1] &
K 5
N =
tt 1
G [ 94 | 9,
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Decoder Only: Inference
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Decoder Only: Inference

ST oo
bt

yo y1
t ¢

| mu)+add () |

>V 2, a

T 1
| softmax (1) |
t 4

% | %
A A
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Decoder Only: Inference

ST oo ] ove | cake |
bt

4 t 4
Yo |l v, Yo |l vi Il v
t 1 t ¢
| mui—)+add (1) | | m?ul(a)+addm |
> VY 20 a > Vo e aun a é
> V1 . " > V1 §
T 1 > V2 a,, a,, a,, <
-
[ softmax (1) | | softmax (1) |
bt P —
c
ko . a k0 qE_)
k k c
1 1 _9)
[ K, <
qO q1 qo q q2
A A A A
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Using pre-trained models out of the box

Step 1: Pretrain a T

network on a pretext ul |Ove ” ﬁ Decoder: ucake!!
task that doesn’t — ¢ Y

require supervision

Step 2: Transfer

encoder to “l hated the | .oder

downstream tasks via movie” b 0
linear classifiers, J—

KNN, finetuning Features: ¢ (x)
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Using pre-trained models out of the box

Step 1: Pretrain a

network on a pretext . » |Encoder: Decoder:  « ”
task that doesn’t llove b I ) cake
require supervision

Step 2: Use the “The movie
model out of the box ~ feéview ‘I hated Enc;der' Dec;der: “negative”
in a creative way! the movie’ is

)9
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?
yo y1 y2
|

| mui)+add() |

> V0 o s s 5
o v, 5
- v, w || o [ | <C
Ft ot
| softmax (1) |
t -
[
k0 g
i 5
K, <
(e} q, q,
A ‘ A
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GPT-3 Results

Fine-tuning

The model is trained via repeated gradient updates using a

large corpus of example tasks.
sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

Image Source: Language Models are Few-Shot Learners, Brown et al
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https://arxiv.org/abs/2005.14165

GPT-3 Results

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.
Language Models are Few-Shot Learners
sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2 Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt
plush giraffe => girafe peluche example #N
cheese => prompt

Image Source: Language Models are Few-Shot Learners, Brown et al
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https://arxiv.org/abs/2005.14165

In-Context Learning

?
Yo Y, Y,
f 1
| mui)+add() |
?
> V0 o 0y 2, 5
-V, -.GC__?
T, |- [ 2
Pt ¢
Context | softmax (T) |
I A
c
Translate English to French: Ko g
k c
sea otter => loutre de mer — ! 2
k <
2
cheese => T
% | 9 | %
Iy ‘ Iy

Image Source: Language Models are Few-Shot Learners, Brown et al
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https://arxiv.org/abs/2005.14165

In-Context Learning

0 hot Few-shot
Zero-shot ne-sho . -
In addition to the task description. the model sees a sindle In addition to the task description, the model sees a few
. . iti iption, i g
The model predicts the answer given only a natural language it b N dF') 3 ; 3 examples of the task. No gradient updates are performed.
description of the task. No gradient updates are performed. example of the task. No gradient updates are performed.
" Translate English to French: task description
. . " inti
Translate English to French: task description Uil el AR S e L sk descoption
sea otter => loutre de mer examples
sea otter => loutre de mer example
cheese => prompt ) o
peppermint => menthe poivrée
cheese => prompt

plush girafe => girafe peluche

cheese => prompt

Image Source: Language Models are Few-Shot Learners, Brown et al
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EﬁeCt Of |n-COnteXt Learning s.ulc/cle.s s i/o/n = succession

Zero-shot One-shot Few-shot

| - =

175B Params

Natural Language
Prompt

\

60

50

40

30

Accuracy (%)

No Prompt

20

10
1.3B Params

Number of Examples in Context (K)

Image Source: Language Models are Few-Shot Learners, Brown et al
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Effect of In-Context Learning

SAT Analogies

—e— Zero-Shot
—e— One-Shot

Example Question: 60 Few-Shot (K=20) /
audacious is to boldness as ﬁ

(a) sanctimonious is to hypocrisy,

a
o

(b) anonymous is to identity, g

(c) remorseful is to misdeed, 24 7
(d) deleterious is to result,

(e) impressionable is to temptation 30

20 Random Guessing

0.1B 0.4B 08B 1.3B 2.6B 6.7B  13B 175B
Parameters in LM (Billions)

Image Source: Language Models are Few-Shot Learners, Brown et al
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GPT Results

TriviaQA

70  Fine-tuned SOTA

60

50

40

Accuracy

30

20

—e— Zero-Shot
—e— One-Shot
Few-Shot (K=64)

10

0.1B 0.4B 0.8B 1.3B 26B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP*20]

Image Source: Language Models are Few-Shot Learners, Brown et al
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GPT Results

PhysicalQA

Human
—e— Zero-Shot

90 —e— One-Shot
Few-Shot (K=50)

80 )
Fine-tuned SOTA —//

70

Accuracy

60

50 Random Guessing

0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 3.6: GPT-3 results on PIQA in the zero-shot, one-shot, and few-shot settings. The largest model achieves a
score on the development set in all three conditions that exceeds the best recorded score on the task.

Image Source: Language Models are Few-Shot Learners, Brown et al
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GPT Results

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 77.4 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0
WiC WSC MultiRC  MultiRC ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49.4 80.1 30.5 75.4 90.2 91.1

Table 3.8: Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All results are reported
on the test set. GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient
updates.

Image Source: Language Models are Few-Shot Learners, Brown et al
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GPT Results

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 77.4 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0
WiC WSC MultiRC  MultiRC ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49.4 80.1 30.5 75.4 90.2 91.1

Table 3.8: Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All results are reported
on the test set. GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient
updates.

All GPT was trained to do was predict the next token, how is
it so good???
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Scale!

(in params)
GPT -3
Q 175 billion params
BERT (Large)

340 million params
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Scale!
(In data)

BERT

3.3 Billion tokens'
- All of english wikipedia
- 11,000 Books

GPT -3
~300 billion tokens

- Common Crawl (Much
of the internet)

'https://aclanthology.org/W19-4828.pdf
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Loss vs Model and Dataset Size
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Image source: Kaplan et al. Scaling Laws for Neural Language Models. 2020.
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The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law,
or rather its generalization of continued exponentially falling cost per unit of computation. Most Al research has
been conducted as if the computation available to the agent were constant (in which case leveraging human
knowledge would be one of the only ways to improve performance) but, over a slightly longer time than a typical
research project, massively more computation inevitably becomes available. Seeking an improvement that
makes a difference in the shorter term, researchers seek to leverage their human knowledge of the domain, but
the only thing that matters in the long run is the leveraging of computation. These two need not run counter to
each other, but in practice they tend to. Time spent on one is time not spent on the other. There are
psychological commitments to investment in one approach or the other. And the human-knowledge approach
tends to complicate methods in ways that make them less suited to taking advantage of general methods
leveraging computation. There were many examples of Al researchers' belated learning of this bitter lesson, and
it is instructive to review some of the most prominent.

http://www.incompleteideas.net/Incldeas/BitterLesson.html
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LLMs

Building LLMs: Pre-training objectives + architectures
- Encoder only
- Decoder only
- Encoder Decoder

GPT

Gradient-Free Performance Improvement
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Improving accuracy without fine-tuning

In-context learning is better than zero-shot with no additional training

Can we do better than in context learning with no additional training?
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Chain of thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How
many tennis balls does he have now?

A: The answer is 11.
GPT (or similar) The answer is 50. 3§

Q: John takes care of 10 dogs. Each dog takes .5
hours a day to walk and take care of their
business. How many hours a week does he
spend taking care of dogs?

i GSMSK
Finetuned GPT-3 175B 33%
Finetuned GPT-3 175B + verifier (prior SOTA) 55%
9-12 year olds (Cobbe et al., 2021) 60%
PalLM 540B: standard prompting 17.9%

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How
many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer
is 11. GPT (or similar)

Q: John takes care of 10 dogs. Each dog takes
.5 hours a day to walk and take care of their
business. How many hours a week does he

spend taking care of dogs?
A: GSMSK
~ Finetuned GPT-3 175B 33%
- Finetuned GPT-3 175B + verifier (prior SOTA) 55%
9-12 year olds (Cobbe et al., 2021) 60%
~ PaLLM 540B: standard prompting 17.9%

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought prompting

Q: Roger has 5 tennis balls. He buys 2 more cans

of tennis balls. Each can has 3 tennis balls. How

many tennis balls does he have now?

ﬁ‘: Ill?ogerhs Faréetd W”.:h S ll)lallss. f ga_nj 1of1(_3htenn|s John takes care of 10 dogs. Each dog takes .5
allsieqciiSioleMiSDalS: 116 anawer hours a day to walk and take care of their

is 11. GPT (or similar) business. So that is 10 x .5 = 5 hours a day. 5
hours a day x 7 days a week = 35 hours a week.

The answer is 35 hours a week. 4/

Q: John takes care of 10 dogs. Each dog takes
.5 hours a day to walk and take care of their
business. How many hours a week does he

spend taking care of dogs?

A: GSMEK
Finetuned GPT-3 175B 33%
Finetuned GPT-3 175B + verifier (prior SOTA) 55%
9-12 year olds (Cobbe et al., 2021) 60%
PalLM 540B: standard prompting 17.9%
PalLM 540B: chain of thought prompting 58.1%

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Math Problems

Table 20: Few-shot exemplars for full chain of thought prompt for math word problems. This set of
exemplars was used for all math word problem datasets except AQuA.

PROMPT FOR MATH WORD PROBLEMS
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have
been 21 - 15 = 6. The answer is 6.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they
had 74 - 35 = 39. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did
Jason give to Denny?

A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8.
The answer is 8.

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Math Problems

Table 8: Example of correct chains of thought produced by the model for the GSM8K dataset.

QUESTION: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total
meters does he run a week?

MODEL ANSWER (CORRECT): James decides to run 3 sprints 3 times a week. He runs 60 meters each
sprint. So he runs 60 meters x 3 sprints x 3 times a week. That is 60 meters x 9. The answer is 540. v/

QUESTION: Brandon’s iPhone is four times as old as Ben’s iPhone. Ben’s iPhone is two times older than Suzy’s
iPhone. If Suzy’s iPhone is 1 year old, how old is Brandon’s iPhone?

MODEL ANSWER (CORRECT): Brandon’s iPhone is 4 times as old as Ben’s iPhone. Ben’s iPhone is 2
times older than Suzy’s iPhone. So Brandon’s iPhone is 4 x 2 = 8 times older than Suzy’s iPhone. Suzy’s iPhone
is 1 year old. So Brandon’s iPhone is 8 x 1 = 8 years old. The answer is 8. v/

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Symbolic Reasoning

PROMPT FOR LAST LETTER CONCATENATION
Q: Take the last letters of the words in "Elon Musk" and concatenate them.

A: The last letter of "Elon" is "n". The last letter of "Musk" is "k". Concatenating them is "nk". The answer is nk.

Q: Take the last letters of the words in "Larry Page" and concatenate them.
A: The last letter of "Larry" is "y". The last letter of "Page" is "e". Concatenating them is "ye". The answer is ye.

Q: Take the last letters of the words in "Sergey Brin" and concatenate them.

n_n

A: The last letter of "Sergey" is "y". The last letter of "Brin" is "n". Concatenating them is "yn". The answer is
yn.

Q: Take the last letters of the words in "Bill Gates" and concatenate them.

A: The last letter of "Bill" is "1". The last letter of "Gates" is "s". Concatenating them is "Is". The answer is Is.

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Symbolic Reasoning

Table 13: Examples of correct and incorrect chains of thought produced by LaMDA 137B on the
letter concatenation task.

QUESTION: Take the last letters of the words in “Waldo Schmidt” and concatenate them.

MODEL ANSWER (CORRECT): The last letter of “Waldo” is “0”. The last letter of “Schmidt” 1s “t”.
Concatenating them is “ot”. So the answer is ot. v/

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Physical Reasoning

PROMPT FOR COIN FLIP
Q: Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?

A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an even number. The coin
started heads up, so after an even number of flips, it will still be heads up. So the answer is yes.
Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads up?

A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is an even number. The
coin started heads up, so after an even number of flips, it will still be heads up. So the answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started
heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought for Physical Reasoning

QUESTION: A coin is heads up. Andree flips the coin. Audrie does not flip the coin. Is the coin still heads up?

MODEL ANSWER (CORRECT): The coin was flipped by Andree. So the coin was flipped 1 time, which is
an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

v

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Chain of thought results

GSM8K SVAMP ASDiv  MAWPS

Standard prompting 6.5 +04 29.5 +06 40.1 +06 43.2 109
Chain of thought prompting 14.3 +04 36.7 +04 46.6 £07 57.9 +15

Commonsense Symbolic
Date Sports  SayCan Concat Coin
Standard prompting 21.5+06 59.5+30 80.8+18 5.8+06 49.0 +2.1

Chain of thought prompting 26.8 +2.1  85.8 +1.8 91.7 +14 775 +38  99.6 +03

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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Think step by step

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of terb

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

S /

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

(c) Zero-shot

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
%. So there are 8/ 2 = 4 blue golf balls. The answer is 4. y
(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

Image Source: Chowdhery et al. Large Language Models are Zero-Shot Reasoners. 2022.
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Think step by step

MultiArith  GSM8K

Zero-Shot 17.7 104
Few-Shot (2 samples) 38,7 15.6
Few-Shot (8 samples) 33.8 15.6
Zero-Shot-CoT 78.7 40.7
Few-Shot-CoT (2 samples) 84.8 41.3
Few-Shot-CoT (4 samples : First) (*1) 89.2 -
Few-Shot-CoT (4 samples : Second) (*1) 90.5 -
Few-Shot-CoT (8 samples) 93.0 48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2) 92.8 51.5

Image Source: Chowdhery et al. Large Language Models are Zero-Shot Reasoners. 2022.
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Self Consistency

Chain-of-thought
prompting

Self-consistency

ﬂ) If there are 3 cars in the parking \
lot and 2 more cars arrive, how many
cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are

3 +2=5cars. The answer is 5.

Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How

much does she make every day?
NG

Language

model

Language

model

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14.

Sample a diverse set of
reasoning paths

[N B S— B\
She has 16 - 3 - 4 = 9 eggs !
left. So she makes $2* 9= | The answer is $18.
$18 per day. | )
| Y
This means she she sells the
remainder for $2 * (16 - 4 - 3) The answer is $26.
= $26 per day.
! J
S

She eats 3 for breakfast, so |
she has 16 - 3 = 13 left. Then |
she bakes muffins, so she ! The answer is $18.
has 13 - 4 = 9 eggs left. So

The answer is $14.

Marginalize out reasoning paths
to aggregate final answers

The answer is $18. ]

shehas 9 eggs * $2 = $18. |

Image Source: Xie et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models. 2022.
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Self Consistency

GSMS8K MultiArithh  AQuA  SVAMP  CSQA ARC-c
Greedy decode 56.5 94.7 35.8 79.0 79.0 85.2
Weighted avg (unnormalized) 56.3 +00 90.5+00 35.8+00 73.0+00 74.8+00 82.3+00
Weighted avg (normalized) 221 +00 59.7+00 15.7+00 40.5+00 52.1+00 51.7+00
Weighted sum (unnormalized) 59.9 +00 92.2+00 382400 762400 76.2+00 83.5+00
Weighted sum (normalized) 74.1 £00 993 +00 48.0+00 86.8+00 80.7+00 88.7+00
Unweighted sum (majority vote) 74.4 +0.1 99.3 +00 483 +05 86.6+01 80.7+01 88.7+0.1

Table 1: Accuracy comparison of different answer aggregation strategies on PaLM-540B.

Image Source: Xie et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models. 2022.
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Summary Slide
Encoder Only: Capture the meaning of an entire sequence
-mm ELMO: Bi-directional next word prediction,
BERT: Masked language objective, Next Sentence Prediction
Decoder Only: Generate text based on previously generated text

- GPT: next token prediction (autoregressive)

Encoder-Decoder; Generate text based on previously generated text and the
meaning of a separate sequence 5. \iasked language objective

0 BT
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Summary

Few-shot
One-shot

Zero-shot
In addition to the task description, the model sees a few

In addition to the task description, the model sees a single )
examples of the task. No gradient updates are performed.

The model predicts the answer given only a natural language
example of the task. No gradient updates are performed.

description of the task. No gradient updates are performed.

Translate English to French: task description
; —r T late English to F h: task description
Translate English to French: task description rans € Enguis o rrenc P
sea otter => loutre de mer examples
sea otter => loutre de mer example
cheese => prompt ) o
peppermint => menthe poivrée
cheese => prompt

plush girafe => girafe peluche

cheese => prompt

Image Source: Language Models are Few-Shot Learners, Brown et al
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Loss vs Model and Dataset Size
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Image source: Kaplan et al. Scaling Laws for Neural Language Models. 2020.
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Summary

Inference Only Performance Improvement
- Chain-of-thought
- Think step by step
- Self consistency

4 N

Q: Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How
many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer
is 11.

- /

Image Source: Wei et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models. 2022.
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B e o,
. Intelligence'is just an emergent
property of predicting the next token?

https://twitter.com/alirahimiO
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