Lecture 14: Self-Supervised Learning

Administrative

- Assignment 4 due Thursday
- Quiz 3 grades out / solutions posted
- Milestone due in a week (Post expectations on edstem later today)

Recall: Supervised

Data: (x, y)

x is the input data, y is the output label.

Goal: Learn a function f: x -> y

Example: in image classification, x is the image and y is the object category

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

```
(1,400,000 images) (Small to medium sized dataset)
× (10 seconds/image) (Fast annotation)
× (1/3600 hours/second)
× ($15 / hour) (Low wage paid to annotator)
```

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

```
(1,400,000 images) (Small to medium sized dataset) × (10 seconds/image) (Fast annotation)
```

 \times (1/3600 hours/second)

× (\$15 / hour) (Low wage paid to annotator)

= \$58.333

Assumptions:

- one annotator per image,
- no benefits / payroll tax / crowdsourcing fee for annotators;
- not accounting for front end developer time to set up tasks for annotators.
- Real costs could easily be 3x this or more: >\$175,000

Assume that we want to label CLIP's 1B images. (GPT also needs billions of documents)

How much will it cost?

```
 \begin{array}{ll} (1,000,000,000 \text{ images}) & (Small \text{ to medium sized dataset}) \\ \times (10 \text{ seconds/image}) & (Fast annotation) \\ \times (1/3600 \text{ hours/second}) & \\ \times (\$15 \text{ / hour}) & (Low \text{ wage paid to annotator}) \\ = \$41.666.667 & \end{array}
```

41 Million dollars (again, not including all other costs)

Supervised Learning is Not How We Learn

Babies don't get supervision for everything they see!

Baby image is CCO public domain

Solution: self-supervised learning

Lets build methods that learn from "raw" data – no annotations required

Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring signal in the raw data rather than human annotations.

Solution: self-supervised learning

Lets build methods that learn from "raw" data – no annotations required

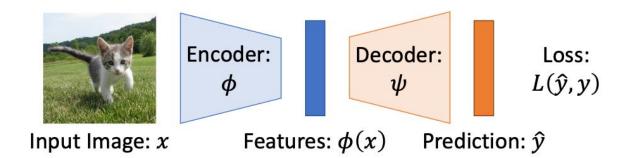
Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring signal in the raw data rather than human annotations.

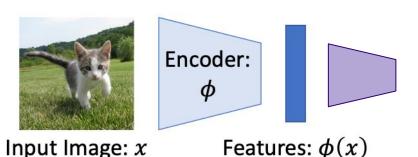
Semi-Supervised Learning: Train jointly with some labeled data and (a lot) of unlabeled data.

Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a network on a pretext task that doesn't require supervision



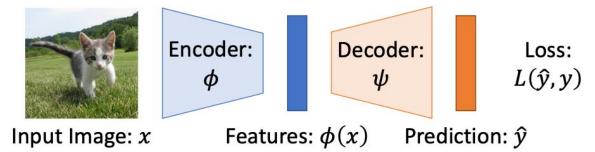
Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning



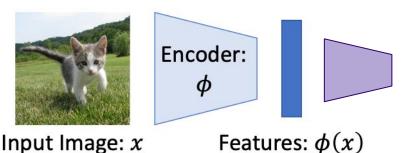
Downstream tasks: Image classification, object detection, semantic segmentation

Goal of Self-Supervised Learning: Define pre-text tasks that do better than supervised learning

Step 1: Pretrain a network on a pretext task that doesn't require supervision



Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning



Downstream tasks: Image classification, object detection, semantic segmentation

Self-Supervised Learning: Pretext Tasks

Generative: Predict part of the input signal

- Autoencoders
 (sparse, denoising, masked)
- Autoregressive
- GANs
- Colorization
- Inpainting

Discriminative: Predict something about the input signal

- Context prediction
- Rotation
- Clustering
- Contrastive

Multimodal: Use some additional signal in addition to RGB images

- Video
- 3D
- Sound
- Language

Self-Supervised Learning: Pretext Tasks

Today

Generative: Predict part of the input signal

- Autoencoders (sparse, denoising, masked)
- Autoregressive
- GANs
- Colorization
- Inpainting

Discriminative: Predict something about the input signal

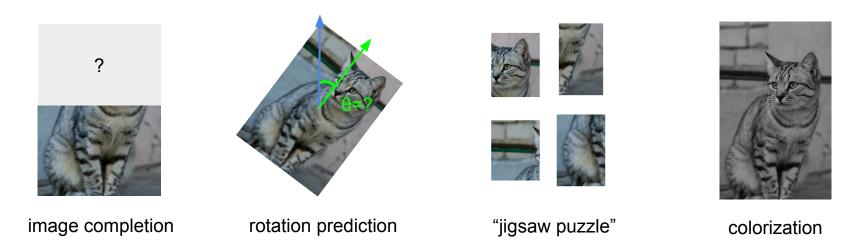
- Context prediction
- Rotation
- Clustering
- Contrastive

Multimodal: Use some additional signal in addition to RGB images

- Video
- 3D
- Sound
- Language

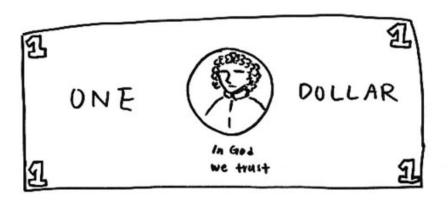
Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images



- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

Generative Self-supervised Learning



Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein</u>, <u>2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

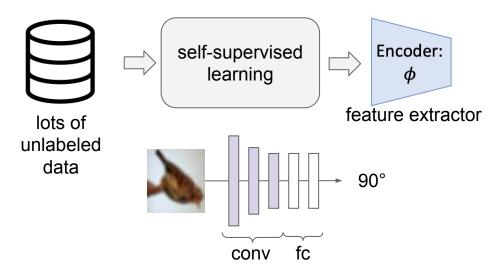
Source: Anand, 2020

How to evaluate a self-supervised learning method?

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

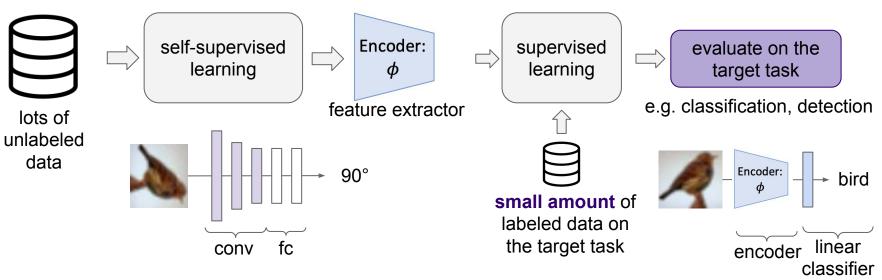
Evaluate the learned feature encoders on downstream *target tasks*

How to evaluate a self-supervised learning method?



Step 1: <u>Pretrain</u> a network on a <u>pretext task</u> that doesn't require supervision

How to evaluate a self-supervised learning method?

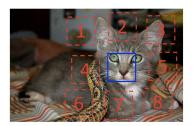


Step 1: <u>Pretrain</u> a network on a <u>pretext task</u> that doesn't require supervision

Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning

Broader picture

computer vision



Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

Language Models are Few-Shot Learners

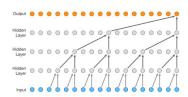
Tom B. Brown*		wn* Ber	Benjamin Mann*		tyder* Mei	Melanie Subbiah*	
			•		•		
	Jared Kaplan	Prafulla Dhariv	wal Arvino	i Neelakantan	Pranav Shyam	Girish Sa	
	Amanda Askell	Sandhini Agarv	val Ariel H	erbert-Voss	Gretchen Krueger	Tom Heni	
	Rewon Child	Aditya Rame	sh Daniel	M. Ziegler	Jeffrey Wu	Clemens Win	
	Christopher He	esse Mark	Chen E	ric Sigler	Mateusz Litwin	Scott Gra	
	Benjar	nin Chess	Jack	Clark	Christopher	Berner	
	Sam McCan	dlish A	alec Radford	Ilya Su	itskever I	Oario Amodei	

OpenAI Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large cropus of text followed by fine-tuning on a specific fine-4 building the selection of the properties of the selection of

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

speech synthesis



Wavenet (van den Oord et al., 2016)

- - -

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Today's Agenda

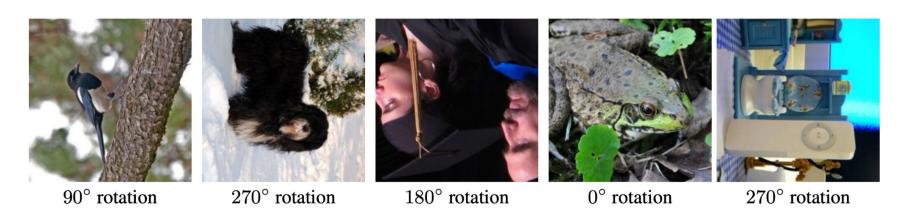
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

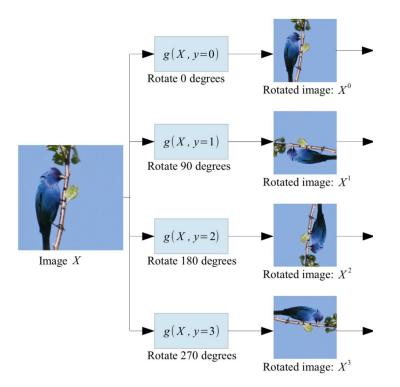
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Pretext task: predict rotations



Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

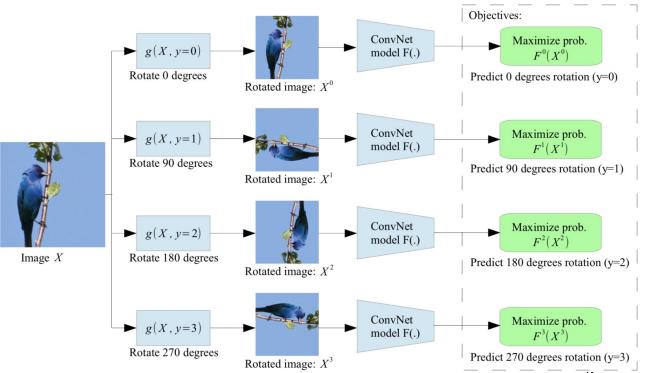
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

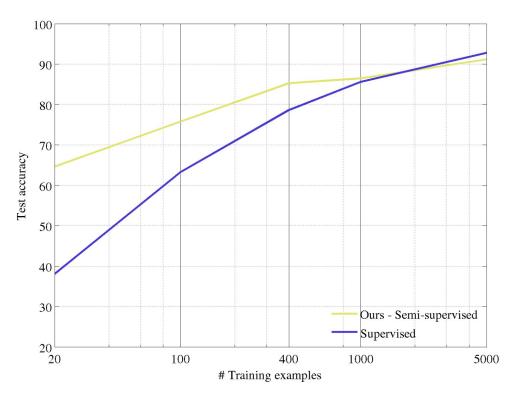
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Evaluation on semi-supervised learning



Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2
Learn **conv3 + linear** layers
with subset of labeled
CIFAR10 data (classification).

Transfer learned features to supervised learning

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)	
Trained layers	fc6-8	all	all	all	
ImageNet labels	78.9	79.9	56.8	48.0	
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9	32.0	
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7	
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4		
Context (Doersch et al., 2015)	55.1	65.3	51.1		
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9	
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6	
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4		
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0	
ColorProxy (Larsson et al., 2017)		65.9		38.4	
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6	
(Ours) RotNet	70.87	72.97	54.4	39.1	

Pretrained with full ImageNet supervision

No pretraining

Self-supervised learning on ImageNet (entire training set) with AlexNet.

Finetune on labeled data from Pascal VOC 2007.

Self-supervised learning with rotation prediction

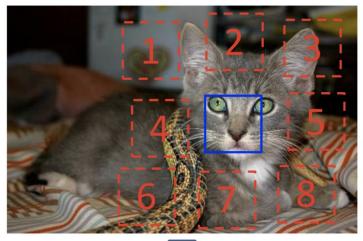
source: Gidaris et al. 2018

Visualize learned visual attentions

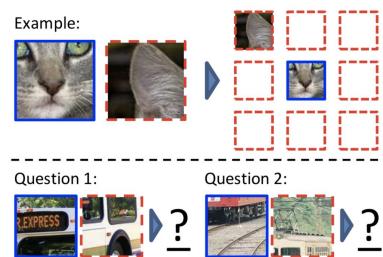
(a) Attention maps of supervised model

(b) Attention maps of our self-supervised model

Pretext task: predict relative patch locations

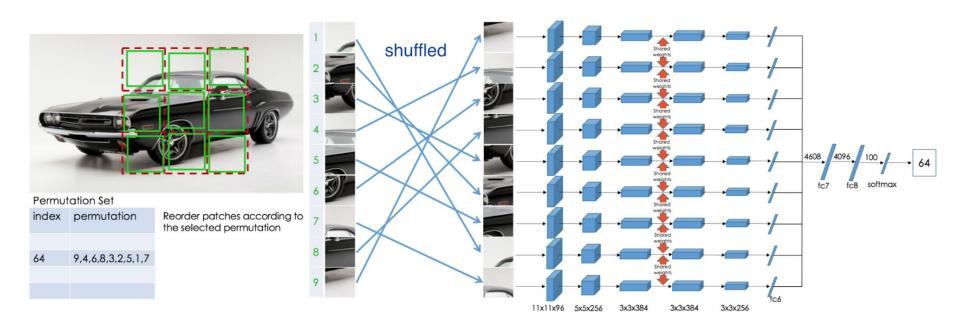


$$X = (W, W); Y = 3$$



(Image source: <u>Doersch et al., 2015</u>)

Pretext task: solving "jigsaw puzzles"



(Image source: Noroozi & Favaro, 2016)

Transfer learned features to supervised learning

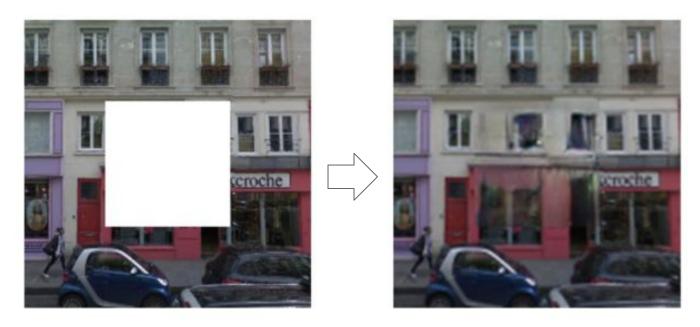
Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak et al. [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky et al. [25]	3 days	1000 class labels	$\boldsymbol{78.2\%}$	$\boldsymbol{56.8\%}$	$\boldsymbol{48.0\%}$
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	$\operatorname{context}$	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{days}$	context	67.6%	$\boldsymbol{53.2\%}$	$\boldsymbol{37.6\%}$

"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

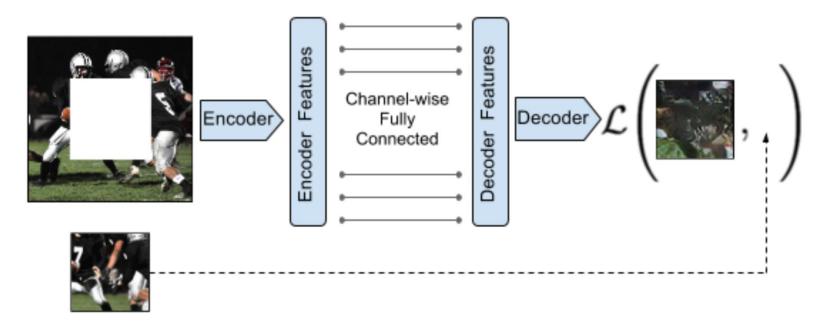
(source: Noroozi & Favaro, 2016)

Pretext task: predict missing pixels (inpainting)



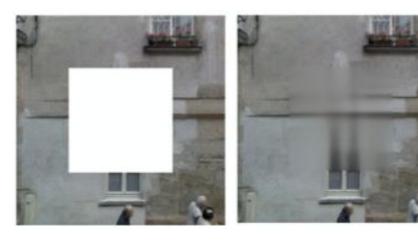
Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Learning to inpaint by reconstruction



Learning to reconstruct the missing pixels

Inpainting evaluation



Input (context)

reconstruction

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= \left|\left|M*(x - F_{ heta}((1-M)*x))
ight|
ight|_2^2 \end{aligned}$$

$$L_{adv} = \max_D \mathbb{E}[\log(D(x))] + \log(1 - D(F((1-M)*x)))]$$

Adversarial loss between "real" images and inpainted images

Inpainting evaluation

Input (context)

reconstruction

adversarial

recon + adv

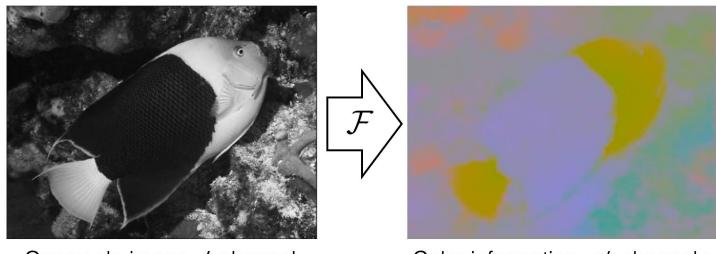
Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal et al. [1]	egomotion	10 hours	52.9%	41.8%	-
Wang et al. [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Source: Pathak et al., 2016

Pretext task: image coloring



Grayscale image: L channel

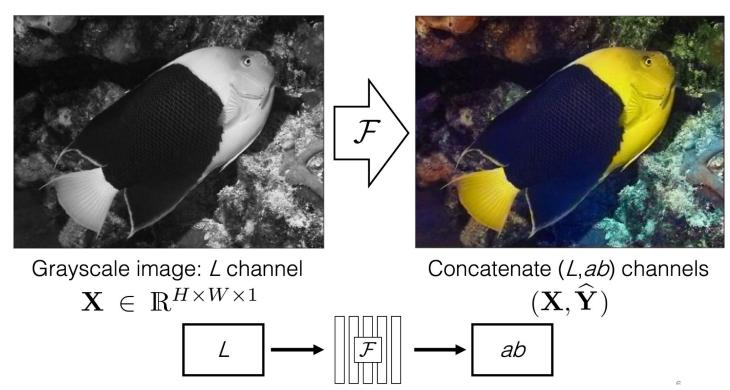
$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$

$$L \longrightarrow \mathbb{F}$$

Color information: ab channels

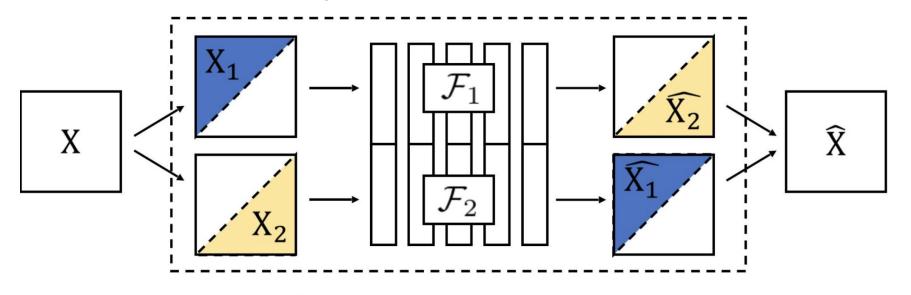
$$\mathbf{\hat{Y}} \in \mathbb{R}^{H imes W imes 2}$$

Pretext task: image coloring



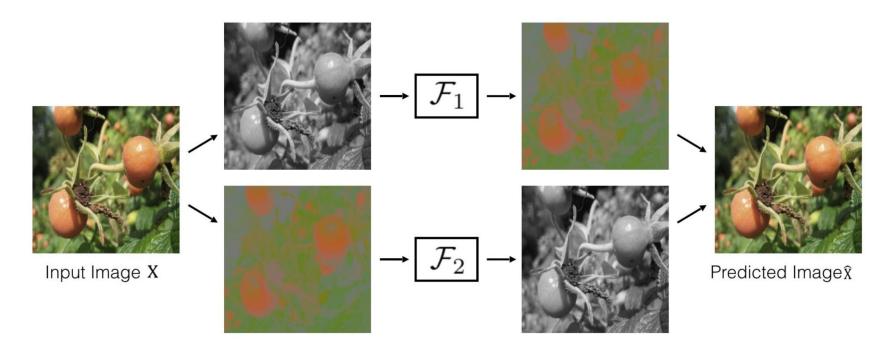
Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions

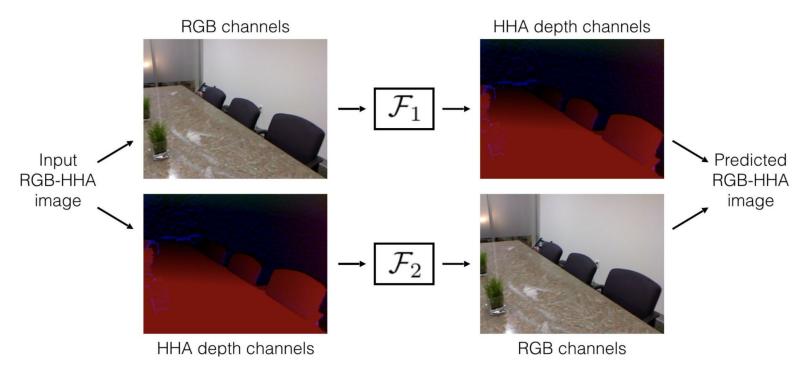


Split-Brain Autoencoder

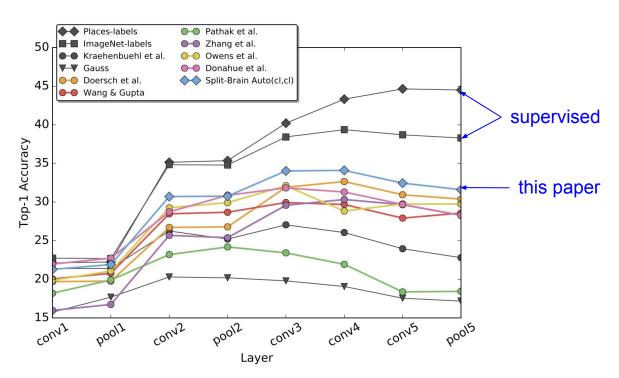
Learning features from colorization: Split-brain Autoencoder



Learning features from colorization: Split-brain Autoencoder



Transfer learned features to supervised learning



Self-supervised learning on **ImageNet** (entire training set).

Use concatenated features from F₁ and F₂

Labeled data is from the **Places** (Zhou 2016).

Source: Zhang et al., 2017

Real world application: image coloring

Pretext task: image coloring

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

t = 0

how should I color these frames?

t = 1

t = 2

t = 3

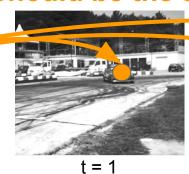
Pretext task: video coloring

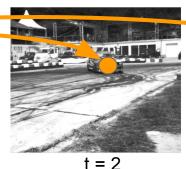
Idea: model the *temporal coherence* of colors in videos

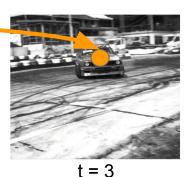
reference frame

how should I color these frames?

Should be the same color!

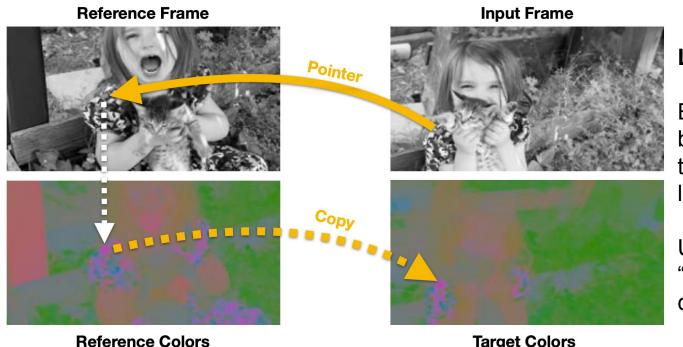






t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!



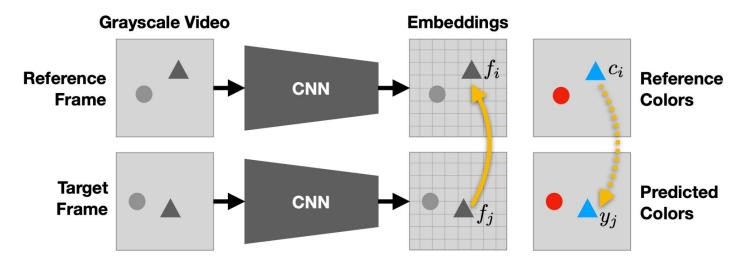
Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

Source: Vondrick et al., 2018

Target Colors



attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

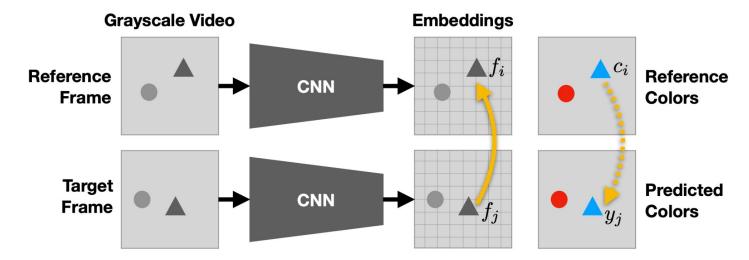


attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$



attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

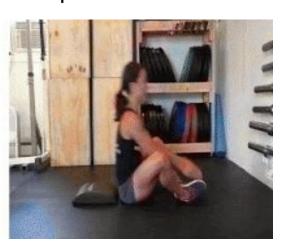
$$\min_{ heta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}
ight)$$

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color



Colorizing videos (qualitative)

reference frame

target frames (gray)

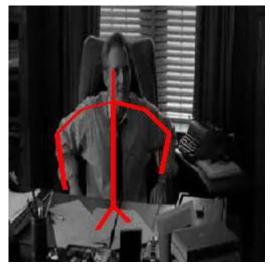
predicted color

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Tracking emerges from colorization

Propagate pose keypoints using learned attention



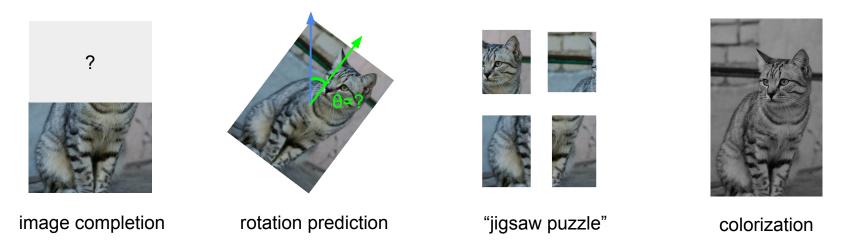
Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be generally useful for all downstream tasks.

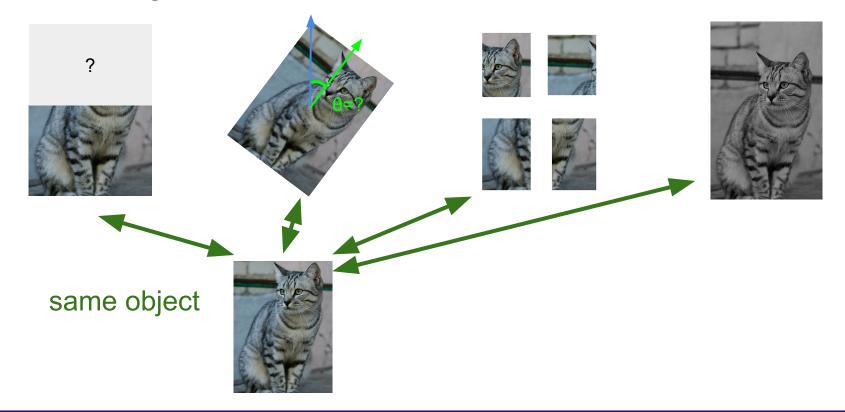
Pretext tasks from image transformations



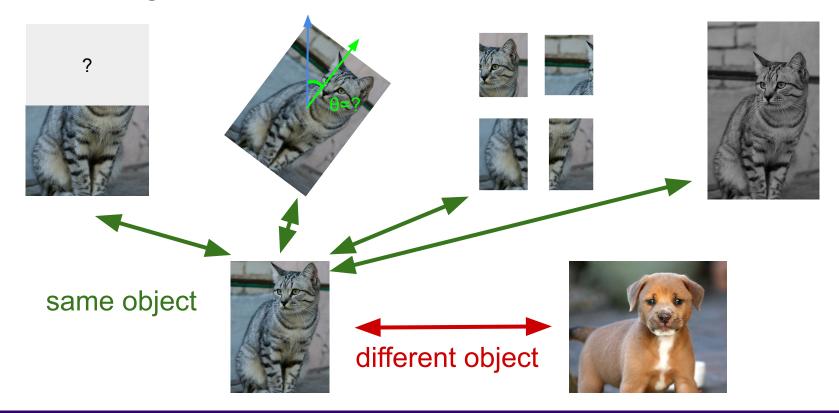
Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

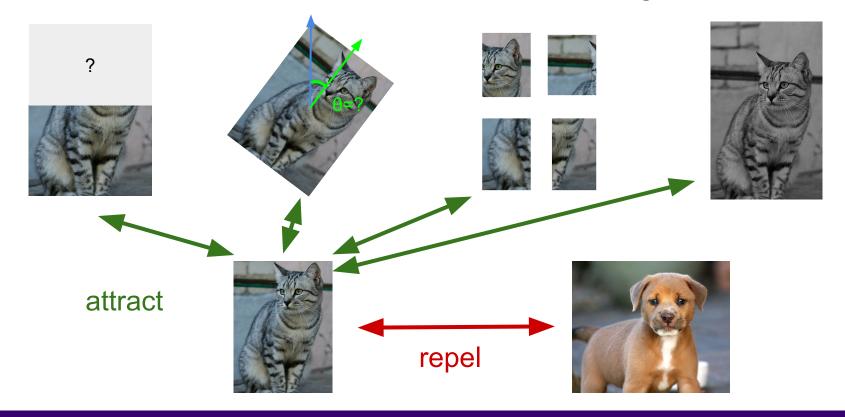
A more general pretext task?



A more general pretext task?



Contrastive Representation Learning



Today's Agenda

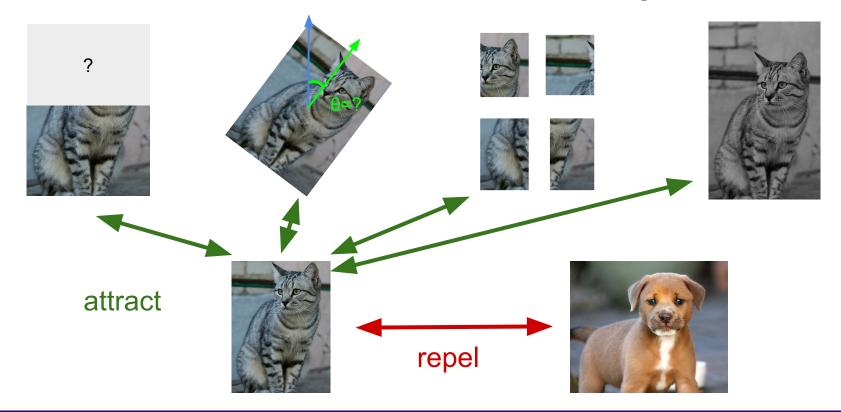
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

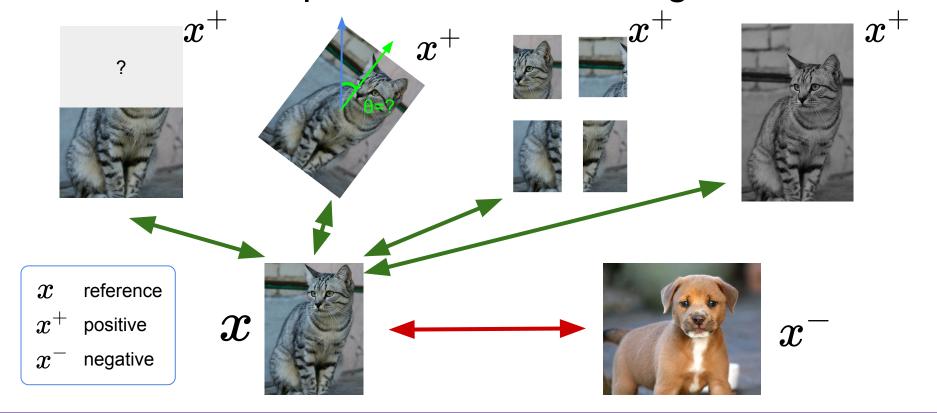
Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning



Contrastive Representation Learning



What we want:

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder function** f that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-) .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Q. What does this loss function remind you of?

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+))) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$

$$x \quad x^+ \quad x^-$$

$$x \quad x_3^-$$

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the score for the N-1 positive pair negative pairs

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the score for the N-1 positive pair negative pairs

This seems familiar ...

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Very similar to the softmax classifier we talked about a few lectures ago.

- We want to compare the reference image against all other positive and negative images.
- We can exponentiate and normalize these scores like we did with the softmax classifier.
- And we get the above similar equation.

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

SimCLR: A Simple Framework for Contrastive Learning

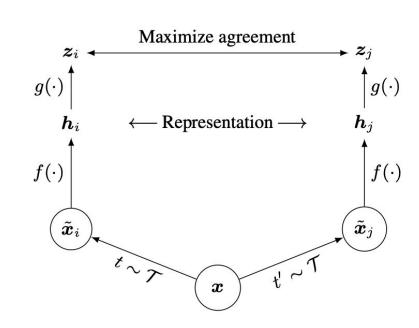
Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network $h(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

 random cropping, random color distortion, and random blur.



Source: Chen et al., 2020

SimCLR: generating positive samples from data augmentation

(b) Crop and resize

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

SimCLR

Generate a positive pair by sampling data augmentation functions

```
Algorithm 1 SimCLR's main learning algorithm.
```

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
```

for all $k \in \{1, \ldots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$

the first augmentation

 $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$

 $z_{2k-1} = g(h_{2k-1})$ # the second augmentation # projection

 $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$

 $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$

representation # projection

representation

end for

for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity

end for

define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$

 $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L}

end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

SimCLR

Generate a positive pair by sampling data augmentation functions

```
Algorithm 1 SimCLR's main learning algorithm.
   input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
   for sampled minibatch \{x_k\}_{k=1}^N do
       for all k \in \{1, \ldots, N\} do
           draw two augmentation functions t \sim T, t' \sim T
           # the first augmentation
           \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
           \boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})
                                                                 # representation
           z_{2k-1} = g(h_{2k-1})
                                                                       # projection
           # the second augmentation
           \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
           \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                                 # representation
           \boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})
                                                                       # projection
       end for
       for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
           s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
       end for
       define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
       \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1,2k) + \ell(2k,2k-1) \right]
       update networks f and g to minimize \mathcal{L}
   end for
   return encoder network f(\cdot), and throw away g(\cdot)
```

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss: Use all non-positive samples in the batch as x^{-}

SimCLR

Generate a positive pair by sampling data augmentation functions

Iterate through and use each of the 2N sample as reference, compute average loss

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \ldots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $oldsymbol{h}_{2k} = f(ilde{oldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\left|\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}\right|$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x^{-}

Source: Chen et al., 2020

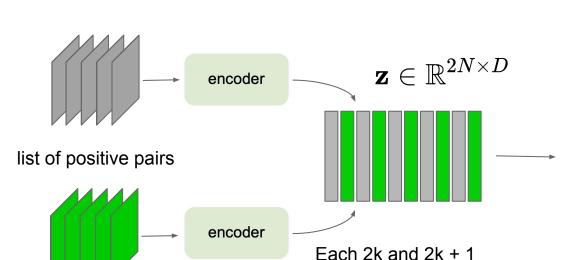
 $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

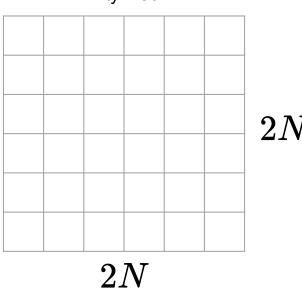
update networks f and g to minimize \mathcal{L}

end for

SimCLR: mini-batch training



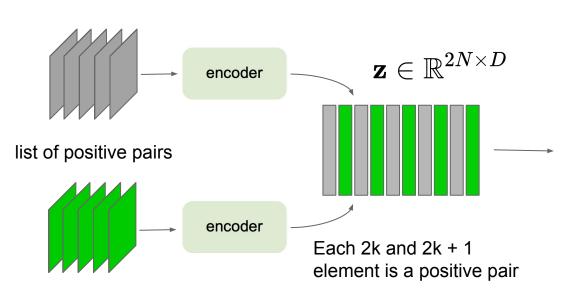
$$s_{i,j} = rac{z_i^T z_j}{||z_i||\,||z_j||}$$
"Affinity matrix"



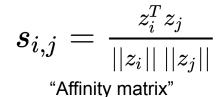
*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

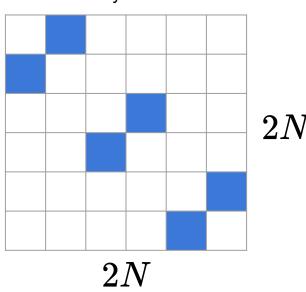
element is a positive pair

SimCLR: mini-batch training



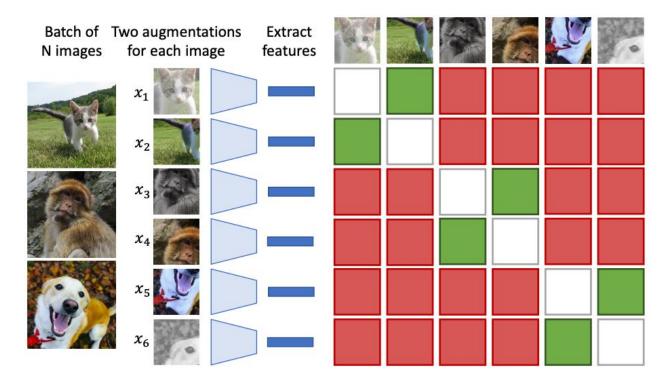
*We use a slightly different formulation in the assignment. You should follow the assignment instructions.



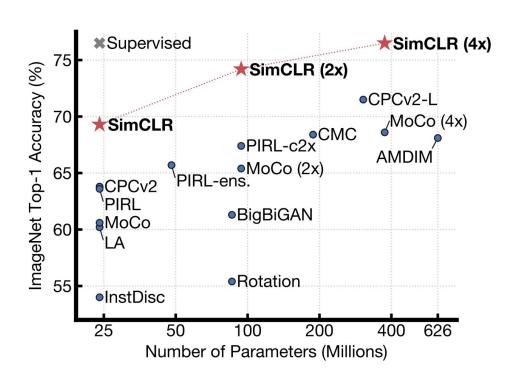


= classification label for each row

SimCLR: what a batch looks like



Training linear classifier on SimCLR features



Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Semi-supervised learning on SimCLR features

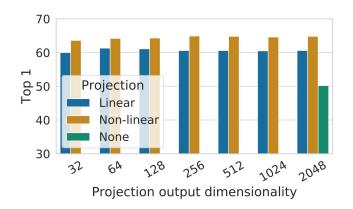
Method	Architecture	1%	fraction 10% op 5	
Supervised baseline	ResNet-50	48.4	80.4	
Methods using other labe	l-propagation:			
Pseudo-label	ResNet-50	51.6	82.4	
VAT+Entropy Min.	ResNet-50	47.0	83.4	
UDA (w. RandAug)	ResNet-50	_	88.5	
FixMatch (w. RandAug)	ResNet-50	-	89.1	
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2	
Methods using representation learning only:				
InstDisc	ResNet-50	39.2	77.4	
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8	
PIRL	ResNet-50	57.2	83.8	
CPC v2	ResNet-161(*)	77.9	91.2	
SimCLR (ours)	ResNet-50	75.5	87.8	
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2	
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6	

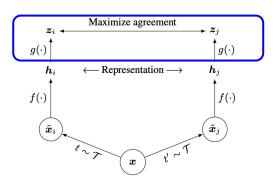
Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

Table 7. ImageNet accuracy of models trained with few labels.

SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space z is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

SimCLR design choices: large batch size

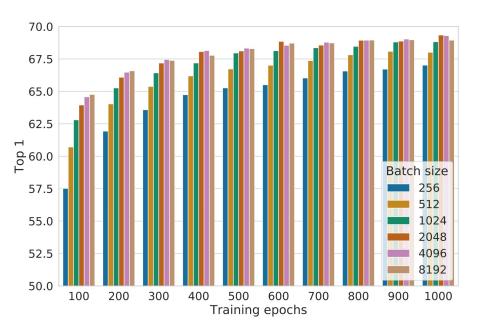
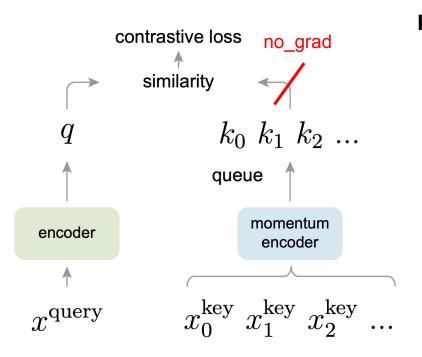


Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch. 10

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

Momentum Contrastive Learning (MoCo)

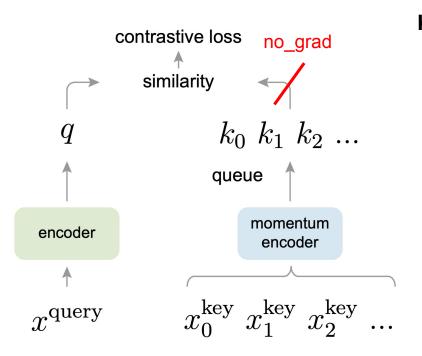


Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

Momentum Contrastive Learning (MoCo)



Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Source: He et al., 2020

MoCo

Generate a positive pair by sampling data augmentation functions

> No gradient through the negative samples

Update the FIFO negative sample queue

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
f_q, f_k: encoder networks for query and key
  queue: dictionary as a queue of K keys (CxK)
  m: momentum
  t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_q = aug(x) # a randomly augmented version
   x_k = aug(x) # another randomly augmented version
   q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
   l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neq], dim=1)
   # contrastive loss, Eqn. (1)
   labels = zeros(N) # positives are the 0-th
   loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
   update(f_q.params)
     momentum update: key network
   f_k.params = m*f_k.params + (1-m)*f_q.params
   # update dictionary
   enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
```

Use the running queue of keys as the negative samples

InfoNCE loss

Update f k through momentum

Source: He et al., 2020

"MoCo V2"

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	\checkmark		200	67.3	82.5	57.2	63.9
(d)	✓	✓	✓	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train				ImageNet	
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	✓	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	✓	\checkmark	\checkmark	200	8192	66.6
MoCo v2	✓	\checkmark	\checkmark	200	256	67.5
results of longe	er unsupervised training follow:					
SimCLR [2]	✓	√	√	1000	4096	69.3
MoCo v2	✓	\checkmark	\checkmark	800	256	71.1

Table 2. **MoCo** *vs.* **SimCLR**: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224**×**224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

MoCo vs. SimCLR vs. MoCo V2

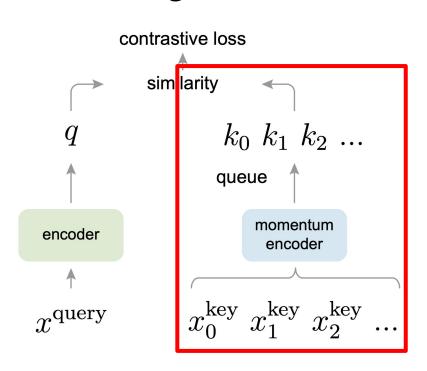
mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	$93.0G^{\dagger}$	n/a

Table 3. **Memory and time cost** in 8 V100 16G GPUs, implemented in PyTorch. †: based on our estimation.

Key takeaways:

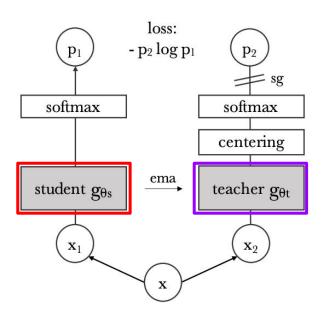
- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Problem with MoCoV2: Need to keep around a set of negatives



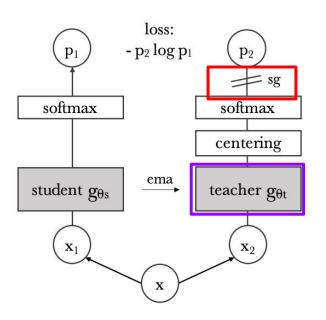
Do we need these negatives?

Solution: DINO: self-distillation with no labels

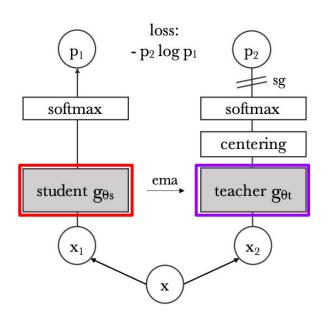


- Similar to SimCLR and MOCO but with one big difference: no negatives
- Reformulates contrastive learning as knowledge distillation between a student and a teacher model.

Solution: DINO: self-distillation with no labels



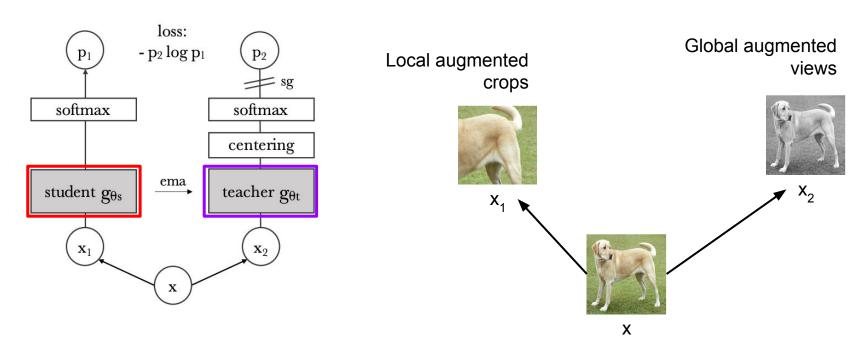
 The teacher model is not trained: sg stands for stop-gradient: meaning that gradients are prevented from flowing back.

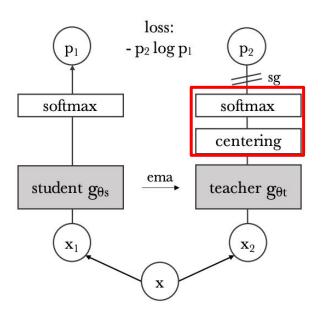


 The teacher model is like the momentum encoder. It is a running average of the student model

$$\theta_t \leftarrow \lambda \theta_t + (1 - \lambda) \theta_s$$

- The teacher sees a global view augmentation of the image
- Student only sees augmented local crops of the image

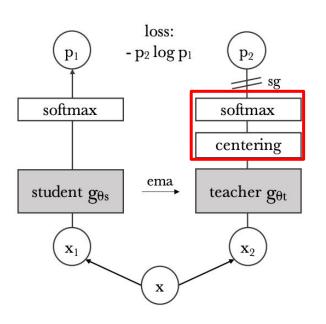




Training tricks:

- Centering: prevents one dimension from dominating.
 - A constant value c is added to all dimensions of the teacher's output.
 - c is a running average of outputs

$$g_t(x) \leftarrow g_t(x) + c, \ c \leftarrow mc + (1-m) \frac{1}{B} \sum_{i=1}^B g_{\theta_t}(x_i)$$

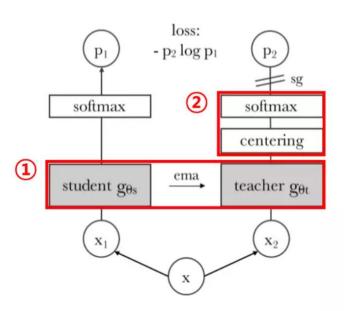


Training tricks:

- Sharpening:
 - A temperature (Tau)
 hyperparameter is used to
 sharpen the distributions towards
 one dimension.

$$\frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^{K} \exp(g_{\theta_s}(x)^{(k)}/\tau_s)}$$

DINO code



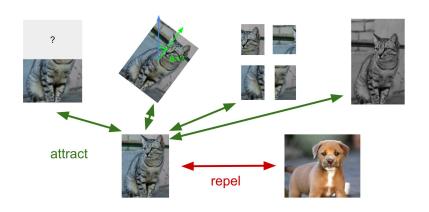
Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
gs, gt: student and teacher networks
 C: center (K)
 tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
   x1, x2 = augment(x), augment(x) # random views
   s1, s2 = gs(x1), gs(x2) # student output n-by-K
   t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
   loss = H(t1, s2)/2 + H(t2, s1)/2
   loss.backward() # back-propagate
    # student, teacher and center updates
   update(gs) # SGD
   gt.params = 1*gt.params + (1-1)*gs.params
   C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
   t = softmax((t - C) / tpt, dim=1) # center + sharpen
   return - (t * log(s)).sum(dim=1).mean()
```

Results: DINO

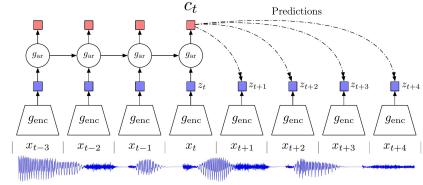
Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5

Instance vs. Sequence Contrastive Learning



Instance-level contrastive learning:

contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo

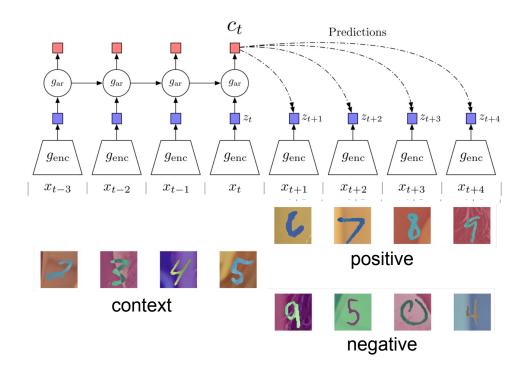


Source: van den Oord et al., 2018

Sequence-level contrastive learning:

contrastive learning based on sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

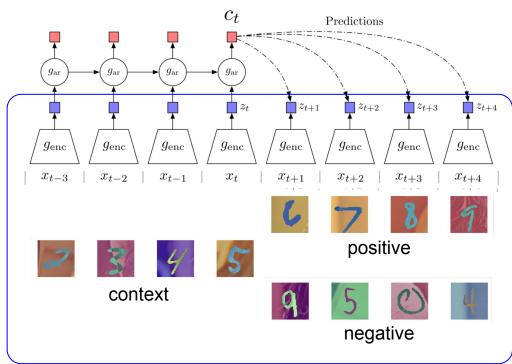


Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

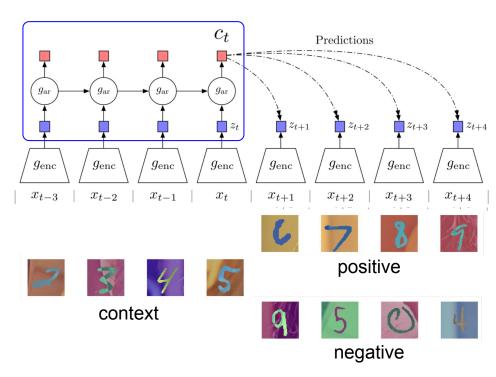
Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

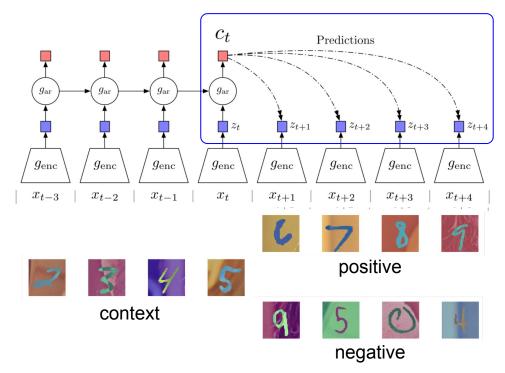
Figure source



1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$



- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code $\boldsymbol{c_t}$ using an auto-regressive model ($\boldsymbol{g_{ar}}$). The original paper uses GRU-RNN here.

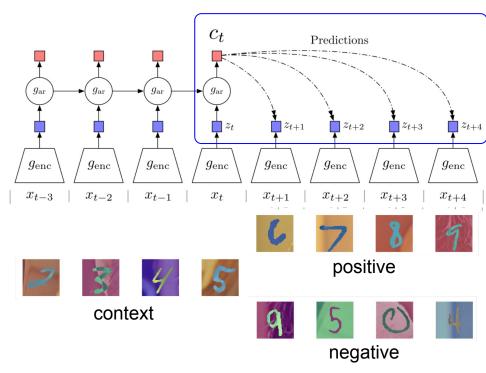


- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})
- 3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

, where W_{ν} is a trainable matrix.

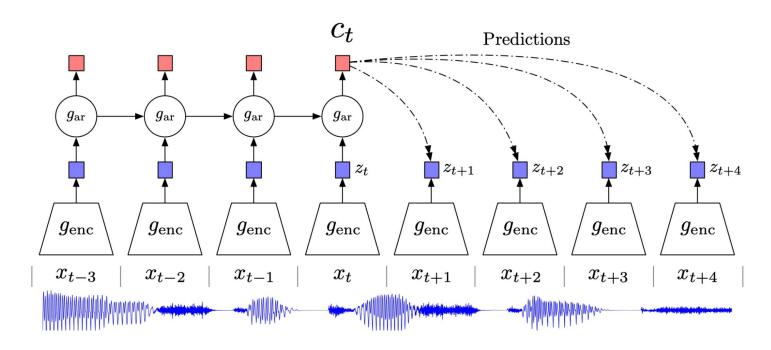
Figure source



- 1. Encode all samples in a sequence into vectors $\mathbf{z}_t = \mathbf{g}_{enc}(\mathbf{x}_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})
- 3. Predict \mathbf{z}_{t+k} using \mathbf{c} and trainable weights. Loss is similarity to true \mathbf{z}_{t+k} value over similarity to constrasting option

Figure source

CPC example: modeling audio sequences



CPC example: modeling audio sequences

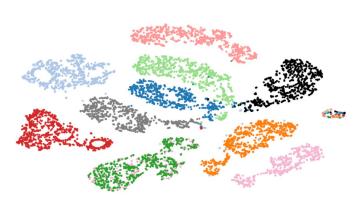


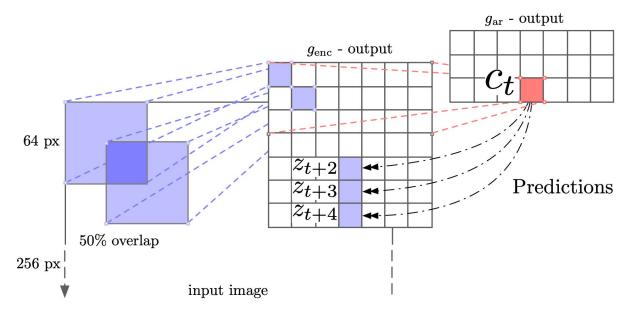
Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset)

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.

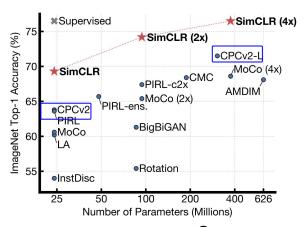


CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext task-based self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.



Source: van den Oord et al., 2018,

A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

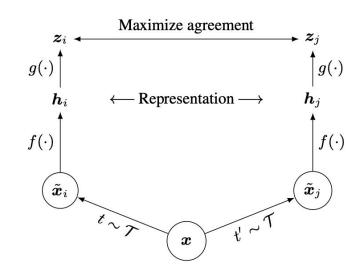
Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

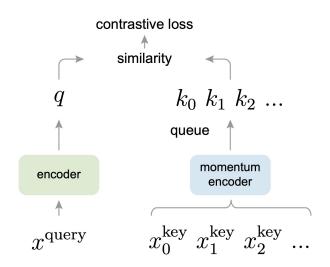
SimCLR: a simple framework for contrastive representation learning

- **Key ideas**: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint



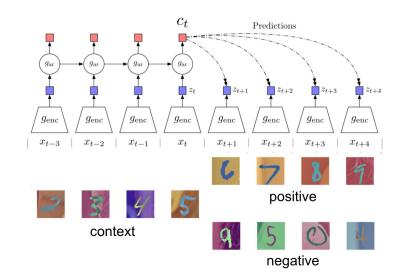
MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning



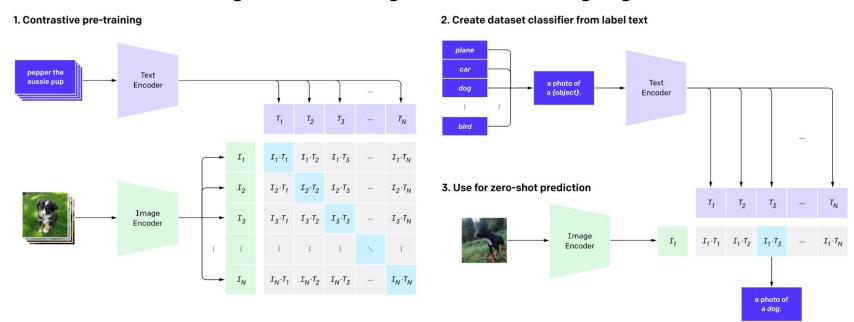
CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.



Other examples: will be covered in next lecture

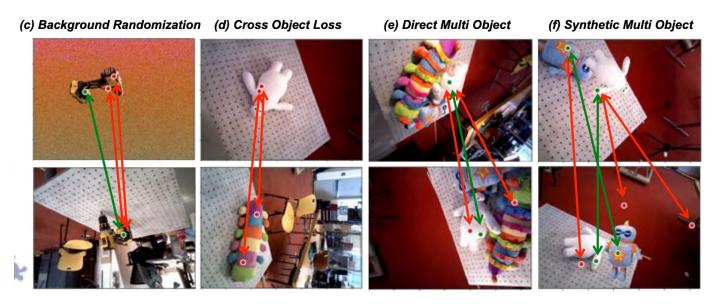
Contrastive learning between image and natural language sentences



CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

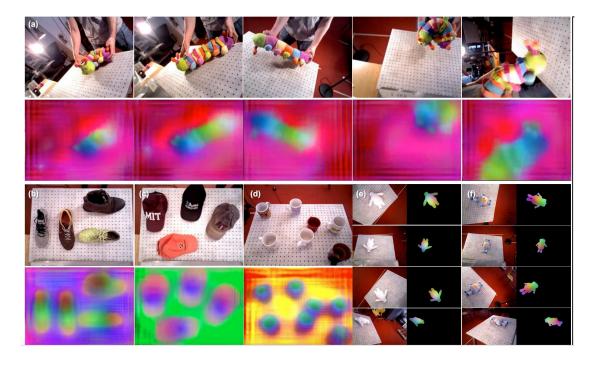
Other examples

Contrastive learning on pixel-wise feature descriptors



Dense Object Net, Florence et al., 2018

Other examples



Dense Object Net, Florence et al., 2018

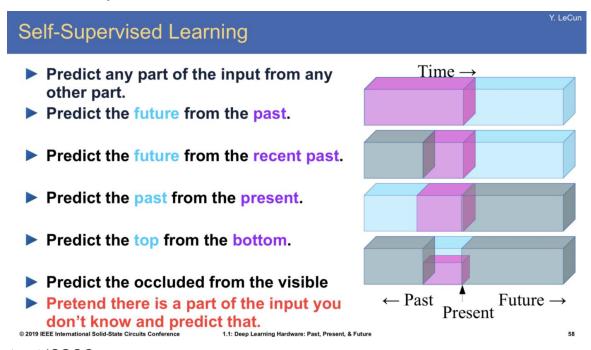
Other examples

Next time: **LLMs**

Frontier: Contrastive Language—Image Pre-training (CLIP)

Self-Supervised Learning

General idea: pretend there is a part of the data you don't know and train the neural network to predict that.



Source: Lecun 2019 Keynote at ISSCC

"The Cake of Learning"

How Much Information is the Machine Given during Learning?

downstream tasks

feature extractor

> Learn good features through self-supervision

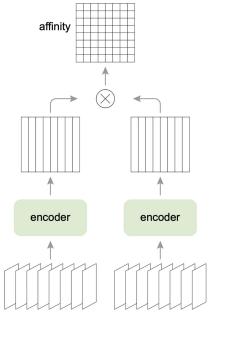
- "Pure" Reinforcement Learning (cherry)
- The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- ► The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- $ightharpoonup 10 \rightarrow 10,000$ bits per sample
- Self-Supervised Learning (cake génoise)
 - The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- ► Millions of bits per sample

1.1: Deep Learning Hardware: Part, Present, & Future

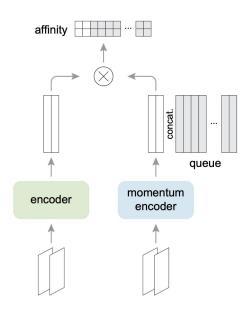
Y. LeCun

Source: Lecun 2019 Keynote at ISSCC

Can we do better?



SimCLR



Momentum Contrast (MoCo)

Source: Chen et al., 2020b