Lecture 14:
Self-Supervised Learning
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Administrative

- Assignment 4 due Thursday
- Quiz 3 grades out / solutions posted

- Milestone due in a week (Post expectations on
edstem later today)
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Recall: Supervised

Data: (x, y)
x is the input data, y is the output label.

Goal: Learn a function f: x ->y

Example: in image classification, x is the image and y is the object
category
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Problem: Supervised Learning is Expensive!

Assume that we want to label re-label ImageNet’'s 1.4 Million images.

How much will it cost?
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Problem: Supervised Learning is Expensive!

Assume that we want to label re-label ImageNet’'s 1.4 Million images.

How much will it cost?

(1,400,000 images) (Small to medium sized dataset)
x (10 seconds/image) (Fast annotation)

x (1/3600 hours/second)

x ($15 / hour) (Low wage paid to annotator)
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Problem: Supervised Learning is Expensive!

Assume that we want to label re-label ImageNet’'s 1.4 Million images.

How much will it cost?

(1,400,000 images) (Small to medium sized dataset)
x (10 seconds/image) (Fast annotation)

x (1/3600 hours/second)

x ($15 / hour) (Low wage paid to annotator)

= $58,333

Assumptions:

- one annotator per image,
- no benefits / payroll tax / crowdsourcing fee for annotators;

- not accounting for front end developer time to set up tasks for annotators.
- Real costs could easily be 3x this or more: >$175,000
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Problem: Supervised Learning is Expensive!

Assume that we want to label CLIP’s 1B images. (GPT also needs billions of documents)

How much will it cost?

(1,000,000,000 images) (Small to medium sized dataset)
x (10 seconds/image) (Fast annotation)

x (1/3600 hours/second)

x ($15 / hour) (Low wage paid to annotator)

= $41,666,667

41 Million dollars (again, not including all other costs)
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Supervised Learning is Not How We Learn
()

Babies don'’t get supervision
for everything they see!

Baby image is CCO public domain
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https://publicdomainvectors.org/en/free-clipart/Baby-Boy-In-Yellow-Clothing/36767.html
https://creativecommons.org/publicdomain/zero/1.0/

Solution: self-supervised learning

Lets build methods that learn from “raw” data — no annotations required

Unsupervised Learning: Model isn’t told what to predict. Older
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring
signal in the raw data rather than human annotations.
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Solution: self-supervised learning

Lets build methods that learn from "raw” data — no annotations required

Unsupervised Learning: Model isn’t told what to predict. Older
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring
signal in the raw data rather than human annotations.

Semi-Supervised Learning: Train jointly with some labeled data and (a lot) of
unlabeled data.
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Self-Supervised Learning: Pretext then Transfer

Encoder: | Decoder:
¢ Y

Input Image: x Features: ¢(x)  Prediction: y

Step 1: Pretrain a
network on a pretext
task that doesn’t
require supervision

Step 2: Transfer

P anste Downstream tasks:
encoder to _ Encoder: Image classification,
downstream tasks via ) object detection,
linear classifiers, » semantic segmentation
KNN, finetuning Input Image: x Features: ¢ (x)
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Goal of Self-Supervised Learning: Define pre-text
tasks that do better than supervised Iearmng

Step 1: Pretrain a
network on a pretext Encoder Decoder Loss:
task that doesn’t L#,y)
require supervision

Input Image: x Features: ¢ (x) Prediction: y
Step 2: Transfer Downstream tasks:
encoder to _ Encoder: Image classification,
downstream tasks via ) object detection,
linear classifiers, semantic segmentation

KNN, finetuning Input Image: x Features: ¢ (x)
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Self-Supervised Learning: Pretext Tasks

Generative: Predict part Discriminative: Predict
of the input signal something about the input
e Autoencoders signal
(sparse, denoising, e Context prediction
masked) e Rotation
e Autoregressive e Clustering
e GANs e Contrastive
e Colorization
e Inpainting

Multimodal: Use some
additional signal in
addition to RGB images

Video

3D
Sound
Language

Ali Farhadi, Sarah Pratt Lecture 14 - 13

Nov 12, 2024



Self-Supervised Learning: Pretext Tasks

Today
Generative: Predict part Discriminative: Predict
of the input signal something about the input
e Autoencoders signal
(sparse, denoising, e Context prediction
masked) e Rotation
e Clustering
e Contrastive
e Colorization
e Inpainting
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Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

image completion rotation prediction ‘ligsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Ali Farhadi, Sarah Pratt Lecture 14 - 15 Nov 12, 2024



Generative Self-supervised Learning
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Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made
with a dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn
high-level semantic features with pretext tasks instead

Source: Anand, 2020
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https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don'’t care about the performance of the self-supervised

learning task, e.g., we don’t care if the model learns to predict image
rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks
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How to evaluate a self-supervised learning method?

self-supervised
@ :>£ learning } E>

lots of feature extractor

unlabeled
data .

COﬂV

e
—

e

Encoder:w
(0]

=
g

Step 1: Pretrain a network on a
pretext task that doesn’t require
supervision
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How to evaluate a self-supervised learning method?

self-supervised Encoder: supervised evaluate on the
@ E> learning E> ¢ W = learning = target task

e

lots of feature extractor ﬁ e.g. classification, detection
unlabeled
data
* A Encoder blrd
small amount of
labeled data on N
conv the target task encoder linear
classifier
Step 1: Pretrain a network on a Step 2: Transfer encoder to
pretext task that doesn’t require downstream tasks via linear
supervision classifiers, KNN, finetuning
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Broader picture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

Ali Farhadi, Sarah Pratt

language modeling

Language Models are Few-Shot Learners

Tom B. Brown" Benjamin Mann* Nick Ryder* Melanie Subbiah*

Jared Kaplan'  Prafulla Dhariwal ~ Arvind Neelakantan ~ PranavShyam  Girish Sastry
Amanda Askell  Sandhini Agarwal  Ariel Herbert-Voss  Gretchen Krueger  Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter

Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tiya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applicd without any gradient updates or fine-tuning,
‘with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some.
datasets where GPT-3 faces methodological issues related 10 training on large web corpora. Finally,
we find that GPT-3 can gencrate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

GPT3 (Brown, Mann,
Ryder, Subbiah et al., 2020)
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al., 2016)
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Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring
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Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0

Hypothesis: a model could recognize the correct rotation of an object
only if it has the “visual commonsense” of what the object should look
like unperturbed.

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

]
Image X

» g(X,y=0)

-

Rotated image: X’

Rotate 0 degrees

—» g(X,y=1) H&G >
Rotate 90 degrees
Rotated image: X'

i @ i

Rotated image: X

» g(X,y=2)

Rotate 180 degrees

—» g(X,y=3)

Rotate 270 degrees .
Rotated image: X~

Self-supervised
learning by rotating
the entire input
images.

The model learns to
predict which rotation
is applied (4-way
classification)

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

‘~ ConvNet
» g(X,y=0) 3 P> model E()
Rotate 0 degrees

Rotated image: X’

ConvNet

glX,y=1) ﬁ’h > model F(.)

Rotate 90 degrees
Rotated image: X'

| ConvNet
> g(X,y=2) > ‘@ » model F()
Rotate 180 degrees

Rotated image: X

@g ConvNet

—» g(X,y=3)

Rotate 270 degrees .
Rotated image: X~

model F(.) '

\ Objectives:

| > Maximize prob.
F()(X())

| Predict 0 degrees rotation (y=0)

> Maximize prob.
| F'(x")
Predict 90 degrees rotation (y=1)

|
> Maximize prob.
4 2
Fi(X7)

‘ Predict 180 degrees rotation (y=2)

| p Maximize prob.
F(X°)
| Predict 270 degrees rotation (y=3)

Self-supervised
learning by rotating
the entire input
images.

The model learns to
predict which rotation
is applied (4-way
classification)

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

100

.l /

ol ] | Self-supervised learning on

CIFAR10 (entire training set).

w0 | | |
= o | Freeze conv1 + conv2
z Learn conv3 + linear layers

50 with subset of labeled

a0k | CIFAR10 data (classification).

= Ours - Semi-supervised i

= Supervised
20 ' ‘ ‘ ‘ ‘ ‘ ‘ '
20 100 400 1000 5000

# Training examples

(Image source: Gidaris et al. 2018)

Ali Farhadi, Sarah Pratt Lecture 14 - 26 Nov 12, 2024


https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification  Detection Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | fc6-8  all all all Pretrained with full
ImageNet labels | 789 799 568 48.0 ImageNet supervision
Random 53.3 43.4 19.8 .
Random rescaled Krahenbiihl et al. (2015) | 392 566  45.6 26 [+ Nopretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346 56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556 631 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 . . -
Colorization (Zhang et al., 2016a) 615 656 469 35.6 ImageNet (entire training
BIGAN (Donahue et al., 2016) 523 60.1 46.9 349 Set) with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 494
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 384 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 72.97 544 39.1 |

Self-supervised learning with rotation prediction source: Gidaris et al. 2018
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https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

1ALty g m m T 3" {5t ‘

Convl 27 x 27 Conv313 x 13 Conv56 x 6 Convl 27 x 27 Conv313 x 13 Conv56 X 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)
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https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

> hifflad - ) = o e[ —
o snurtile o
2 . | - demw = .
§ - F—
i i 9 owdeaw = |
; ( We‘”‘ 4608 4096 / 100
4 P == o -/ of—| o4
6 ‘ . Ewi" - fc7  fc8 softmax
Permutation Set “ E i 4 = 1
index permutation Reorder patches accordingto .
the selected permutation — -
64 946832517 2 i -
o -
p—

(Image source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi &
Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Pretext task: predict missing pixels (inpainting)

o

~

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction

— —
» v | @
: B . o | B
A 2| -
\ ® | Channel-wise | @
Encoder) |4 Fully LW ||Decoder E

: > Connected by 4

~° |

g 8 '

o |

c -

L (] |

— o * :

:

|

|

Learning to reconstruct the missing pixels
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

L(w) — Lrecon (w) =+ Ladv (w)
Liecon () = || M * (z — Fy((1 — M) xz))||;
Luiy = maxp Ellog(D(x))] + log(1 — D(F((1 — M) xz)))]

Adversarial loss between “real” images and inpainted images

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction adversarial recon + adv

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Transfer learned features to supervised learning

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Self-supervised learning on ImageNet training set, transfer to
classification (Pascal VOC 2007), detection (Pascal VOC 2007), and

semantic segmentation (Pascal VOC 2012)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Pretext task: image coloring

y v Vol 5
Grayscale image: L channel Color information: ab channels

X e RHExWxI Y € RExWx2

L=

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

F
i : “’Eﬁ? " N : 03:.2. :.‘ 2 A
Grayscale image: L channel Concatenate (L,ab) channels
X € RAxWxI (X,Y)

- —C

Source: Richard %han / Phillip Isola
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Learning features from colorization:

Split-brain Autoencoder
Idea: cross-channel predictions

<)

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

RGB channels

RGB-HHA
image

HHA depth channels

HHA depth channels

e Predictad

RGB-HHA
image

Source: Richard Zhang / Phillip Isola
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Transfer learned features to supervised learning

@@ Places-labels ©-© Pathak et al.
50 |lHE ImageNet-labels @-@® Zhang et al.

@@ Kraehenbuehletal. OO Owens et al.

V-V Gauss ©-@® Donahue et al.

||®-© Doersch et al. Q< Split-Brain Auto(cl,cl)

Self-supervised learning on

45 e . -
— . ImageNet (entire training
o , supervised
set).
B
S 35 _
< . {— this paper Use concatenated features
5 from F,and F
o 1 2
25}
2o Labeled data is from the
Places (Zhou 2016).
15L ' ‘ '
CO(\\‘\’ o o> CO(\\"L o oF CO(\\‘”" CO(\\‘D‘ CO(\\‘C’ o o

Source: Zhang et al., 2017
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https://arxiv.org/abs/1611.09842

Real world application: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to

learn to track regions or objects without labels!
Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

‘ S ¢ | Establish mappings
@' " between reference and
¢ target framesin a
learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A f g Aci Reference
Frame © @ 1 o Colors
I
Target o Predicted
Frame | @ A o Afj | ® ij Colors

attention map on the
reference frame

u e (ff)
N >, exp (fii f5)

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A Aci Reference
Frame @ B [ ) Colors
Target ® r PY Predicted
Frame A 4 AN ij Colors
attention map on the predicted color = weighted
reference frame sum of the reference color

exp (ff5) _
A = Y; — Aiici
T Yrexp (FE 1) ! zz: !

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video

Reference
Frame

Target
Frame

A
®

® A

attention map on the

reference frame

exp (fi f5)

B ZkeXp( szj)

Ali Farhadi, Sarah Pratt

Embeddings

Afi
® I

\

Aci

= Ay

predicted color = weighted
sum of the reference color

Y; = Z Az’jci

Reference
Colors

Predicted
Colors

loss between predicted color

and ground truth color
mein Z E (yj, Cj)
J

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization
Propagate segmentation masks using learned attention

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization
Propagate pose keypoints using learned attention

R p—
S ——
— e —

—
— —
——
——
— —
——
———
——
——
——
T —
S ——
==
fa
.

Source: Google Al blog post
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the
pretext tasks.

e We don’t care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,
detection, segmentation).
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the
pretext tasks.

e We don’t care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,
detection, segmentation).

e Problems: 1) coming up with individual pretext tasks is tedious, and 2)
the learned representations may not be generally useful for all
downstream tasks.
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Pretext tasks from image transformations
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image completion rotation prediction ‘ligsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?
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A more general pretext task?

same object
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A more general pretext task?

\

same object
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Contrastive Representation Learning

attract
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Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
- Sequence contrastive learning: CPC
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Contrastive Representation Learning

attract
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Contrastive Representation Learning

& reference
21 positive w

&L  negative
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A formulation of contrastive learning

What we want:

score( f(x), f(x™)) >> score(f(x), f(x™))

x: reference sample; x* positive sample; x" negative sample

Given a chosen score function, we aim to learn an encoder
function f that yields high score for positive pairs (x, x*) and
low scores for negative pairs (x, x).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L= By og exp(s(f(z), f(z*)
exp(s(f(2), f(a*)) + T exp(s(f (@), £ (@)

Q. What does this loss function remind you of?
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L= _Ex |iog exp(s(/ (@), f (@)
exp(s(/(a), f(e)) + L explolf (@), £(z).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L - 5y log exp(s(f(2), /@¥))
exp(s(f(z), f(z ))+Z _, exp(s(f(2), f(z7))
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L - 5y log exp(s(f(2), /@¥))
exp(s(f(z), f(z ))+Z _, exp(s(f(2), f(z7))
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L= By og exp(s(f(z), f(z*)
exp(s(f(2), f(a*)) + T exp(s(f (@), £ (@)

Very similar to the softmax classifier we talked about a few lectures ago.

- We want to compare the reference image against all other positive and negative
images.

- We can exponentiate and normalize these scores like we did with the softmax
classifier.

- And we get the above similar equation.
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A formulation of contrastive learning

Loss funct_ion given 1 positive sample and N - 1 negative samples: )
L= —Ey |log exp(s(/f (:v])\; _fl(fv*)) _
exp(s(f(z), f(zF)) + 2251 exp(s(f(z), f(z]))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x")

MI[f(z), f(*)] — log(N) > —L

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019
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SIMCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function: gy e ABIMMTGAgIROOONE
T
s ) = i o] o0
ul|v
h; <— Representation — h;

Use a projection network h(-) to project
features to a space where contrastive e ()
learning is applied

Generate positive samples through data Fa -1
augmentation:
e random cropping, random color
distortion, and random blur.

Source: Chen et al., 2020
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SIMCLR: generating positive samples from

data augmentation

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (§) Sobel filtering
Source: Chen et al., 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S | m C L R input: batch size N, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {zy };_, do assignment instructions.

forallk € {1...., N} do
draw two augmentation functions t ~7, ¢/ ~T
# the first augmentation

Top—1 = t(xg)

Generate a positive pair —"

: Pok—1 = J(@2k—1) # representation
by sampling data Zop—1 = g(har_1) # projection
augmentation functions # the second augmentation

| &k =t/ ()
hor = f(x2r) # representation
zor = g(har) # projection
end for
forallic {1,...,2N}andj € {1,...,2N} do
sij = 2z; zj/(lz:ll251) # pairwise similarity
end for

exp(si,j/T)
1 ki) exp(84,5/T)

L= S0 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(3, j) as £(i,7)=—log >l
k=

Source: Chen et al., 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S | m C L R input: batch size N, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {zy };_, do assignment instructions.

forallk € {1...., N} do
draw two augmentation functions t ~7, ¢/ ~T
# the first augmentation

Top—1 = t(xg)

Generate a positive pair —"

_ hor—1 = J (T2k—1) # representation
by sampling data Zop—1 = g(har_1) # projection
augmentation functions # the second augmentation
T jgk = t’(azk)
hoi = f(x2r) # representation
2ok, = g(hak) # projection
end for
forallic {1,...,2N}andj € {1,...,2N} do
sij = 2z; zj/(lz:ll251) # pairwise similarity InNfoNCE loss:
end for E—— Use all non-positive
define £(i, j) as (i, j)=—log 5w 5 “E T T samples in the
L= 5y Sy (2F—T,28) + £(2K, 25— T)] batch as x-
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-) Source: Chen et al.. 2020
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*We use a slightly different

Algorithm 1 SimCLR’s main learning algorithm. formulation in the assignment.
S | m C L R input: batch size N, constant 7, structure of f, g, 7. You should follow the
for sampled minibatch {zy };_, do assignment instructions.

forallk € {1...., N} do
draw two augmentation functions t ~7, ¢/ ~T
# the first augmentation

Top—1 = t(xg)

Generate a positive pair —"

_ hor—1 = J (T2k—1) # representation
by sampling data 2ot1 = ghok_1) # projection
augmentation functions # the second augmentation
T jgk = t’(azk)
hoi = f(x2r) # representation
2ok, = g(hak) # projection
end for
foralli € {1,...,2N}andj €{1,...,2N} do
sij = 2z; zj/(lz:ll251) # pairwise similarity InNfoNCE loss:
lterate through and S'lﬁlfzrz(i . o exp(si,;/7) Use all ngn-posﬂwe
J)as (i J)=—log sv s o | samples in the
use each of the 2N 7 k=1 Likpsl exposn/7 p
= L= 55 Yy k=T, 2K) + £(2K, 2k —T)] batch as x-
Sample as reference, update networks f and g to minimize £
compute average loss end for
return encoder network f(-), and throw away g(-) Source: Chen et al.. 2020
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T

SImMCLR: mini-batch training A

S;.i —
T il 1zl)
m——» encoder —\‘ Z ERzNXD

“Affinity matrix”
list of positive pairs I _ 2N

. encoder —/
Each 2k and 2k + 1
element is a positive pair

*We use a slightly different formulation in the assignment.
You should follow the assignment instructions.

2N
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SImCLR: mini-batch training 5 = 3
’ IEARIE
“Affinity matrix” ’

encoder R2N xD
_\

list of positive pairs I — .
. encoder —/ .
Each 2k and 2k + 1
element is a positive pair

2N

*We use a slightly different formulation in the assignment. .= classification label for each row
You should follow the assignment instructions.

2N

Ali Farhadi, Sarah Pratt Lecture 14 - 78 Nov 12, 2024



SIMCLR: what a batch looks like

Batch of Two gm ntatio
Nimages for hmg

. i’?ff
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Training linear classifier on SIMCLR features

% Supervised — % SimCLR (4x)
. 75} — |
X .- KSImCLR (2x) Train feature encoder on
g 70 *CPCv2-L ImageNet (entire training set)
3 AsSImCLI oCMC JMOCO/,(A'X) using SimCLR.
3 oPIRL-c2x
< AMDIM
— 65F R eMoCo (2x) .
g QCPCv2 PIRL-ens. Freeze feature encoder, train a
” Fa eBigBiGAN linear classifier on top with
= oor L labeled data.
S
£ L eRotation
92 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)
Source: Chen et al., 2020
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Semi-supervised learning on SIMCLR features

Label fraction

Method Architecture 1% 10%
Top 5
Methods using other label-propagation: : ‘A
Pseudo-label ResNet-50 51.6 824 Im_ageNet (entlre traini ng Set)
VAT+Entropy Min. ResNet-50 470 834 using SImCLR.
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1 . .
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 Finetune the encoder with 1% /
Methods using representation learning only: 10% of labeled data on |mageNet_
InstDisc ResNet-50 39.2 77.4
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(x) 77.9 91.2

SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels. Source: Chen et al.. 2020
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SIMCLR design choices: projection head

70
I II II Linear / non-linear projection heads improve
Projection representation learning.
B Linear
: Ezﬂe"”ear A possible explanation:

e contrastive learning objective may discard
useful information for downstream tasks
e representation space z is trained to be

(@)
o

Top 1l
ul
o

N
o

3

o

q X >
AGF 0%
PrOJectlon output d|men5|onal|ty

Vimimize ageement _ invariant to data transformation.
[ 0! o) ] e by leveraging the projection head g(),
hi Reprosentation—  h, more information can be preserved in the
f(g ém h representation space
£S5 21

Source: Chen et al., 2020
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SIMCLR design choices: large batch size

709 Large training batch size is crucial for
67.5 SimCLR!
65.0
62.5 .
- Large batch size causes large memory
5600 footprint during back tion:
° Batch iy ootprint during backpropagation:
57.5 iig requires distributed training on TPUs
| .
550 1024 (ImageNet experiments)
2048
52.5 w4096
8192
50.0 EEEEEN EEEEEN

100 200 300 400 500 600 700 800 900 1000
Training epochs
Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

: Key differences to SimCLR:
contrastive loss 1o grad

/ e Keep arunning queue of keys

similarity (negative samples).
q kO kl k2 e Compute gradients and updatg the
encoder only through the queries.
queue . : :
e Decouple min-batch size with the
. oy number of keys: can support a large
encoder encoder number of negative samples.
ke ke ke
query y Yy Yy
x Lo~ Ty~ Xg 5 ...

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

: Key differences to SimCLR:
contrastive loss 1o grad

e Keep arunning queue of keys
similarity / (negative samples).
q kO kl k2 e Compute gradients and update the
encoder only through the queries.
queue
e Decouple min-batch size with the
oy number of keys: can support a large
encoder encoder number of negative samples.

e The key encoder is slowly progressing
query key key key through the momentum update rules:
X

Lo 1 e O — mby + (1 — m)bg

Source: He et al., 2020
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_qg, f_k: encoder networks for query and key
MO( O # queue: dictionary as a queue of K keys (CxK)

# m: momentum

#t

: temperature

f_k.params = f_g.params # initialize
141 H for x in loader: # load a minibatch x with N samples
Generate a pOSItlve palr = aug(x) # a randomly augmented version
aug (x) # another randomly augmented version

by sampling data ~_ —
augmentation functions

XX
~Q

([

f_g.forward(x_qg) # queries: NxC
f k.forward(x k) # kevs: NxC
k.detach() # no gradient to keys]|

. / f_giiiiiﬁf}ml(fii&(ﬁﬁ,c>, k.view(N,C,1)) USG the running
NO gradlent through # negative logits: NxK — queue Of keys as the

the negatlve SampleS l_neg = mm(g.view(N,C), queue.view(C,K)) negatlve Samp|eS

# logits: Nx (1+K)
logits = cat([l_pos, 1l_neg], dim=1)

~sQ
I

# contrastive loss, Egn. (1)
labels = zeros(N) # positives are the 0-th

loss = CrossEntropyLoss (logits/t, labels) InfONCE IOSS
# SGD update: query network

loss.backward()
update (f_qg.params)

# momentum update: key network Update f_k thrOUgh

f_k.params = mxf_k.params+ (l-m)*xf_g.params |

momentum
U date the FIFO # update dictionary ome tu
p enqueue (queue, k) # enqueue the current mln1batch|
. dequeue (queue) # dequeue the earliest minibatch
negative sample queue
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. Sou rce: He et a|_! 2020
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“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training
on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet VOC detection : : :

case MLP aug+ cos epochs acc. APsg AP APrys ¢ Non-lmear prOJeCtIOn head and )
supervised 765 | 813 535 588 strong data augmentation are crucial
MoCo vl 200 60.6 81.5 559 62.6 for Contrastlve |earn|ng

(a) v 200 66.2 82.0 564 62.6

®) v 200 63.4 822 56.8 632

(©) v v 200 67.3 82.5 572 639

(d v v o v 200 67.5 824 570 63.6

(e) v v oo v 800 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet
case MLP aug+ cos epochs batch acc. e Non-linear projection head and
MoCo vl [6] 200 256 60.6 ; :
SmCLR 2] | v s o 500 558 | @b strong data.augmen.tatlon are crucial
SimCLR [2] | v v v 200 8192 | 66.6 for contrastive learning.
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow: ] Decou pllng mini-batch size with
SimCLR [2] v v v 1000 4096 69.3 : :
TS v va— A S et negative sample size allows

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy MoCo-V2 1o OUtperform SIMCLR with

(ResNet-50, 1-crop 224 x<224), trained on features from unsuper- smaller batch size (256 vs. 81 92)-
vised pre-training. “aug+” in SImCLR includes blur and stronger

color distortion. SimCLR ablations are from Fig. 9 in [2] (we

thank the authors for providing the numerical results).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

e Non-linear projection head and
strong data augmentation are crucial

mechanism  batch  memory / GPU  time / 200-ep. for contrastive learnin g.
MoCo 256 5.0G 53 hrs

end-to-end 256 7.4G 65 hrs : . : .

endoend 4006 93 0Gt " e Decoupling mini-batch size with

negative sample size allows
MoCo-V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. : based on our estimation.

e ... all with much smaller memory
footprint! (“end-to-end” means
SImMCLR here)

Source: Chen et al., 2020
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Problem with MoCoV2: Need to keep around a
set of negatives

contrastive loss

simllarity
q ko kl k2 Do we need these
queue negatives?
ancoder momentum
encoder
ke ke ke
g Ty Ty Ty ...
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Solution: DINO: self-distillation with no labels

loss:
@ -p2log pi e Similar to SImMCLR and MOCO but with
sg

one big difference: no negatives
| softmax l ppifina | e Reformulates contrastive learning as
centering knowledge distillation between a

ema student and a teacher model.
student gpgs — || teacher gg

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Solution: DINO: self-distillation with no labels

loss:
@ - p2log pi @ e The teacher model is not trained: sg
= 8 stands for stop-gradient: meaning that
|__softmax | softmax | gradients are prevented from flowing
centering back.

céma
student gpgs — || teacher gg ‘

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
(b))  -pelogp e The teacher model s like the
58

momentum encoder. It is a running
[ softmax | softmax | average of the student model
centering

. 0, — 20, + (1 — 2)0,
“ student gpgs | teacher g6t ‘

Q e The teacher sees a global view
G augmentation of the image
° e Student only sees augmented local

crops of the image

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
] Global augmented
@ p2 log p1 Local augmented ) views
sg

crops

| softmax | softmax | S g VY
|
centering

cma s a2
student ggg — || teacher gg; X
1

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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Problem: But how do we choose the teacher
model?

loss:
@ -pzlogpi @ Training tricks:

== e Centering: prevents one dimension
| softmax [ Soithany | from dominating.
centering o A constant value c is added to all
- | dimensions of the teacher’s
student ggs | — | teacher gg; OUtpUt
° Q o cis arunning average of outputs
1
° gelx) &« gelx) + ¢; c=me + {1 — m)EZ?n 9o, (x;)

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Ali Farhadi, Sarah Pratt Lecture 14 - 96 Nov 12, 2024



Problem: But how do we choose the teacher
model?

loss:
@ -pzlogpi @ Training tricks:

== e Sharpening:
[ sofimax [_softmax ] o Atemperature (Tau)
centering hyperparameter is used to
ema | sharpen the distributions towards
student gpgs — | teacher gg one dimension.

() (x2) exp(go, ()@ /7.)
() K explgs, ()P /7a)

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021
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DINO code

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

loss:
- PJ I“L'; PI P" # gs, gt: studgnt and teacher networks
! : # C: center (K)
# tps, tpt: student and teacher temperatures
Sg # 1, m: network and center momentum rates
gt.params = gs.params
X I E— @ X ‘ B for x in loader: # load a minibatch x with n samples
soltmax soltmax x1l, x2 = augment (x), augment (x) # random views
] o sl, 82 = gs(xl), gs(x2) # student output n-by-K
('l'lll('l'lllg tl, t2 = gt(x1l), gt(x2) # teacher output n-by-K
s loss = H(tl, s2)/2 + H(t2, sl)/2
ema loss.backward() # back-propagate
«
e — sache
ltdth('r gﬁl # student, teacher and center updates

update (gs) # SGD
gt.params = lxgt.params + (l1l-1)+gs.params @
C = mxC + (1l-m)*cat([tl, t2]) .mean(dim=0)

def H(t, s):

t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen @

return - (t * log(s)).sum(dim=1) .mean ()
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Results: DINO

Method Arch. Param. 1m/s Linear k-NN
Supervised RN50 23 1237 79.3 79.3
SCLR [12] RN50 23 1237 69.1 60.7
MoCov2 [15] RNS50 23 1237 711 619
InfoMin [67] RNS50 23 1237 73.0 65.3
BarlowT [£1] RNS50 23 1237 73.2 66.0
OBoW [27] RN50 23 1237 73.8 61.9
BYOL [30] RN50 23 1237 744 64.8
DCv2 [10] RNS50 23 1237 752 67.1
SwAV [10] RN50 23 1237 75.3  65.7
DINO RN50 23 1237 753 67.5
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Instance vs. Sequence Contrastive Learning

Predictions

| ‘ * *
2t+2 Zt+3 Zt+4
/g\ /g\/g\/g\ /g\/g\ Jac\ [\

| -3 | T2 | Tt-1 | Ty T4l | T2 | Teqsz | Tigd |

| l\\ At~ s IW e

W"\

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Ct Predictions
R i | SRS Contrastive: contrast between
é h “right” and “wrong” sequences
+ ‘? } ‘ Z ‘ using contrastive learning.
Predictive: the model has to
/g“\ / \ /g\ / \ / \ /g\ /g\ / \ predict future patterns given the
Tes | Tz | Zer | | S | T2 | Tes | T | current context.

,;, ¢ 7 Coding: the model learns useful
positive feature vectors, or “code”, for
downstream tasks, similar to other

context [5 _QE l self-supervised methods.

negative

Figure source Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

Predictions 1. Encode all samples in a sequence
' ‘ into vectors z, = g__ (x,)

B e

B
/\/\/\/\/\/\/\/\

T3 | Ty—2 | XTy—1 | Ty | T4 $t+2 \ T3 $t+4

C 7
m positive
context ;5 Q l

negative

Figbre source - Source: van den Oord et al., 2018,

£ bm(s )-m
—»re-
—»re
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Contrastive Predictive Coding (CPC)

Predictions

,/'/ i
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Figure source

1. Encode all samples in a sequence
into vectors z, = g__ (x,)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g, ). The
original paper uses GRU-RNN here.

Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

Predictions
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1. Encode all samples in a sequence

into vectors z, = g__ (x,)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g, )

3. Compute InfoNCE loss between the
context ¢, and future code z,,, using
the following time-dependent score
function:

sk(2zeiksCt) = 21, Wie

, Where Wk is a trainable matrix.

Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

Predictions
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1. Encode all samples in a sequence

into vectors z, = g__ (x,)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g, )

3. Predict z,,, using ¢ and trainable
weights. Loss is similarity to true z,,
value over similarity to constrastng
option

Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

Predictions

; ; ; ; ‘\'\. ~\'\.
Zt+1 Zt42 2t+3 Zt4-4
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Tt—1
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Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

; o
2k . B 2
T ”i"k“““ O
o Rus, T medrrey .

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.
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Method | ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 97.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom
as a sequence. l.e., use top rows as context to predict bottom rows.

gar - output
Genc - output
o,
| id
__ T
7
64 pX _/-//'/'
— - o
Aaw ] nat il I 4
Zt+3| |« T -7 Predictions
Ztﬂ‘4 - T
|
256 px: :
v input image |

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

e Compares favorably with other pretext

Method | Top-1 ACC _ :
Using AlexNet convs task-b?sed self-supervised learning method.
Video [28] 29.8 e Doesn’t do as well compared to newer
Relative Position [11] 30.4 instance-based contrastive learning
BiGan [35] 34.8 h . f .
Colorization [10] 359 methods on image feature learning.
Jigsaw [29] * 38.1
- % Supervised -%SimCLR (4x)
Using ResNet-V2 <2l HSImCLR (2x)
Motion Segmentation [36] 27.6 e )
Exemplar [36] 31.5 S 70F %simCLR omc dMoCo )
Relative Position [36] 36.2 e oPIRL-c2x o -~
Colorization [36] 39.6 T 65 m pIRL_onSMoCo (2X)
CPC 48.7 P B J—
3 eof o0 =
Table 3: ImageNet top-1 unsupervised classifi- >
cation results. *Jigsaw is not directly compa- E ssf-giinic °Rotation
rable to the other AlexNet results because of A . . . —
25 50 700 200 400 626

architectural differences.

Number of Parameters (Millions)

Source: van den Oord et al., 2018,
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score( f(z), f(xz™)) >> score(f(z), f(z7))

InfoNCE loss: N-way classification among positive and negative samples

exp(s(f(z), f(z))
exp(s(f(@), f(z 1)) + X0  exp(s(f (), f(z;))

L=-Ex |log

Commonly known as the INfONCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(x), f(z*)] - log(N) > —L
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Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive wp o hiMFRRgEOmENE
representation learning g(.)T Tg(')
e Key ideas: non-linear projection head to

allow flexible representation learning hi <— Representation —» h;

e Simple to implement, effective in learning £0) £0)
visual representation

e Requires large training batch size to be
effective; large memory footprint p -
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using contrastive loss
momentum sample encoder similatity
e Decouples negative sample size from
minibatch size; allows large batch training q ko k1 k2 ...
without TPU queue
e MoCo-v2 combines the key ideas from —
SImCLR, i.e., nonlinear projection head, _nceden encoder
strong data augmentation, with momentum

contrastive learning pauery pkey ey ey
0 1 g v
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”

sequence.

e InfoNCE loss with a time-dependent score
function. (

e (Can be applied to a variety of learning
problems, but not as effective in learning ¢C 7
image representations compared to . ﬂ positive
instance-level methods. e I's @ .

negative
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Other examples: will be covered in next lecture

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text
plane
pepper the Text
e pup Encoder Text
1 1 1 1 Encoder
T 0> T T
— I ATl T Tl T T 7Ty
— I I, T, IpT, IyTy - I, Ty 3. Use for zero-shot prediction
“ iz
b " 4 i Image i i E L
A |l -
"3 i I e s IsTy I3T, IzTy - I3y
S M. Image
: : : : : : w,.‘ d S O - Lo o T.T
— Iy InTy InT, IyTy - IyTy \

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021
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Other examples
Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (e) Direct Multi Object (f) Synthetic Multi Object

7

Dense Object Net, Florence et al., 2018
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Other examples

(@)

Dense Object Net, Florence et al., 2018
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Other examples

M

;robot ther grasps the best match
ce-specific descrlptor
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Next time: LLMs
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Frontier: Contrastive Language—Image
Pre-training (CLIP)
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Self-Supervised Learning

General idea: pretend there is a part of the data you don’t know and train
the neural network to predict that.

Self-Supervised Learning .

» Predict any part of the input from any Time —

other part.
» Predict the from the past. ’
» Predict the from the recent past. ' ’
» Predict the from the present. _ ’
» Predict the from the bottom. ’
» Predict the occluded from the visible

» Pretend there is a part of the input you « Past Present Future —
don’t know and predict that.

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 58

Source: Lecun 2019 Keynote at ISSCC
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“The Cake of Learning”

How Much Information is the Machine Given during Learning?

Y. LeCun

P> “Pure” Reinforcement Learning (cherry)
P The machine predicts a scalar reward given once irj a

while.
downstream » A few bits for some samples
tasks
P> Supervised Learning (icing)
» The machine predicts a category or a few numbers
for each input
feature o .
extractor P Predicting human-supplied data
» 10—10,000 bits per sample
Learn good P Self-Supervised Learning (cake génoise)
features through » The machine predicts any part of its input for any,

self-supervision Ouearved pack ‘ e~
P Predicts future frames in videos
| 4 Millions of bits per sample

Source: Lecun 2019 Keynote at ISSCC

Palit, Present, & Future 59
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Can we do better?

affinity
affinity -1~
X X
queue
encoder encoder e momentum
encoder
SimCLR Momentum Contrast
(MoCo)

Source: Chen et al., 2020b
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