Lecture 7:
Training Neural Networks,
Part I
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Administrative:

- A1 grades will be released this weekend
- Project proposal are due April 24th
- A2 is due Friday April 28th, 11:59pm
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Administrative: assignments

- Submission:
o submit a version of your assignment the night before the deadline
to make sure you have no gradescope submission issues
- Private test cases:
o Gradescope contains private tests that we use to autograde your
work
- Modifying code:
o Do not modify code outside of the code blocks
o Do not leave print statements in your code
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L ast time: Activation Functions

S|gmo|d Leaky RelLU )
_ 1 max(0.1z, x)
0'($) T 14e—*
= 0 T - ] 10

ta"?l( ) Maxout i
annh(x ﬂ b max(wi  + b1, wy x + ba)
ReLU ELU

T x>0
maX(O’ .73) i {oz(e"” —1) <0
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L ast time: Activation Functions

S|gmo|d Leaky RelLU )
_ 1 max(0.1z, x)
0'($) T 14e—*
i 0 To Bre—t 10

tanh Maxout
tanh(x) ﬂ . max(wi x + by, wl x + by)

ReLU ELU
max(0, ) { v 20

ae®—1) =<0

Good default choice
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Last time: Weight Initialization

Initialization too small:
Activations go to zero, gradients also zero,
No learning =(

Initialization too big:
Activations saturate (for tanh),

Gradients zero, no learning =(

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely =)
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Last time: Data Preprocessing

original data zero-centered data normalized data
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Last Time: Batch Normalization [loffe and Szegedy, 2015]

Input: »: N x D _ 1 Per-channel mean
. . . = — :C . ’
Hj N z; “J " shapeis D
1=
Learnable scale and , 1 N ) Porchannel
. er-cnannel var
. g5 = =— Ti : — : ’
shift parameters: i =N 1( ii ~H3)” ghape is D
. Z:
V8D i — 0
By = 2] J Normalized x,
Learning v =0, 07 +¢  ShapeisNxD
£ = 1 will recover the A

_ tout,
Yij = Vidij + B g

identity function! Shape is N x D
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Batch Normalization: Test-Time

Input: +: N x D (i = (Running) average of Per-channel mean,
) values seen during training shape is D

Learnable scale and

. _ 2 __ (Running) average of Per-channel var,
shift Parameters- O35 = Values seen during training shape is D
. D
7P N

Normalized x,

L; s =
During testing batchnorm i /02_ 4 e Shape is N x D
becomes a linear operator! J

Can be fused with the previous Yi i = ’Y‘Si‘ o B Output,
fully-connected or conv layer “J =y 7 Shapeis N x D
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Batch Normalization

|

FC

:

BN

!

tanh

l

FC

-—

[loffe and Szegedy, 2015]

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

) _ (k) _ E[x(k)]
v/ Var[z(%)]
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Batch Normalization

|

FC

:

BN

!

tanh

l

FC

[loffe and Szegedy, 2015]

Makes deep networks much easier to train!
Improves gradient flow

Allows higher learning rates, faster convergence
Networks become more robust to initialization

Acts as regularization during training

Zero overhead at test-time: can be fused with conv!
Behaves differently during training and testing: this
is a very common source of bugs!
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NxCxHxW
Normalize | Normalize | 4
M,0: 1 x D MH,0: 1xCx1lxl
Y,B: 1 x D Y,BP: 1xCx1xl
y = Y(x-M)/o+p y = Y(x-HM)/o+p
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Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

Xx: N x D x: N x D
Normalize * Normalize *
M,0: 1 x D M,0: N x 1
Y,B: 1 x D Y,B: 1 x D

y = Y(x-M) /o+p y = Y(x-M)/0o+p

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

convolutional networks convolutional networks
Same behavior at train / test!
X: NxXCxHxW X: NxXCxHxW
Normalize * * * Normalize * *
H,0: 1xCx1xl H,0: NxCx1x1l
Y,P: 1IxCx1lx1l Y,B: 1xCx1lx1l

y = Y(x-M) /o+p y = Y(x-M)/0o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm
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Wu and He, “Group Normalization”, ECCV 2018
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Today

- Improve your training error:
- (Fancier) Optimizers
- Learning rate schedules

- Improve your test error:

- Regularization
- Choosing Hyperparameters

Ranjay Krishna, Aditya Kusupati Lecture 7 - 17 April 18, 2023



(Fancier) Optimizers
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Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

Aside: Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large

w1
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problem #2 with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?
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Optimization: Problem #2 with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient, ®
gradient descent
gets stuck

Ranjay Krishna, Aditya Kusupati Lecture 7 - 23 April 18, 2023



Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #3 with SGD

Our gradients come from
minibatches so they can be noisy!

| X
L(W) = NZLi(-’Eiayi,W)

=1

N
1
VwL(W) = + > VwLi(i,yi, W)

=1
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

Nem N\

Poor Conditioning

T
T —
‘! (e >
7 |
mm SGD = SGD-+Momentum
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SGD: the simple two line update code

SGD

Ter1 = ¢ — aV f(xy)

while True:
dx = compute_gradient(x)
x —= learning_rate x dx
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

Vit1 = pvr + V f(xe)

Tt4+1 = Tt — AVt41

Ti+1 = Tt — QVf(J?t)

while True:
dx = compute_gradient(x)
x —= learning_rate x dx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

Vit1 = pvr + V f(xe)

Lt+1 = Tt — QU441

Ti+1 = Tt — QVf(J?t)

vX = 0
while True:

while True:
dx = compute_gradient(x)

X —= learning_rate * dx dx = compute_gradient(x)
vX = rho x vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

alternative equivalent formulation

SGD+Momentum SGD+Momentum
Vt4+1 = PUt — (XVf(Qﬁt) Vt4+1 — PUt -+ Vf(.’Et)
Ti4+1 = Tt + Vg4l T+l = Tt — QU1
VX = 0 vX = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vX = rho *x vx - learning_rate x dx vX = rho *x vx + dx
X += VX x —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Nesterov Momentum

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Lecture 7 - 32
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Nesterov Momentum

Vi1 = pvg — oV f(xs + pvg)

Ti+1 = Tg + V41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vir1 = pvy — aV flxy + puy

Ti+1 = Tg + V41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
Vi+1 = PU¢ — Gfo(CEt + pv¢|) | update interms of z¢, V f(z¢)
Tt4+1 =|Tf T Vg4+1
Gradient
Velocity
Change of variables Iy = |X¢|+ pPU¢ |and
actual step

rearrange:

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vir1 = pvy — aV flxy + puy

Ti+1 = Tg + V41

Gradient

Velocity

Change of variables T; = Ty + pv; and

rearrange: actual step

Vi1 = pvs — aV f(Ty)

Lt+1 = Tt — PU¢ + (1 T p)vt-i-l “Look ahead” to the point where updating using
o~ velocity would take us; compute gradient there and
— Xt a3 Ut+1 T /O(Ut+1 T Ut) mix it with velocity to get actual update direction
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Nesterov Momentum

—— SGD+Momentum

wmmm==_ Nesterov
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“‘Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Ranjay Krishna, Aditya Kusupati Lecture 7 - 38 April 18, 2023




AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q: What happens with AdaGrad?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)

grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

v

grad_squared = 0
while True:

RMSPrOp dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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RMSProp

—— SGD+Momentum

e RMSProp

memms - AdaGrad

(stuck due to
decaying Ir)
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Adam (almost)

first_moment = 0
second_moment = 0@
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0

second_moment = 0@

while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = beta second_moment + - beta X PRCIEL
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPI’OD

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0
second_moment = 0
for t in range(1,

dx = compute gr

num_iterations):
adient(x)

first_moment =

betal * first_moment + (1 - betal) * dx

second_moment =

beta2 * second_moment + (1 - beta2) * dx * dx

first _unbias =
second_unbias =

first_moment / (1 - betal ** t)
second_moment / (1 - beta2 ** t)

Momentum

Bias correction

| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0
second_moment = 0
for t in range(1,

dx = compute gr

num_iterations):
adient(x)

first_moment =

betal * first_moment

+ (1 - betal) * dx

Momentum

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t)
| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

gtr = VL(Wt) gt = VL(W;) = VLgara(We) + 22w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wep1 = We — ASt Wit1 = W — aSt

Ranjay Krishna, Aditya Kusupati Lecture 7 - 50 April 18, 2023



L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

gtr = VL(Wt) gt = VL(W;) = VLgara(We) + 22w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wep1 = We — ASt Wit1 = W — aSt

L2 Regularization and Weight Decay are equivalent  \Weight Decay
for SGD, SGD+Momentum so people often use the _
terms interchangeably! Lw) = Laata (W)

9t = VLgara(We)
s, = optimizer(g;) + 2w,
Wiy1 = W — ASt
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

9t = VL(Wt) 9t = VL(Wt) o VLdata(Wt) + 22w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wt+1 — Wt — aSt Wiir1 = W — ASt

L2 Regularization and Weight Decay are equivalent  \Weight Decay
for SGD, SGD+Momentum so people often use the _
terms interchangeably! Lw) = Laata (W)

. 9t = Vlgara (W)
But they are not the same for adaptive _ timi ( ) + 22w
methods (AdaGrad, RMSProp, Adam, etc) St = optimizer\g;

Wir1 = W — QS
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AdamW: Decoupled Weight Decay

Algorithm 2 ' Adam with L regularization and Adam with decoupled weight decay (AdamW)

1: given a = 0.001, 51 = 0.9, 32 = 0.999, ¢ = 102 A€ER
2: initialize time step t <— 0, parameter vector 8;—o € IR", first moment vector m;—g < 0, second moment
vector vi—g < 0, schedule multiplier 7;—o € R

3: repeat

| <L+ 1

5:  V/fi(6:-1) < SelectBatch(6;_1) > select batch and return the corresponding gradient
6: g, « Vii(0:—.) IO

7. my — Bimy—1 + (1 — B1)g, > here and below all operations are element-wise
8: Vi < ,.-"3-2vt_1 + (1 — .'_)’2)g12

9:  mmy +—m/(1— 1) > (31 is taken to the power of ¢
10: Py < ve/(1 — B%) > [32 is taken to the power of ¢
11:  m « SetScheduleMultiplier(?) > can be fixed, decay, or also be used for warm restarts

12: 0, « 0;_1 —n, (am,/(\/f?+ €) +-A0s_1 )
13: until stopping criterion is met
14: return optimized parameters 6,
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First-Order Optimization

Loss

w1
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — 6) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H 'VoJ(0p)

Q: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — 6) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N”*2) elements

% 1
0" =00—H VoJ(00) |nverting takes O(N"3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?
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Second-Order Optimization

0" =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Ranjay Krishna, Aditya Kusupati Lecture 7 - 59 April 18, 2023



L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

- AdamW should probably be your “default” optimizer
for new problems
- Adam is a good second choice in many cases; it
often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!
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Learning rate schedules
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

high learning rate

good learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Ranjay Krishna, Aditya Kusupati

Q: Which one of these learning

rates is best to use?

A: In reality, all of these are good

learning rates.

Lecture 7 - 64
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Phases of learning...
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Phases of learning...

o—>
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Phases of learning...

.-\A
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Phases of learning...

N
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Phases of learning...

Ranjay Krishna, Aditya Kusupati Lecture 7 - 69 April 18, 2023



Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Learning rate decays over time

Training Loss

Step: Reduce learning rate at a few fixed
Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.

0 20 40 60 80 100
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Phases of learning...
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Phases of learning...
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Learning Rate Decay

Learning rate
10 - Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.6 1 1
Cosine: o; = 50 (1 4 cos(tw/T))

0.8 1

0.4 1

0.2 1

0.0 1

0 20 20 60 80 100
Epoch

& : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 th . Leamlng rate at GPOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T . TOtaI number Of epOChS
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Learning Rate Decay

Training Loss

10 1

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.8 4

0.6 1

Loss

1
Cosine: o; = 50 (1 4 cos(tw/T))

0.4 4

0.2 1

0.0

0 50 100 150 200 250 300
Epoch

& : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at . Leamlng rate at GPOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T . TOtaI number Of epOChS
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Learning Rate Decay

Learning rate _ _
10 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: o; = 50 (1 4 cos(tw/T))

0.8 1
0.6 1
0.4 1

02 Linear: «o; = ag(1 —¢/T)

0.0 1

0 20 20 60 80 100
Epoch
& : Initial learning rate
(vt - Learning rate at epoch t
: Total number of epochs

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for ' ! !
Language Understanding”, 2018

Ranjay Krishna, Aditya Kusupati Lecture 7 - 79 April 18, 2023



Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

08 after epochs 30, 60, and 90.

0.6 1 ].

Cosine: o; = 50 (1 4 cos(tw/T))

Linear: oy = (1 —t/T)

0.2 4

Inverse sqrt: oy = ozo/\/z

0 20 40 60 80 100

Epoch N _
Q0 : Initial learning rate
(vt - Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtaI number Of epOChS
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

08 after epochs 30, 60, and 90.

0.6 1 ].

Cosine: o; = 50 (1 4 cos(tw/T))

Linear: oy = (1 —t/T)

0.2 4

- - pA - - — Inverse sqrt: vy = ozo/\/z
Epoch
Constant: a; = q

Vaswani et al, “Attention is all you need”, NIPS 2017
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Learning Rate Decay: Linear Warmup

Learning rate T :
06 d High initial learning rates can make loss

- explode; linearly increasing learning rate
from O over the first ~5000 iterations can
prevent this

0.4 1
0.3 1

021 Empirical rule of thumb: If you increase the
batch size by N, also scale the initial
learning rate by N

0.1 1

0.0 1

0 20 a0 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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From

yesterday: i Tl o linall
with L

cosine
and 4
warmup :

Step
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Improve test error
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Beyond Training Error

Train Loss Accuracy

175 - —e— train

15.0 val

125 0.8 1

10.0

0.7 4

75

5.0 06

2 P ¥ L A b oo et 000000t

0.0 05 {oeee®®®

(’) 25'00 50'00 75100 100'00 125'00 150'00 175‘:00 20600 0 25'00 50'00 75'00 10600 ]25';00 15()’00 175';00 20000

Better optimization algorithms But we really care about error on
help reduce training loss new data - how to reduce the gap?
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Early Stopping: Always do this

Train

Loss Accuracy

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot
that worked best on val
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
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How to improve single-model performance?

Train Loss Accuracy

175 - —e— train
15.0 »— val
125 08 1

10.0

0.7 1
75
5.0 06 1

25

\/%“«-- o o9&
P el 'Bﬁ-fs;w,,o.‘g_,. SIS PT QOO
05 1®

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

PPV T2 a4
$"E'~:ﬁ#.d®a L@

0.0

Regularization
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Regularization: Add term to loss

L= % sz\; 2y, 0ax(0, f(zi; W) — f(2i; W)y, +1) +AR(W)

n common use:
|2 regularization  BW) =322, Wi (Weight decay)
_1 regularization R(W) =320 22 (Wi

Elastic net (L1 + L2) R(W) =3, >, W2, + Wiyl
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout

def train_step(X):

H1
Ul
H1
H2
U2
H2

" X contains the data """

= np.maximum(©, np.dot(Wl, X) + bl)
= np.random.rand(*Hl.shape) < p
=01

= np.maximum(©, np.dot(W2, H1) + b2)
= np.random.rand(*H2.shape) < p
*= U2 -

out = np.dot(W3, H2) + b3

Lecture 7 - 91

Example forward
pass with a
3-layer network
using dropout
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Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a talil R

is furry —X—— . cat
~___— score

has claws +/
mischievous

look

[

T
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Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has

24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random!  [yl= fiv(zl2) “oner

Want to “average out” the randomness at test-time
y=1@) = E.[f(,2)] = [ p(2)f (@, 2)dz

But this integral seems hard ...
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Dropout: Test time

Want to approximate
the integral
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: £|a] = wiz + w2y

During training we have: g, :i(w” g i(wlx + 0y)
1
T3
Z%(ww& + way)

1
(0z 4+ Oy) + T (0z 4+ way)
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: £|a] = wiz + w2y
During training we have: g, :i(wlx g i(wlx +0y)
1

"1

(0z 4+ Oy) + l(Oaz + way)
At test time, multiply 4

1
by dropout probability =§(w1x + way)
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Dropout: Test time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl