Lecture 4: Neural Networks and Backpropagation

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 1

Administrative: Assignment 1

Due 4/14 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Fridays

This Friday 10:30-11:20 am (recording will be made available)

Room: SIG 134

Backpropagation - the main algorithm for training neural networks

Presenter: Shubhang Desai (Friday Lecturer)

Lecture 4 - 3

Administrative: Project proposal

Due Mon 4/24

Come to office hours to talk about potential ideas.

Use EdStem to find teammates

Lecture 4 - 4

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 5

Recap: from last time

f(x,W) = Wx + b

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Recap: loss functions

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Finding the best W: Optimize with Gradient Descent

Vanilla Gradient Descent

while True:

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Lecture 4 - 8

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 9

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

April 06, 2023

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Ranjay Krishna, Aditya Kusupati

What we are going to discuss today!

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

April 06, 2023

How to find the best W?

$$\nabla_W L$$

Lecture 4 - 11

Ranjay Krishna, Aditya Kusupati

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 12

Pixel Features

$$f(x) = Wx$$

$$f(x) = wx$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 13

Image Features

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 14

Image Features: Motivation

Cannot separate red and blue points with linear classifier

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 15

Feature become linearly separable through a non-linear transformation

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 16

Example: Color Histogram

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 17

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Ranjay Krishna, Aditya Kusupati

Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lecture 4 - 18

Example: Bag of Words

Step 1: Build codebook

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 19

Combine many different features if unsure which features are better

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 20

Image features vs neural networks

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 21

One Solution: Non-linear feature transformation

Color Histogram

Histogram of Oriented Gradients (HoG)

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 22

Today: Neural Networks

Ranjay Krishna, Aditya Kusupati

Neural networks: the original linear classifier

(**Before**) Linear score function: f=Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 24

Neural networks: 2 layers

(**Before**) Linear score function:

(**Now**) 2-layer Neural Network

$$f = Wx$$

$$f=W_2\max(0,W_1x)$$

April 06, 2023

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Ranjay Krishna, Aditya Kusupati

Neural networks: also called fully connected network

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

f = Wx

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ h W1 W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 28

Learn 100 templates instead of 10.

Share templates between classes

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

Lecture 4 - 30

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

Lecture 4 - 31

April 06, 2023

A: We end up with a linear classifier again!

Activation functions

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 32

Activation functions

ReLU is a good default choice for most problems

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 33

Neural networks: Architectures

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 34

Example feed-forward computation of a neural network

forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 35

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 36
```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 37

Define the network

Forward pass

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 38

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
       print(t, loss)
12
13
       grad_y pred = 2.0 * (y pred - y)
14
       grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Forward pass

Calculate the analytical gradients

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 39

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 40

Setting the number of layers and their sizes

more neurons = more capacity

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 4 - 41 13 .

13 Jan 2016

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 (Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetis/demo /classify2d.html)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

13 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

This image by Fotis Bobolas is licensed under CC-BY 2.0

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 43

is licensed under CC-BY 3.0

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 44

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 45

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 46

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 47

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

April 06, 2023

This image is CC0 Public Domain

Ranjay Krishna, Aditya Kusupati

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 49

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

Lecture 4 - 50

April 06, 2023

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

Ranjay Krishna, Aditya Kusupati

 $R(W) = \sum W_k^2$ Regularization

Lecture 4 - 51

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute} \quad \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 52

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

April 06, 2023

Lecture 4 - 53

Better Idea: Computational graphs + Backpropagation

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 54

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 55

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 56

Solution: Backpropagation

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 57

$$f(x,y,z) = (x+y)z$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 58

$$f(x,y,z) = (x+y)z$$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{array}{ll} q=x+y & rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \ f=qz & rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q \end{array}$$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

April 06, 2023

Lecture 4 - 64

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

April 06, 2023

Lecture 4 - 65

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

April 06, 2023

Lecture 4 - 66

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

April 06, 2023

Lecture 4 - 67

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

April 06, 2023

Lecture 4 - 68

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

 $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$

y 5
y 5
z -4
3
Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

Upstream Lòcal gradient gradient

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 70

x -2

Ζ

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial z}, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial z}$

 $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$

q
Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

Upstream

x -2

y 5

Ζ -4 3

> ₋òcal gradient gradient

3

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 71

April 06, 2023

f -12

 ∂

 ∂y

*

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial r}, rac{\partial f}{\partial r}, rac{\partial f}{\partial r}$

 $\frac{1}{\partial x}, \frac{1}{\partial y}, \frac{1}{\partial z}$

y 5
-4
z -4
3
Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

Upstream Local

gradient

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 72

gradient

x -2
Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 73

Lecture 4 - 74

Lecture 4 - 75

Lecture 4 - 76

Lecture 4 - 77

Lecture 4 - 78

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 80

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 81

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 82

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 83

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 84

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 85

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 86

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 87

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 88

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 89

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 90

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 91

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 92

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 93

Lecture 4 - 94

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 95

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

0.2

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

1.37

-0.53

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 96

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

e:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
 Converse
 $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$ be used
be used
 $f(x) = \frac{1}{1 + e^{-x}}$ exp
 $f(x) = \frac{1}{1 + e^$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

Sigmoid local gradient: $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 97

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

le:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function $\sigma(x) = \frac{1}{1 + e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1 + e^{-x}}$
 $f(x) = \frac{1}{1 + e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1 + e^{-x}}$
 $f(x) = \frac{1}{1 + e^{-x}}$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

[upstream gradient] x [local gradient] [1.00] x [(1 - $1/(1+e^{1}))(1/(1+e^{1}))] = 0.2$

Sigmoid local gradient: $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 98

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

April 06, 2023

1/x

[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2

1.37

-0.53

Sigmoid local gradient: $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 99

add gate: gradient distributor

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 100

add gate: gradient distributor

mul gate: "swap multiplier"

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 101

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 102

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 103

Forward pass: Compute output def f(w0, x0, w1, x1, w2): s0 = w0 * x0 s1 = w1 * x1 s2 = s0 + s1 s3 = s2 + w2 L = sigmoid(s3)

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 104

d	<mark>ef</mark> f(w0,	x0, w1,	x1,	w2):
	s0 = w0	* x0		
	s1 = w1	* x1		
	s2 = s0	+ s1		
	s3 = s2	+ w2		
	L = sign	moid(s3)		

Base case
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 105

Forward pass:

Compute output

Forward pass:
Compute output

Sigmoid

d	ef	f(v	w0,	X	Э,	w1,	x1,
	se) =	w0	*	x	0	
	s1	=	w1	*	X:	1	
	s2	2 =	s0	+	s:	1	
	s3	3 =	s2	+	W	2	
	L	= :	sigr	no:	id	(s3)	

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0

w2):

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 106

Forward pass: Compute output

Add gate

de	ef	f(\	v0,	x	Э,	w1,	x1,
	s0	=	w0	*	x٥)	
	s1	=	w1	*	x1	8	
	s2	=	s0	+	s1		
	s3	=	s2	+	w2	2	
	L	= 9	sigr	no:	id(s3)	

$grad_L = 1.0$
<u>grad_s3 = grad_L * (1 - L) * L</u>
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 107

April 06, 2023

w2):

Forward pass:	
Compute output	

Add gate

def f(w0,	x0, w1,	x1,	w2):
s0 = w0	* x0		
s1 = w1	* x1		
s2 = s0	+ s1		
s3 = s2	+ w2		
L = sign	noid(s3)		

$grad_L = 1.0$	
grad_s3 = grad_L * (1 - L) *	L
grad_w2 = grad_s3	
grad_s2 = grad_s3	
grad_s0 = grad_s2	
grad_s1 = grad_s2	
grad_w1 = grad_s1 * x1	
grad_x1 = grad_s1 * w1	
grad_w0 = grad_s0 * x0	
grad_x0 = grad_s0 * w0	

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 108
Backprop Implementation: "Flat" code

def f(w0, x0, w1, x1, w2): s0 = w0 * x0s1 = w1 * x1 s2 = s0 + s1Compute output s3 = s2 + w2= sigmoid(s3)

grad_L = 1.0			
$grad_s3 = grad_L * (1 - L) * L$			
grad_w2 = grad_s3			
grad_s2 = grad_s3			
grad_s0 = grad_s2			
grad_s1 = grad_s2			
grad_w1 = grad_s1 * x1			
grad_x1 = grad_s1 * w1			
grad_w0 = grad_s0 * x0			
grad_x0 = grad_s0 * w0			

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 109

Forward pass:

Multiply gate

Backprop Implementation: "Flat" code

def f(w0, x0, w1, x1, w2):
 s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)

	grad_L = 1.0			
	grad_s3 = grad_L * (1 - L) * L			
	grad_w2 = grad_s3			
	grad_s2 = grad_s3			
	grad_s0 = grad_s2			
	grad_s1 = grad_s2			
	grad_w1 = grad_s1 * x1			
	grad_x1 = grad_s1 * w1			
	grad_w0 = grad_s0 * x0			
•	grad_x0 = grad_s0 * w0			

Multiply gate

Forward pass:

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 110

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 111

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = \#...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 112

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

April 06, 2023

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 113

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

<pre>class Multiply(torch.autograd.Function):</pre>	
@staticmethod	
<pre>def forward(ctx, x, y):</pre>	Need to stash
ctx.save_for_backward(x, y) -	some values for
z = x * y	use in backward
return z	
@staticmethod	
<pre>def backward(ctx, grad_z):</pre>	_ Upstream
<pre>x, y = ctx.saved_tensors</pre>	gradient
grad_x = y * grad_z # dz/dx * dL/dz	Multiply upstream
<pre>grad_y = x * grad_z # dz/dy * dL/dz</pre>	and local gradients
<pre>return grad_x, grad_y</pre>	

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 114

Example: PyTorch operators

pytorch / pytorch			1,221	🖈 Unstar	26,770	¥ Fork	6,340
↔ Code ① Issues 2,286	Pull requests 561 III Projects 4	🗉 Wiki 🔟 Ins	ights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	ew file U	pload files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)	6		Latest	commit 517	c7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Spatial Average Pooling c	Canonicalize all includes in PyTorch (#	14849)				4 mor	ths ago

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
i unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 115

1 2	<pre>#ifndef TH_GENERIC_FILE #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"</pre>	PyTorch sigmoid layer			
3	#else	r yroron orginola layor			
4 5 7 8 9 10 11	void THNN_(Sigmoid_updateOutput)(THNNState *state, THTensor *input, THTensor *output) { THTensor_(sigmoid)(output, input); } Forward $\sigma(x) = \frac{1}{1+e^{-1}}$	-x			
12 13 14	<pre>void THNN_(Sigmoid_updateGradInput)(THNNState *state.</pre>				
15	THTensor *gradOutput,				
16	THTensor *gradInput,				
17	THTensor *output)				
18	{				
19	THNN_CHECK_NELEMENT(output, gradOutput);				
20	<pre>THTensor_(resizeAs)(gradInput, output);</pre>				
21	TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,				
22	<pre>scalar_t z = *output_data;</pre>				
23	<pre>*gradInput_data = *gradOutput_data * (1 z) * z;</pre>				
24);				
25	}				
26 27	#endif	Source			

Lecture 4 - 116

Lecture 4 - 117

Lecture 4 - 118

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API

Lecture 4 - 119

- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

So far: backprop with scalars

Next time: vector-valued functions!

Ranjay Krishna, Aditya Kusupati

Next Time: Convolutional neural networks

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 121

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 122

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$ $\bigcup_{i \in \mathbb{R}^n \in \mathbb{R}^{n \times n}} ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 123

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 124

Lecture 4 - 125

Lecture 4 - 126

Lecture 4 - 127

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$
 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$
 $\frac{\partial f}{\partial q_i} = 2q_i$
 $\nabla_q f = 2q$

Lecture 4 - 128

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$
 $\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$
 $\begin{bmatrix} 0.21 \\ 1.00 \end{bmatrix}$
 $\begin{bmatrix} 0.21 \\ 1.00 \end{bmatrix}$
 $\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$
 $\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$
 $\begin{bmatrix} 0.47 \\ 1.00 \end{bmatrix}$
 $\begin{bmatrix} \frac{\partial f}{\partial q_i} = 2q_i \\ \nabla_q f = 2q \end{bmatrix}$

Lecture 4 - 129

Lecture 4 - 130

Lecture 4 - 131

Lecture 4 - 132

Lecture 4 - 133

Lecture 4 - 134

Lecture 4 - 135

Lecture 4 - 136

Lecture 4 - 137

In discussion section: A matrix example...

Ranjay Krishna, Aditya Kusupati

Lecture 4 - 138