Lecture 4: Neural Networks and Backpropagation

Administrative: Assignment 1

Due 4/14 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Fridays

This Friday 10:30-11:20 am (recording will be made available)
Room: SIG 134
Backpropagation - the main algorithm for training neural networks
Presenter: Shubhang Desai (Friday Lecturer)

Administrative: Project proposal

Due Mon 4/24

Come to office hours to talk about potential ideas.
Use EdStem to find teammates

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Recap：from last time

airplane			플	－				
automobile	V	29 ${ }^{\text {a }}$	－	3	4	5		
bird	${ }^{5}$	2］ 1	－	c	4			
cat	18	A P\％	－	20	2			T－
deer		如解号	ल					－
dog		gix ${ }^{\text {a }}$		．	E			8
frog	．	잔	Q		5	¢		
horse	\％	＊${ }^{\text {Na }}$	丕	H	\pm			
ship	5	樃 3		${ }^{2}$				$=$
truck		退國或				4		

$f(x, W)=W x+b$

Recap: loss functions

$$
\begin{aligned}
s & =f(x ; W)=W x \quad \text { Linear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM loss (or softmax) } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \quad \text { data loss + regularization }
\end{aligned}
$$

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Gradient descent

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

What we are going to discuss today!

$$
\begin{aligned}
s & =f(x ; W)=W x \quad \text { Linear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM loss (or softmax) } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \quad \text { data loss + regularization } \\
& \text { How to find the best } \mathrm{W} ? \quad \nabla_{W} L
\end{aligned}
$$

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

Pixel Features

Image Features

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

Feature become linearly separable through a non-linear transformation

Cannot separate red and blue points with linear classifier

$$
f(x, y)=(r(x, y), \theta(x, y))
$$

After applying feature transform, points can be separated by linear classifier

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8×8 pixel regions Within each region quantize edge direction into 9 bins

Example: 320x240 image gets divided into 40×30 bins; in each bin there are 9 numbers so feature vector has $30 * 40 * 9=10,800$ numbers

Example: Bag of Words

Step 1: Build codebook

Step 2: Encode images

Combine many different features if unsure which features are better

Image features vs neural networks

One Solution: Non-linear feature transformation

$$
f(x, y)=(r(x, y), \theta(x, y))
$$

Transform data with a cleverly chosen feature transform f, then apply linear classifier

Color Histogram

Histogram of Oriented Gradients (HoG)

Today: Neural Networks

Neural networks: the original linear classifier
(Before) Linear score function: $\quad f=W x$

$$
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
$$

Neural networks: 2 layers

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: also called fully connected network

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)
(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
\begin{gathered}
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right) \\
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H_{1} \times D}, W_{2} \in \mathbb{R}^{H_{2} \times H_{1}}, W_{3} \in \mathbb{R}^{C \times H_{2}}
\end{gathered}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: learning 100s of templates

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Learn 100 templates instead of 10.
Share templates between classes

Neural networks: why is max operator important?
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$
The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x
$$

Neural networks: why is max operator important?
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$
The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x \quad W_{3}=W_{2} W_{1} \in \mathbb{R}^{C \times H}, f=W_{3} x
$$

A: We end up with a linear classifier again!

Activation functions

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU

$\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Activation functions

ReLU is a good default choice for most problems

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3,1) # random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + bl) # calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1\times1)
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
Define the network
Forward pass
Calculate the analytical gradients
```

Gradient descent

Setting the number of layers and their sizes

more neurons $=$ more capacity

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo /classify2d.html)

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)+\lambda R(W)
$$

This image by Fotis Bobolas is
licensed under CC-BY 2.0

Impulses carried toward cell body

This image by Felipe Perucho is licensed under CC-BY 3.0

Impulses carried toward cell body

Impulses carried toward cell body

Impulses carried toward cell body

Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

hidden layer 1 hidden layer 2

Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \quad \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \quad \text { Total loss: data loss + regularization }
\end{aligned}
$$

Problem: How to compute gradients?

$$
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \text { Total loss: data loss + regularization } \\
& \text { If we can compute } \frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial W_{2}} \text { then we can learn } \mathrm{W}_{1} \text { and } \mathrm{W}_{2}
\end{aligned}
$$

(Bad) Idea: Derive $\nabla_{W} L$ on paper

$$
\begin{array}{rlrl}
s & =f(x ; W)=W x & & \text { Probl } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & & \text { matrix } \\
& =\sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right) & & \text { Probl } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} & & \text { instea } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2} & \text { re-der } \\
\nabla_{W} L & =\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)
\end{array}
$$

Better Idea: Computational graphs + Backpropagation

Convolutional network (AlexNet)

Really complex neural networks!!

input image

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Solution: Backpropagation

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$\frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\underbrace{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}} \underset{\substack{\text { Upstream } \\ \text { gradient }}}{\substack{\text { Local } \\ \text { gradient }}}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\underbrace{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}} \underset{\substack{\text { Upstream } \\ \text { gradient }}}{\substack{\text { Local } \\ \text { gradient }}}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$ $f_{a}(x)=a x$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$		\rightarrow
			$\frac{d f}{d x}=1$		

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

[upstream gradient] x [local gradient]
w0: $[0.2] \times[-1]=-0.2$
$\mathrm{x0}:[0.2] \times[2]=0.4$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

$\begin{aligned} & \text { Sigmoid local } \\ & \text { gradient: }\end{aligned} \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

Sigmoid local gradient:

$$
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

$$
[1.00] \times[(1-0.73)(0.73)]=0.2
$$

Sigmoid local gradient:

$$
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
$$

Patterns in gradient flow

add gate: gradient distributor

Patterns in gradient flow

add gate: gradient distributor

mul gate: "swap multiplier"

Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backprop Implementation: "Flat" code

def $f(w 0, x 0, w 1, x 1, w 2):$

Forward pass:
Compute output

$$
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\text { sigmoid }(\mathrm{s} 3)
\end{aligned}
$$

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Backprop Implementation: "Flat" code

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output

$$
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)
\end{aligned}
$$

Base case

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Backprop Implementation: "Flat" code

def $f(w 0, x 0, w 1, x 1, w 2):$

Forward pass: Compute output
$\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0$
$\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1$
$\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1$
$\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2$
$\mathrm{~L}=$ sigmoid $(\mathrm{s} 3)$
grad_L = 1.0
Sigmoid

$$
\begin{aligned}
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
$$

Backprop Implementation: "Flat" code

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output

$$
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\text { sigmoid }(\mathrm{s} 3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad L } *(1-L) * L \\
& \hline \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \hline \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 *x1 } \\
& \text { grad_x1 }=\text { grad_s1 *w1 } \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
$$

Backprop Implementation: "Flat" code

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
$s 0=\mathrm{w} 0 * \mathrm{x} 0$
$\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1$
$\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1$
$\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2$
$\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)$

$$
\text { grad_L = } 1.0
$$

$$
\text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L}
$$

grad_w2 = grad_s3
grad_s2 = grad_s3

Add gate

grad_s0 $=$ grad_s2
grad_s1 $=$ grad_s2
grad_w1 $=$ grad_s1 $*$ x1
grad_x1 $=$ grad_s1 $*$ w1
grad_w0 $=$ grad_s0 $*$ x0
grad_x0 $=$ grad_s0 $*$ w0

Backprop Implementation: "Flat" code

def $f(w 0, x 0, w 1, x 1, w 2):$

Forward pass: Compute output
$s 0=w 0 * x 0$
$s 1=w 1 * x 1$
$s 2=s 0+s 1$
$s 3=s 2+w 2$
$L=\operatorname{sigmoid}(s 3)$

$$
\text { grad_L = } 1.0
$$

$$
\text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L}
$$

grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2

Multiply gate

$$
\begin{aligned}
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \hline \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
$$

Backprop Implementation: "Flat" code

Forward pass: Compute output

def $f(w 0, x 0, w 1, x 1, w 2):$
$\mathrm{s} 0=\mathrm{w} 0 * \times 0$
$\mathrm{~s} 1=\mathrm{w} 1 * \times 1$
$\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1$
$\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2$
$\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)$

$$
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * \text { x1 } \\
& \text { grad_x1 }=\text { grad_s1 } * \text { w1 } \\
& \hline \text { grad_w0 }=\text { grad_s0 } * \text { x0 } \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
$$

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

E.g. for the SVM:

\# receive W (weights), X
\# forward pass (we have lines)
scores = \#...
margins = \#. . .
data_loss = \#. . .
reg_loss = \#...
loss $=$ data_loss + reg_loss
margins
\# backward pass (we have 5 lines)
dmargins = \# ... (optionally, we go direct to dscores)
dscores = \#...
$d W=\# .$.

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1,dW2,db2 = #...
dW1,db1 = #. ..
```


Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
        gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
    return inputs_gradients
```


Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

Example: PyTorch operators

SpataciclassnuLCrierion.c SpatalaconvolutionnM.C - SpatialiatedConvolution.c Spatialialed.axaxpooing.C) Spatiafulloliaediconvolution.c Sparalamaxunpooing.c SopaiaReffectionPaddinge Spairan ection mading SoatiaReplicationPadding.c SpatiaupsamplingBlinear.c Spataulupampinguearestc目THNN.h Tanh.c
TemporalieffectionPadding.c
TemporalikeplicationPadding.c TemporalRowConvolution.c Tenporamsana TemporalupSamplingNearestc. VolumetricadoptiveAveragePoolin V VolumerticAdoptiveMaxPooling.c VolumetricAveragePooing.c I. Volumertic ConvolutionMM. VolumerticDiated Convolution.c VolumetricialatedNaxPooling.c VolumerticfractionalMaxPooling VolumerticfullialatedConvolutio) VolumetricMaxunpooing.c VolumerticReplicationPadding.c V VolumerticupsampingNearest.c目 VolumetricupsamplingTrilinear.c linear_upsampling. .h Pooling_shape.h Eunfolac.

Canonicaize al includes in PyTorch. (\#14849)	4 monts
Canonicalize al Includes in PyTorch. (\#14849)	4 monns
Canonicalize all includes in PyTorch. (\#14849)	4 months a
Canonicalize all includes in PyTorch. (\#14849)	mon
Canonicaize al includes in PyTorch. (\#14849)	4 monns
Canonicalize all includes in PyTorch. (\#14849)	4 monts
Canonicaize all includes in PyTorch. (\#14849)	4 monns
Canonicalize al includes in PyTorch. (\#14849)	4 months
Canonicaize all includes in PyTorch. (114849)	4 month
Canonicalize al includes in PyTorch. (\#14849)	4 months
Canonicalize al includes in PyTorch. (\#14849)	4 months
Canonicalize all includes in PyTorch. (\#14849)	4 months
Canonicalize al includes in PyTorch. (\#14849)	4 month
Canonicaize all includes in PyTorch. (\#14849)	4 monhs
Canonicalize all includes in PyTorch. (\#14849)	4 months
Canonicaize all includes in PyTorch. (\#14849)	4 monts ${ }^{\text {a }}$
Canonicalize all includes in PyTorch. (114849)	4 months
Canoricaize al includes in PyTorch. (\#14849)	4 month
Canonicaize al includes in PyTorch. (\#14849)	4 months
Canonicaize all includes in PyTorch. (\#14849)	4 monts
Canonicalize al includes in PyTorch. (\#14849)	4 monts
Canonicalize al includes in PyTorch. (\#14849)	4 months
Canonicaize all includes in PyTorch. (114849)	4 monts
Canonicalize al includes in PyTorch. (\#14849)	4 months
Canonicalize all includes in PyTorch. (114849)	4 months ago
Canoricalize al includes in PyTorch. (\#14849)	4 months
Canonicalize al includes in PyTorch. (114849)	4 months
Canonicalize all includes in PyTorch. (\#14849)	4 months
Canoricalize al includes in PyTorch. (114849)	4 month
Canonicaize al includes in PyTorch. (\#14849)	4 month
Implement n.f.tunctionali.interpolate based on upsample. (\#8591)	9 mont
Use integer math to compute output size of pooing operations (\#14405)	4 months
Canonicalize all includes in PyTorch. (\#1 1849)	4 mont

\#ifndef TH_GENERIC_FILE

\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

PyTorch sigmoid layer

```
void THNN_(Sigmoid_updateOutput)(
    THNNState *state,
        THTensor *input,
        THTensor *output)
{
    THTensor_(sigmoid)(output, input);
}
```


Forward

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

```
void THNN_(Sigmoid_updateGradInput)(
            THNNState *state,
            THTensor *gradOutput,
            THTensor *gradInput,
            THTensor *output)
{
    THNN_CHECK_NELEMENT(output, gradOutput);
    THTensor_(resizeAs)(gradInput, output);
    TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
    );
}
```

\#endif
\#ifndef TH_GENERIC_FILE
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

PyTorch sigmoid layer

```
}
```

$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
void THNN_(Sigmoid_update0utput)(
THNNState *state,
$\begin{gathered}\text { THTensor } * \text { input, } \\ \text { THTensor *output) }\end{gathered}$
\{ $\quad \sigma \quad \sigma(x)=\frac{1}{1+e^{-x}}$
THTensor_(sigmoid)(output, input);
$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)

$\begin{gathered}\text { void THNN_(Sigmoid_updateOutput)(} \\ \begin{array}{c}\text { THNNState *state, } \\ \text { THTensor *input, } \\ \text { THTensor *output) }\end{array} \\ \text { \{ Forward } \\ \text { THTensor_(sigmoid) (output, input); }\end{gathered} \quad \sigma(x)=\frac{1}{1+e^{-x}}$
static void sigmoid_kernel(TensorIterator\& iter) \{
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [$\delta]$ () \{
unary_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t \{ return (1 / (1 + std:: exp((-a))));
[=] (Vec256<scalar_t> a) \{
a = Vec256<scalar_t>((scalar_t)(0)) - a;
$\mathrm{a}=\mathrm{a} \cdot \exp ()$;
$\mathrm{a}=$ Vec256<scalar_t>((scalar_t)(1)) +a ;
$\mathrm{a}=\mathrm{a}$.reciprocal();
return a;
\});
Forward actually
\});
\}
return (1 / (1 + std: : exp((-a))));
\{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = *output_data;
gradInput_data $=$ gradOutput_data $*(1 .-z) * z$;
);
\}
\#endif

\#ifndef TH_GENERIC_FILE

\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

PyTorch sigmoid layer

```
void THNN_(Sigmoid_updateOutput)(
    THNNState *state,
        THTensor *input,
        THTensor *output)
{
    THTensor_(sigmoid)(output, input);
}
```

```
void THNN_(Sigmoid_updateGradInput)(
    THNNState *state,
    THTensor *gradOutput,
    THTensor *gradInput,
    THTensor *output)
{
    THNN_CHECK_NELEMENT(output, gradOutput);
    THTensor_(resizeAs)(gradInput, output);
    TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *grad0utput_data * (1. - z) * z;
    );
}
```

\#endif

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

So far: backprop with scalars

Next time: vector-valued functions!

Next Time: Convolutional neural networks

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\in \mathbb{R}^{n} \in \mathbb{R}^{n \times n}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathrm{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathrm{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$

$$
\begin{aligned}
& \frac{\partial f}{\partial q_{i}}=2 q_{i} \\
& \nabla_{q} f=2 q
\end{aligned}
$$

$$
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathrm{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$

$$
\begin{aligned}
& \frac{\partial f}{\partial q_{i}}=2 q_{i} \\
& \nabla_{q} f=2 q
\end{aligned}
$$

$$
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathbf{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{W}$

$$
\begin{aligned}
\mathrm{x} & {[0.52] }
\end{aligned} \begin{aligned}
\frac{\partial q_{k}}{\partial W_{i, j}} & =\mathbf{1}_{k=i} x_{j} \\
q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) & \left.\begin{array}{rl}
\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} &
\end{array}\right)=2 q_{i} x_{j}
\end{aligned}
$$

> A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
> $\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{W}$
> $\begin{aligned} q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right) & \left.\begin{array}{rl}\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\ & =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\ f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} & \end{array}\right)=2 q_{i} x_{j}\end{aligned}$

$$
\begin{aligned}
& \nabla_{W} f=2 q \cdot x^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A vectorized example: } f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2} \\
& \nabla_{W} f=2 q \cdot x^{T} \\
& {\left[\begin{array}{ll}
0.104 & 0.208
\end{array}\right]} \\
& {\left[\begin{array}{l}
0.2 \\
0.4
\end{array}\right]} \\
& q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) \\
& f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} \\
& \text { Always check: The } \\
& \text { gradient with } \\
& \text { respect to a variable } \\
& \text { should have the } \\
& \text { same shape as the } \\
& \text { variable } \\
& \frac{\partial f}{\partial W_{i, j}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& =2{ }_{q}^{k} x_{j} \\
& \frac{\partial q_{k}}{\partial W_{i, j}}=\mathbf{1}_{k=i} x_{j} \quad \begin{array}{l}
\text { should } h \\
\text { same sh } \\
\text { variable }
\end{array}
\end{aligned}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]$
$\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathbf{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$

$$
\frac{\partial q_{k}}{\partial x_{i}}=W_{k, i}
$$

$$
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]$
$\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathbf{W}}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$

$$
\begin{aligned}
\frac{\partial q_{k}}{\partial x_{i}} & =W_{k, i} \\
\frac{\partial f}{\partial x_{i}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
$$

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}{\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]} \\ 0.104 & 0.176 \\ 0.208\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$

$$
\begin{aligned}
\frac{\partial q_{k}}{\partial x_{i}} & =W_{k, i} \\
\frac{\partial f}{\partial x_{i}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
$$

In discussion section: A matrix example...

$$
\begin{aligned}
z_{1} & =X W_{1} \\
h_{1} & =\operatorname{ReLU}\left(z_{1}\right) \\
\hat{y} & =h_{1} W_{2} \\
L & =\|\hat{y}\|_{2}^{2} \\
\frac{\partial L}{\partial W_{2}} & =? \\
\frac{\partial L}{\partial W_{1}} & =?
\end{aligned}
$$

