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Lecture 10:
RNNs, LSTMs
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Administrative

- Quiz 2 grades has been released
- Proposals due tonight
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Tokenization
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How do we have usable meaning in a 
computer?
Previous solution by Linguists: Use 
a thesaurus (e.g., WordNet) 
containing lists of synonym sets 
and hypernyms (“is a” 
relationships).
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Problem of polysemy

Word senses and word sense ambiguity

Bat?

Can one vector capture all these meanings? Probably not!

6

[0.23, 0.45 , 0.65] [0.23, 0.45 , 0.65]



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024

Researchers have tried to segregate words into multiple 
vectors, each with its own meaning

But it doesn’t work well. A word’s usage in a sentence defines its meaning. 
Words should be a function of not just its context but its position in the sentence 
-> Next lecture
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So far: vectors are associated with words

Our vocabulary was comprised of all of the words in a language
Problems:

- 500,000 words Webster’s English Dictionary (3rd edition)
- Language is changing all of the time

- 690 words were added to Merriam Webster's in September 2023 (“rizz”, 
“goated”, “mid”)

- Long tail of infrequent words. 
- Zipf’s law: word frequency is inversely proportional to word rank

- Some words may not appear in a training set of documents
- No modeled relationship between words - e.g., “run”, “ran”, 

“runs”, “runner” are all separate entries despite being linked 
in meaning

8

Zipf’s Law: Word Rank 
vs. Word
Frequency for Several 
Languages
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Character level vectors instead?

What about assigning a vector to every character instead?

(Maybe add capital letters, punctuation, spaces, …)
Pros:

- Small vocabulary size ( for English)
- Complete coverage (unseen words are represented by letters)

Cons:
- Encoding a single sentence becomes very long!

- # chars instead of # words
- Characters mean very different things in different words!

- Even worse for representing multiple meanings

9
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Subword tokenization!

How can we combine 
1. the high coverage of character-level representations
2. with the efficiency of word-level representation?

Subword tokenization! (e.g., Byte-Pair Encoding)
- Start with character-level representations
- Build up representations from there

Original BPE Paper (Sennrich et al., 2016)
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https://arxiv.org/abs/1508.07909
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Example of how Byte-pair encoding works

Let’s say our entire dataset contains only these 3 sentences:
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Let’s say our entire dataset contains only these 3 sentences:

Initialize the vocabulary as all the individual characters. Current Vocab:

Example of how Byte-pair encoding works
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Example of how Byte-pair encoding works

Let’s say our entire dataset contains only these 3 sentences:

Let’s split it up into words by splitting right before the whitespace:
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Example of how Byte-pair encoding works

The vocabulary for reference:

Let’s split it up into words by splitting right before the whitespace:
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Example of how Byte-pair encoding works

The vocabulary for reference:

Let’s represent the dataset 
with only vocabulary 
elements:
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Example of how Byte-pair encoding works
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The vocabulary for reference:

Now, let’s find the most
common bi-gram
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Example of how Byte-pair encoding works
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The vocabulary for reference:

Now, let’s find the most
common bi-gram

Create new vocab:
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Update vocabulary with new vocab v14:

Update dataset by replace bigram with new vocab v14:

Create new vocab:

Example of how Byte-pair encoding works
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Current vocabulary:

Find the next common bigram:

Example of how Byte-pair encoding works
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Current vocabulary:

Find the next common bigram:

Create new vocab:

Example of how Byte-pair encoding works
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Update vocabulary with new vocab v15:

Update dataset by replace bigram with new vocab v15:

Create new vocab:

Example of how Byte-pair encoding works

21
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Repeat until vocab size reaches the amount 
you want (20 for example)
Final vocabulary:

Final dataset:

22
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Q: Can you encode “apple”?

23

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

24

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?

25

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?
Yes - [9,2,11]

26

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?
Yes - [9,2,11]

Q: “huge”?

27

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?
Yes - [9,2,11]

Q: “huge”?
Yes - [16, 4] or [7,14,4] or [7,13,6,4]

28

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?
Yes - [9,2,11]

Q: “huge”?
Yes - [16, 4] or [7,14,4] or [7,13,6,4]

Q: “ huge” with a space in the front?

29

With this vocabulary, can you represent (or, 
tokenize/encode):
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Q: Can you encode “apple”?
- No, there is no ‘l’ in the vocabulary

Q: “map”?
Yes - [9,2,11]

Q: “huge”?
Yes - [16, 4] or [7,14,4] or [7,13,6,4]

Q: “ huge” with a space in the front?
Yes - [20, 4]

30

With this vocabulary, can you represent (or, 
tokenize/encode):
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Benefits of Byte-pair encoding

1. Efficient to run (greedy vs. global optimization)
2. Lossless compression
3. Potentially some shared representations

a. e.g., the token “hug” could be used both in “hug” and “hugging”
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Byte-pair encoding - ChatGPT Example

32
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Weird properties of tokenizers

Token != word
- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”

33
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Token != word
- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”
- Tokenization fits statistics of your data

- e.g., while these words are multiple tokens…

Weird properties of tokenizers

34
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Token != word
- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”
- Tokenization fits statistics of your data

- e.g., while these words are multiple tokens…

These words are all 1 token in GPT-3’s tokenizer!
Does anyone know why?

Weird properties of tokenizers
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Vanilla Neural Networks

“Vanilla” Neural Network

36
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. action prediction, sentiment 
classification
sequence of video frames -> action class
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Recurrent Neural Networks: Process Sequences

E.g. Video Captioning
Sequence of video frames -> 
caption

39
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level

40
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So far: Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – each has its own symbol.

This is a localist representation

Such symbols for words can be represented by one-hot vectors:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel  = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

41
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So far: Representing words as dense vectors

We will build a dense vector for each word, 
- chosen so that it is similar to vectors of words that appear in similar 

contexts: e.g. jacket / coat / sweater.
- measuring similarity as the vector dot (scalar) product.
- Word vectors are also called (word) embeddings or (neural) word 

representations

42
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Outputs are 
classification (softmax) 
over V-dimensions

Now let’s talk about how we can model 
language 

4343

Neural network with variable sized inputs/outputs

<start> brownthe cow jumped …

brownthe cow jumped …

Word representations 
can be V-dimensional 
one-hot vectors
Or d-dimensional 
dense vectors

<end>
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Now let’s talk about how we can model 
language 

4444
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Recurrent Neural Network

x

RNN

y

45



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 202446

Recurrent Neural Network

x

RNN

y
Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed
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Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

47
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RNN hidden state update

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

48
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RNN output generation

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state

another function
with parameters Wo

output

49
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Recurrent Neural Network

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3
h0

50
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.
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(Simple) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an 
“Elman RNN” after Prof. Jeffrey Elman
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h0 fW h1

x1

RNN: Computational Graph

53
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph

54
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT

55
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

56
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

57
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

58
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

59



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 202460

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

60
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

61
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

? ? ?

63
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

0 0 0
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yT-1

65

h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

y1 y2

65
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Sequence to Sequence: Many-to-one + 
one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

Many to one: Encode input 
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

66
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Sequence to Sequence: Many-to-one + 
one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

67
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

68
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

70
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

High SVM loss 

71
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Example: 
Character-level
Language Model

So far: encode inputs as 
one-hot-vector

72

High SVM loss 

[w11 w12 w13 w14] [1]     [w11] 
[w21 w22 w23 w14] [0] =  [w21] 
[w31 w32 w33 w14] [0] [w31] 

[0]

Matrix multiply with a one-hot 
vector just extracts a column 
from the weight matrix. Often 
extract this into a separate 
embedding layer

72
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Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

73
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.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

76
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

77
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

78
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

79
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Truncated Backpropagation through time
Loss

80
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min-char-rnn.py gist: 112 lines of Python

Simple python implementation

81

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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x

RNN

y

82
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train more

train more

train more

at first:
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The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

85

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING
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Generated 
C code

89
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OpenAI GPT-2 generated text

92

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, 
previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is 
finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several 
companions, were exploring the Andes Mountains when they found a small valley, with no 
other animals or humans. Pérez noticed that the valley had what appeared to be a natural 
fountain, surrounded by two peaks of rock and silver snow.

source

92

https://openai.com/blog/better-language-models/
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GPT-4

Bubek et al. Sparks of 
AGI. ArXiv 2023

9393
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Language modeling 
leads to reasoning 
capabilities for 
GPT-4

Bubek et al. Sparks of 
AGI. ArXiv 2023

9494
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RNN tradeoffs

RNN Advantages:
- Can process any length input
- Computation for step t can (in theory) use information from many steps 

back 
- Model size doesn’t increase for longer input 
- Same weights applied on every timestep, so there is symmetry in how 

inputs are processed. 
RNN Disadvantages: 

- Recurrent computation is slow 
- In practice, difficult to access information from many steps back 

9595
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep 
Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015; figure 
copyright IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network

97
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test image

This image is CC0 public domain

98

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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test image

99
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test image

X 100
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test image

x0
<START>
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h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

x0
<START>
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h0

y0

test image

straw

sample!

x0
<START>
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h0

y0

test image

straw

h1

y1

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

sample!

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

h2

y2

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

x0
<START>

107
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

108

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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Image Captioning: Failure Cases

A woman is holding a cat 
in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

109

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/


Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024110

Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015
Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention
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Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images
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Agent encodes instructions in 
language and uses an RNN to 
generate a series of movements as 
the visual input changes after each 
move.

113

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised 
Imitation Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room
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Jabri et al. “Revisiting Visual Question Answering Baselines” ECCV 2016

114

Visual Question Answering: Dataset Bias
All images are CC0 Public domain: 
dog,

What is the dog 
playing with?

Frisbee

Image

Question

Answer

Model Yes or No
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https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
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time

depth

Multilayer RNNs

Each layer has a different set 
of weights

Outputs from one layer 
become inputs to the layer 
above.
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

122



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024123

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Almost always < 1
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Almost always < 1
Vanishing gradients

What if we assumed no non-linearity?

125
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: 
Scale gradient if its 
norm is too big
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN 
architecture
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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RNNs have a single hidden state (ht)
LSTMs have two: cell memory ct and hidden state ht

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, What to write to cell

132

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, What to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, What to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, What to write to cell

135



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024

☉

136

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

136



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024

☉

137

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉

139

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉

141

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the 

forget gate.
Also notice that are added through the f, i, g, and o gates

- better balancing of gradient values
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Do LSTMs solve the vanishing gradient 
problem?

The LSTM architecture makes it easier for the RNN to preserve information 
over many timesteps

- e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 
indefinitely.

- By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 
Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it 
does provide an easier way for the model to learn long-distance dependencies

143143



Ali Farhadi, Sarah Pratt Lecture 10 - Oct 28, 2024144

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool
Similar to residual connections (e.g. 
in ResNets and Transformers), 
which we will learn about soon!
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LSTM cell

145

Neural Architecture Search for RNN architectures

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Cell they found
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures, 
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn 
encoder-decoder for statistical machine translation, 
Cho et al. 2014]
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Recurrence for Vision
- LSTM wer a good default choice until this year
- Use variants like GRU if you want faster compute and less 

parameters
- Use transformers (next lecture) as they are dominating NLP and 

also vision models
- almost everyday there is a new transformer model

Su et al. "Vl-bert: Pre-training of generic visual-linguistic representations." ICLR 2020
Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019
Li et al. "Visualbert: A simple and performant baseline for vision and language." arXiv 2019
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Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research, 
as well as new paradigms for reasoning over sequences

- Better understanding (both theoretical and empirical) is needed.
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Next time: Attention and transformers!
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Searching for  interpretable cells

150
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell
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Searching for  interpretable cells

line length tracking cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

if statement cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell
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Searching for  interpretable cells

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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