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Loss Functions 
and Optimization



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 2023

Administrative: Assignment 1
Due 4/14 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features
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Administrative: Fridays
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This Friday 10:30-11:20 am (recording will be made available)

Room: SIG 134

Backpropagation - the main algorithm for training neural networks

Presenter: Shubhang Desai (TA)
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Administrative: Project proposal

Due Mon 4/24

Come to office hours to talk about potential ideas.

Use EdStem to find teammates
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Administrative: Midterm details
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- Thursday, May 4 and is worth 15% of your grade.
- In class, close book but 1 two-sided hand-written cheat sheet 

allowed
- Please let us know on EdStem if you have a conflict (you 

should not have one since it is during class)
- Only make private posts about the midterm for a week after the 

midterm 
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Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.
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cat
dog
bird
deer
truck

Image Classification: A core task in Computer Vision
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(assume given a set of labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Recall from last time: Challenges of recognition

8

This image is CC0 1.0 public domain This image by Umberto Salvagnin 
is licensed under CC-BY 2.0 This image by jonsson is licensed 

under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall from last time: data-driven approach, kNN
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1-NN classifier 5-NN classifier

train test

train testvalidation
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Recall from last time: Linear Classifier
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f(x,W) = Wx + b



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 2023

Interpreting a Linear Classifier: Visual Viewpoint
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95

Visual Viewpoint



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 2023

Interpreting a Linear Classifier: Geometric Viewpoint

13

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Today: How to train the weights in a Linear Classifier 

14

1. Define a loss function that quantifies our unhappiness with the scores 
across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the 
loss function. (optimization)

TODO:
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Example output for CIFAR-10:

15

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

● A random W produces 
the following 10 scores 
for the 3 images to the 
left. 

● 10 scores because there 
are 10 classes. 

● First column bad because 
dog is highest. 

● Second column good. 
● Third column bad 

because frog is highest

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 202319

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
average of loss over examples:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 202321

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

Loss

difference in 
scores between 
correct and 
incorrect class
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

difference in 
scores between 
correct and 
incorrect class

Loss
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

difference in 
scores between 
correct and 
incorrect class

Loss
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Losses: 2.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 002.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 2.2 - (-3.1) + 1) 
   +max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.912.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
   = 5.27
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Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

32

cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0
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Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

Q2: what is the min/max possible 
SVM loss Li?

33

cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0
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cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0

Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

Q2: what is the min/max possible 
SVM loss Li?

Q3: At initialization W is small so 
all s ≈ 0. What is the loss Li, 
assuming N examples and C 
classes?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q4: What if the sum 
was over all classes? 
(including j = y_i)Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q5: What if we used 
mean instead of 
sum?Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

difference in 
scores between 
correct and 
incorrect class

Loss
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Multiclass SVM Loss: Example code

39

# First calculate scores
# Then calculate the margins sj - syi + 1
# only sum j is not yi, so when j = yi, set to zero.
# sum across all j
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Q7. Suppose that we found a W such that L = 0. 
Is this W unique? 

40
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 
   +max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
How do we choose between W and 2W?
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Regularization

44

Data loss: Model predictions 
should match training data
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Regularization

45

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data
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Regularization intuition: toy example training data

46

x

y
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Regularization intuition: Prefer Simpler Models

47

x

y
f1 f2
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Regularization: Prefer Simpler Models

48

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data
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Regularization

49

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Occam’s Razar: Among multiple competing 
hypotheses, the simplest is the best, 
William of Ockham 1285-1347
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Regularization

50

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)
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Regularization

51

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 
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Regularization

52

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Stochastic depth, fractional pooling, etc
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Regularization

53

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

54

L2 Regularization

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

55

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

56

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which one would L1 
regularization prefer? 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Softmax classifier

57
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

exp

unnormalized 
probabilities

Probabilities 
must be >= 0
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

Li = -log(0.13)
      = 2.04
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

Li = -log(0.13)
      = 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Kullback–Leibler 
divergence
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Cross Entropy
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Q1: What is the min/max possible softmax loss Li?

69

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q1: What is the min/max possible softmax loss Li?

Q2: At initialization all sj will be approximately equal; 
what is the softmax loss Li, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 
approximately equal; what is the loss?
A: -log(1/C) = log(C), 
If C = 10, then Li = log(10) ≈ 2.3
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Softmax vs. SVM
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Softmax vs. SVM
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is the softmax loss and 
the SVM loss?
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Softmax vs. SVM

assume scores:
[20, -2, 3]
[20, 9, 9]
[20, -100, -100]
and 

Q: What is the softmax loss and 
the SVM loss if I double the 
correct class score from 10 -> 
20?
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Optimization



Ranjay Krishna, Aditya Kusupati Lecture 3 - April 04, 202379

This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Strategy #1: A first very bad idea solution: Random search
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Lets see how well this works on the test set...

15.5% accuracy! not bad!
(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Numeric Gradient
- Slow! Need to loop over 

all dimensions
- Approximate
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This is silly. The loss is just a function of W:

want
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This is silly. The loss is just a function of W:

want

This image is in the public domain This image is in the public domain

Use calculus to compute an 
analytic gradient

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
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gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)
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In summary:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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https://docs.google.com/file/d/1K6WIScYlWA7yhOCZ3l4K4DyERAgB0fIx/preview
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Stochastic Gradient Descent (SGD)

10
0

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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Next time:

Introduction to neural networks

Backpropagation

10
1


