CSE 493G1: Deep Learning
Friday Lecture 2: Backpropagation
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Who Am 1?

* Hi, I'm Shubhang Desai
o BS + MS from Stanford CS
o Moved to Seattle ~1.5 years ago

« Applied Scientist at Microsoft, on Ink Al Team
o Spearheaded deep learning handwriting recognizer (HWR)
o Working on HWR, ink analysis, etc.
o Both image and sequence modelling tasks

+ Passionate about teaching: CS 131 (Comp. Vision), CS 2
(Deep Learning), CS 21SI (Al + Social Good) @ Stanford
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Plan for Today

* Background: the problem of gradient computation

Intro to backpropagation algorithm

Gradients of common computations

Worked-thru examples

What does it all mean?
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Background
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Refresher: Chain Rule

“Derivative of outside of inside equals derivative of outside times derivative of
inside”

< £(800) = ——£(2(0) Xx——g(x)
dx S _dg(x) S dxgx
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Refresher: Gradient Descent

lteratively moving neural network weights in the direction of the gradient to
minimize loss:
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Intro to Backprop: A 2-Layer MLP
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2-Layer MLP

X
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“ = wio(wyx) and L= £($)
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2-Layer MLP Equations and Gradients

L= f</)\/>, whereﬁ = wy,A, A =0(z),and z = w;x

dL _|dL|dy dL dy dA dL dy dA dz

dwy |gd dw, ~ % dA dw, 4 dA dz dw,

dL g1 |dy

Notice that this value is
used in both gradient
computations!
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“ = wio(wyx) and L= £($)
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he Backpropagation Algorithm
* Treat entire network as a computational graph, each computation as a node
* We can independently compute local gradient at each node given node inputs

« Accumulate gradients from back (loss) to front (weights) using chain rule
(simple multiplication!)
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Computations and their Gradients
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Summation

z= ) x, L= f(Z)

0z
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Multiplication

X1
z=]]x L=r2) X)X
0z z
= X vz
ox;, X X3 dL
oL B oL 0z B oL z e
ox, 0z dx; 0z X
X5 X1X2
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Min/Max

X1=4
z=maxxi,L=f(Z) 1
0z
—=1[x. =z
axl. [l | x2=3\ 2
oL 0L 0z aLl[ ] 0 dL
= = —1|X. = Z

ox, 0z dx; 0z dz

0
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Sigmoid

z=o0(x), L= f(Z)

0z (1 )
— =2 — Z
-
oL oL 0 oL i
- S (2)(1 - 2) ar
axi aZ axl‘ aZ dz
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Computational Graph Example 1
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L=(x+y)z

-2 dL
P (DH@3) =3
4
dr
d_y =MEHA)=-4
3 dL
Ix (D(—=4)1)=-4
y —12
L
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Computational Graph Example 2
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L = O'(wa + b)

dL

dcib — (1)(0.2)(1)=0.2

AW (1)0.2)(1)(=2) = — 0.4

dl/UO -

(HO2)(M)(-1)=-0.2

0.73

0.2 1
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2-Layer MLP Example, Completed
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“ = wio(wyx) and L= £($)
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f(w,o(w;x + b;) + b,) and
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More Mathematically...

Forward Prop Backprop
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What Does This All Mean For Us?
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Not Much!

« Most NN ops can be broken down into simple computations with closed-form derivatives

« Frameworks like PyTorch and TensorFlow build the computational graph during the forward
pass, and each node in the graph has its backward pass already written for us!

« As such, the framework can compute gradients automatically—a.k.a. auto-differentiation
o Auto-diff allows us to focus on forward pass: if it’s all differentiable, gradient comp. is taken care of
o We may want to write the backward pass ourselves e.g. in C++ to speed it up, but this is rare

 It’s still good to understand backprop at a theoretical level
o Helps you debug when your model isn’t converging!
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Pseudocode

for X, y 1n train dataset:
y hat = compute prediction (model, X)
1 = compute loss(y, y hat)
grads—compute—greadrenrtstmodet—)
for name, grad 1n grads:

model.take update step (n grad)

Auto-diff enables us to
compute gradients without
writing any backwards pass
code!
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Real PyTorch Code

for X, y 1n train dataset:
y hat = model (X)

1 = loss fn(y, y hat)

1

These APls do
gradient computation
and weight update for
you!
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Summary

« Gradient descent requires gradient computation

* The popular method to do so in deep learning is backpropagation algorithm:
greedily use chain rule to accumulate local gradients from “back to front”

* Frameworks such as PyTorch and TensorFlow do backprop for you (auto-
differentiation)
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