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Administrative: Assignment 1
Due 4/14 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features
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Administrative: Fridays
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This Friday 10:30-11:20 am (recording will be made available)

Room: SIG 134

Backpropagation - the main algorithm for training neural networks

Presenter: Shubhang Desai (Friday Lecturer)
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Administrative: Project proposal

Due Mon 4/24

Come to office hours to talk about potential ideas.

Use EdStem to find teammates

4



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.
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Recap: from last time

f(x,W) = Wx + b
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Linear score function

SVM loss (or softmax)

data loss + regularization

Recap: loss functions 
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Finding the best W: Optimize with Gradient Descent

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient

Gradient descent



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023

Stochastic Gradient Descent (SGD)
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Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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How to find the best W?

Linear score function

SVM loss (or softmax)

data loss + regularization

What we are going to discuss today!
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Problem: Linear Classifiers are not very powerful
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Visual Viewpoint

Linear classifiers learn 
one template per class

Geometric Viewpoint

Linear classifiers 
can only draw linear 
decision boundaries
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Pixel Features

13

f(x) = Wx
Class 
scores
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Image Features

14

f(x) = Wx
Class 
scores

Feature Representation



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023

Image Features: Motivation

15

x

y

Cannot separate red 
and blue points with 
linear classifier
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Feature become linearly separable through a 
non-linear transformation
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x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier
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Example: Color Histogram
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+1
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Example: Histogram of Oriented Gradients (HoG)
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Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Example: 320x240 image gets divided 
into 40x30 bins; in each bin there are 
9 numbers so feature vector has 
30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023

Example: Bag of Words

19

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Combine many different features if unsure which 
features are better

20
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Feature Extraction

Image features vs neural networks

21

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.
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One Solution: Non-linear feature transformation

22

f(x, y) = (r(x, y), θ(x, y)) 

Transform data with a cleverly 
chosen feature transform f, 
then apply linear classifier

Color Histogram Histogram of Oriented Gradients (HoG)
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Today: Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
  or 3-layer Neural Network

      

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10.                               Share templates between classes
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The function                   is called the activation function.
Q: What if we try to build a neural network without one?

30

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?
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The function                   is called the activation function.
Q: What if we try to build a neural network without one?

31

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems
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“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures
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Example feed-forward computation of a neural network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients
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Setting the number of layers and their sizes

more neurons = more capacity
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(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo
/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 202349

This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!
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Plugging in neural networks with loss functions

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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If we can compute                     then we can learn W1 and W2 

52

Problem: How to compute gradients? 

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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(Bad) Idea: Derive             on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to 
re-derive from scratch =(

Problem: Very tedious: Lots of 
matrix calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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x

W

hinge 
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*
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input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 
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Really complex neural 
networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en
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Solution: Backpropagation
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Backpropagation: a simple example
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 202364

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient
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f
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f

“local gradient”
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f

“local gradient”

“Upstream
gradient”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 202392

Another example:
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 202396

Another example:

Sigmoid

Sigmoid 
function

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e1)) (1/(1+e1))] = 0.2
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

×
2

3
6
5

5*3=15

2*5=10
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Base case
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Sigmoid
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 1!
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“Flat” Backprop: Do this for assignment 1!
E.g. for two-layer neural net:
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Backprop Implementation: Modularized API

Graph (or Net) object  (rough pseudo code)



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023114

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to stash 
some values for 
use in backward

Gate / Node / Function object: Actual PyTorch code

Upstream 
gradient

Multiply upstream 
and local gradients
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Example: PyTorch operators
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Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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PyTorch sigmoid layer

Source

Forward

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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Source

Forward

Backward

PyTorch sigmoid layer

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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● (Fully-connected) Neural Networks are stacks of linear functions and 
nonlinear activation functions; they have much more representational 
power than linear classifiers

● backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all 
inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement 
the forward() / backward() API

● forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory

● backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs

Summary for today:
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So far: backprop with scalars

Next time: vector-valued functions!
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Next Time: Convolutional neural networks

121
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A vectorized example:



Ranjay Krishna, Aditya Kusupati Lecture 4 - April 06, 2023123

A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:

Always check: The 
gradient with 
respect to a variable 
should have the 
same shape as the 
variable
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A vectorized example:
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A vectorized example:
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A vectorized example:
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In discussion section: A matrix example...

?

?


