Deep Learning

Lecture 1 - Introduction

March 27, 2023

Lecture 1 - 1

Ranjay Krishna, Aditya Kusupati

Who am I?

Ranjay Krishna (Assistant Professor at UW CSE)

- PhD from Stanford
- I worked with Fei-Fei Li (AI)
- And with Michael Bernstein (HCI)

I conduct two types of **research inquiries**:

- I study emergent human behaviors when they interact with AI systems
- I develop better AI (specifically computer vision) systems with these insights

Past courses:

- UW CSE 599H: Artificial Intelligence vs Intelligence Augmentation
- Stanford CS 231N: Convolutional neural networks for computer vision
- Stanford CS 131: Computer vision fundamentals and applications

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 2 March 27, 2023

Are you in the right place?

Location: CSE2 G01 Lectures: Tuesdays and Thursdays @ 10-11:20am Recitations: Fridays @ TBD Canvas: https://canvas.uw.edu/courses/1653282 Gradescope: https://www.gradescope.com/courses/522621 Website: https://courses.cs.washington.edu/courses/cse493g1/23sp/ EdStem: https://edstem.org/us/courses/38318/

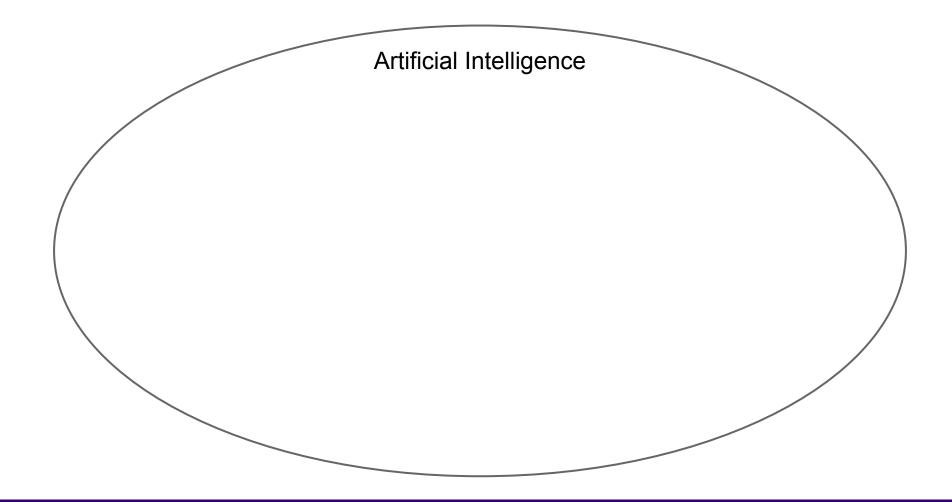
Lecture 1 - 3

March 27, 2023

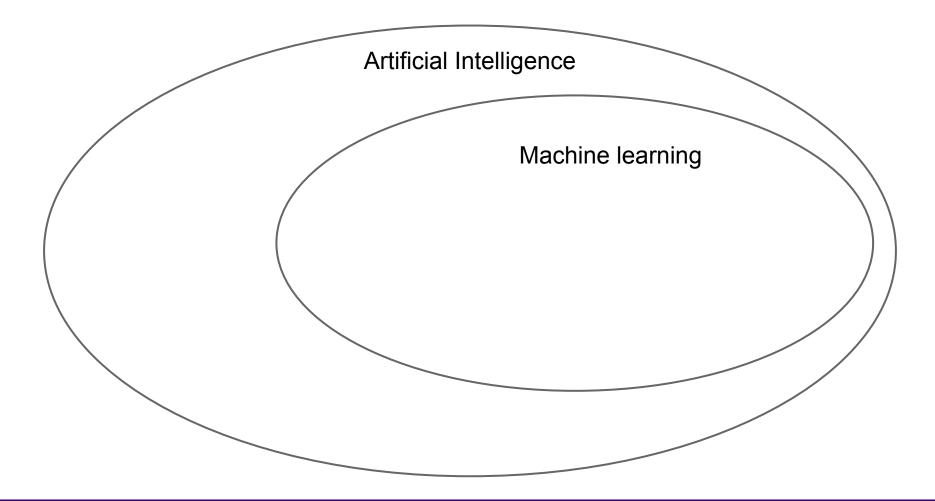
Ranjay Krishna, Aditya Kusupati

What is **Deep** Learning?

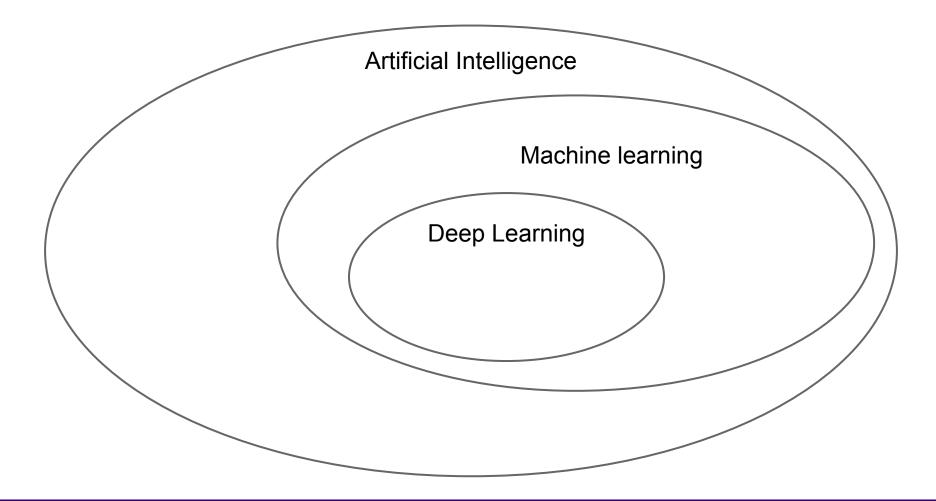
Building artificial systems that learn from data and experience


Ranjay Krishna, Aditya Kusupati

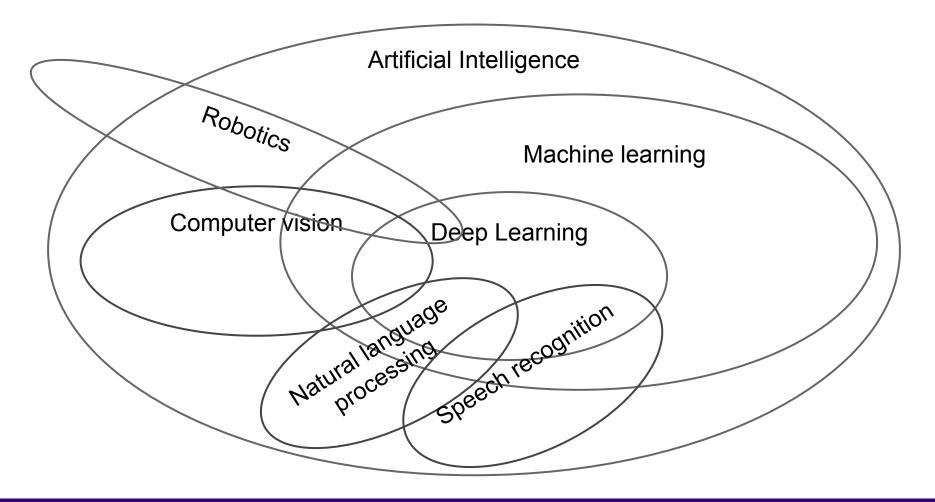
Lecture 1 - 4 March 27, 2023

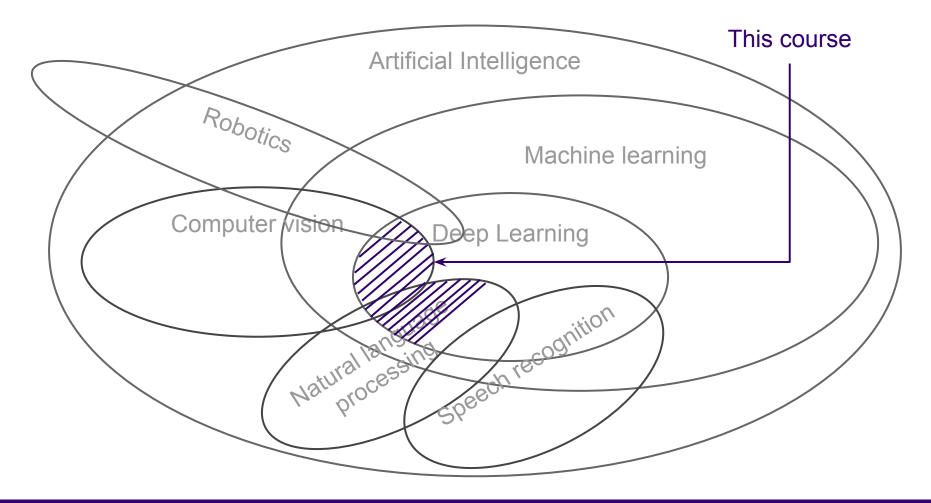

What is Deep Learning?

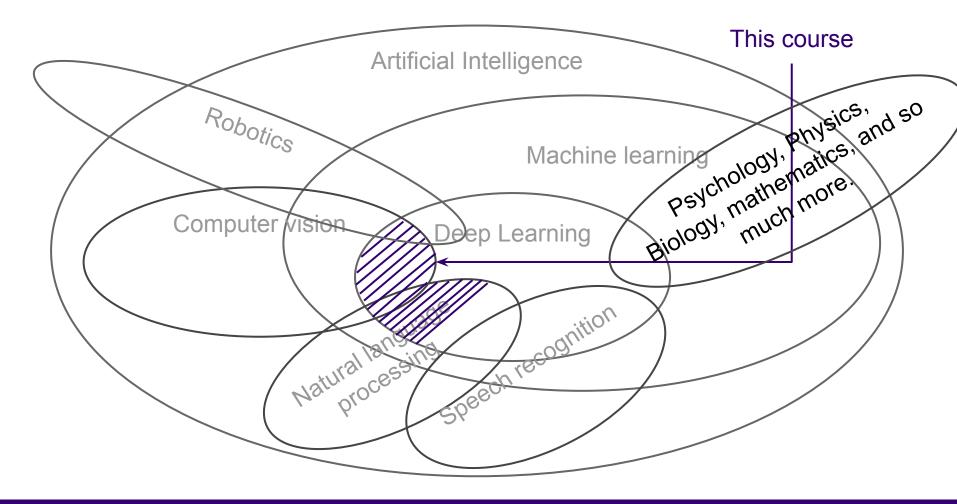
Hierarchical learning algorithms with many "layers", (very) loosely inspired by the brain


Lecture 1 - 5 March 27, 2023

Lecture 1 - 6 March 27, 2023


Lecture 1 - 7 March 27, 2023

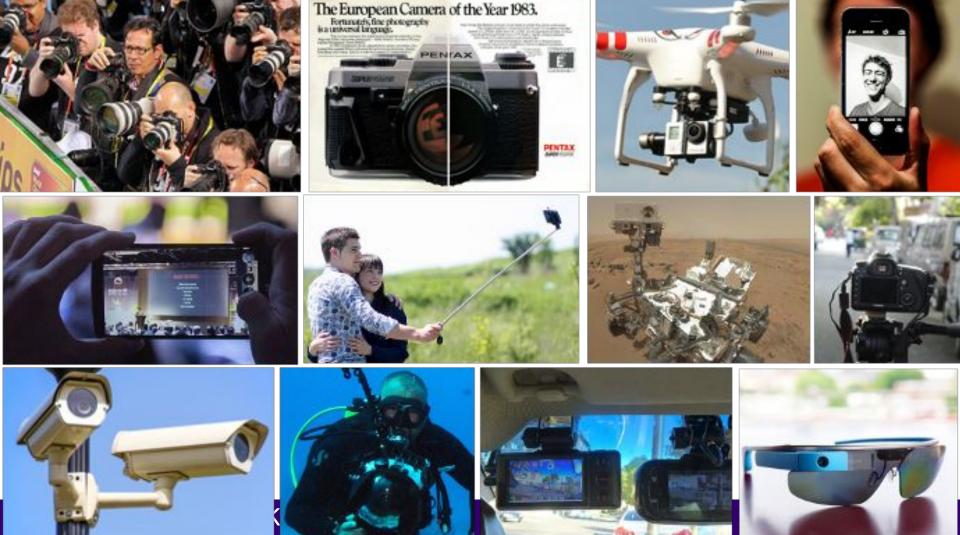

Lecture 1 - 8 March 27, 2023


Lecture 1 - 9 March 27, 2023

Lecture 1 - 10 March 27, 2023

Lecture 1 - 11 March 27, 2023

Lecture 1 - 12 March 27, 2023

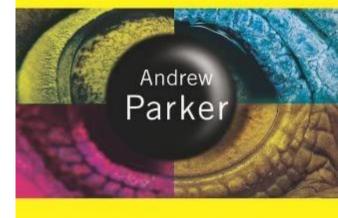

Today's agenda

A brief history of deep learning CSE 493G1 overview

Lecture 1 - 13

March 27, 2023

Ranjay Krishna, Aditya Kusupati

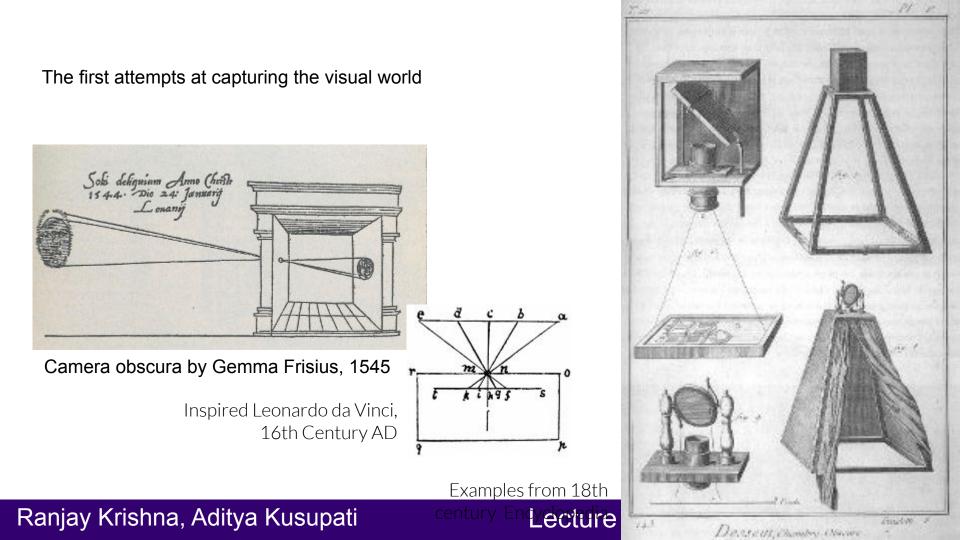

Vision is core to the evolution of intelligence

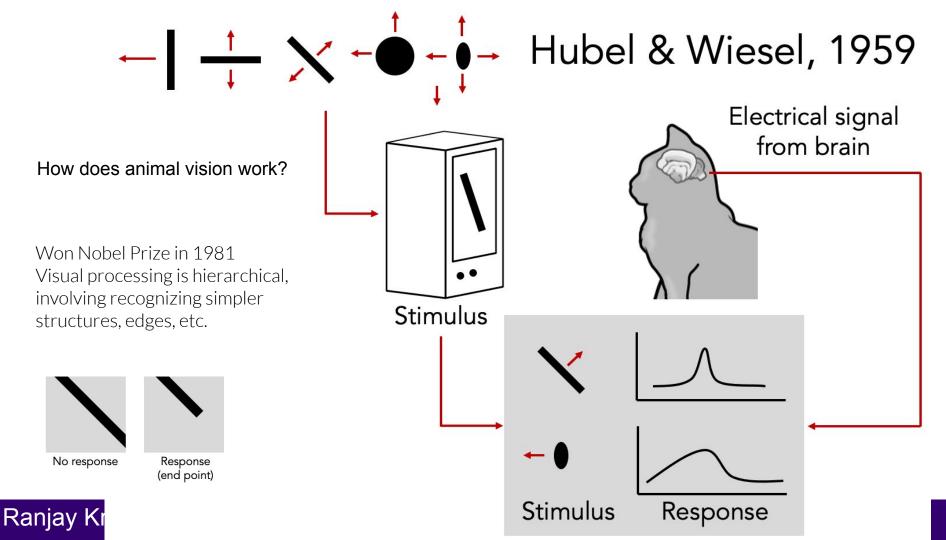
543 million years ago.

"Fascinating"—Boston Globe

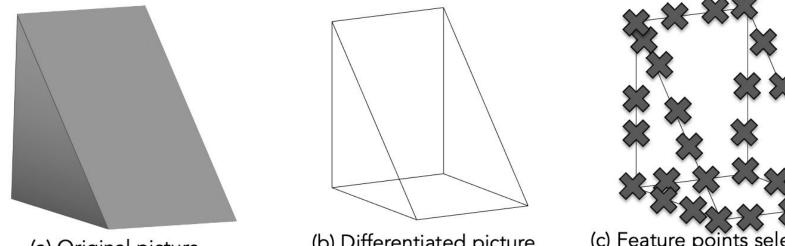
IN THE BLINK OF AN EYE

how VISION sparked the


big bang of evolution


Copyrighted Material

Ranjay Krishna, Aditya Kusupati


Lecture 1 -

March 27, 2023

Larry Roberts - Father of computer vision

(a) Original picture

(b) Differentiated picture

(c) Feature points selected

Synthetic images, building up the visual world from simpler structures

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

The summer vision project

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

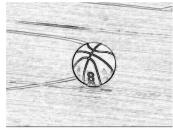
THE SUMMER VISION PROJECT

Seymour Papert

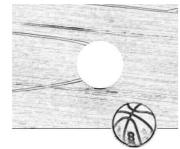
Organized by Seymour Papert

Computer vision was meant to be just a simple summer intern project

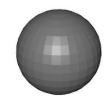
Ranjay Krishna, Aditya Kus

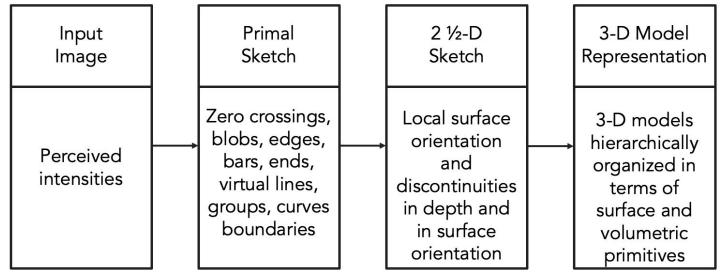

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

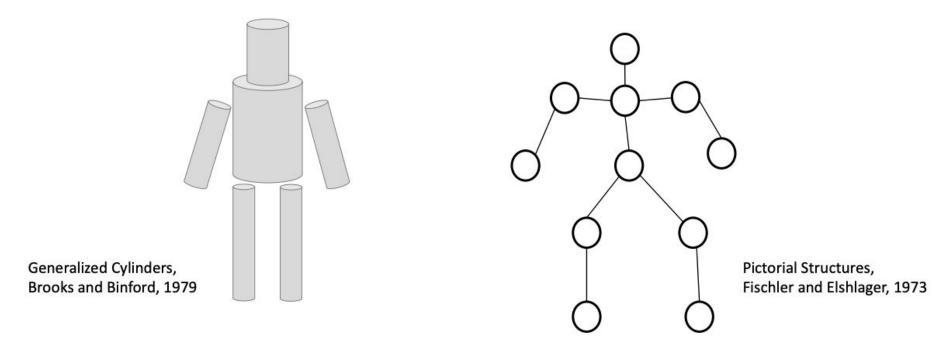
Input image



This image is CC0 1.0 public domain


Edge image


2 ½-D sketch


This image is CC0 1.0 public domain

Ranjay Krishna, Aditya Kusupati

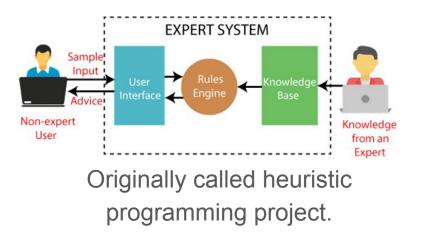
vid Mart Stagen of Visual Representation 27, 2023

Recognition via parts (1970s)

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 21 March 27, 2023

Recognition via edge detection (1980s)



John Canny, 1986 David Lowe, 1987

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 22 March 27, 2023

1980s caused one of the larger Al winters (the second Al winter)

RULE: If the lawn is shaggy and the car is dirty and you mow the lawn and wash the car, then Dad will give you \$20.00 Does the lawn need mowing? Do you have a mower? dgas? electric? push?

*** The inference engine will test each rule or ask the user for additional information.

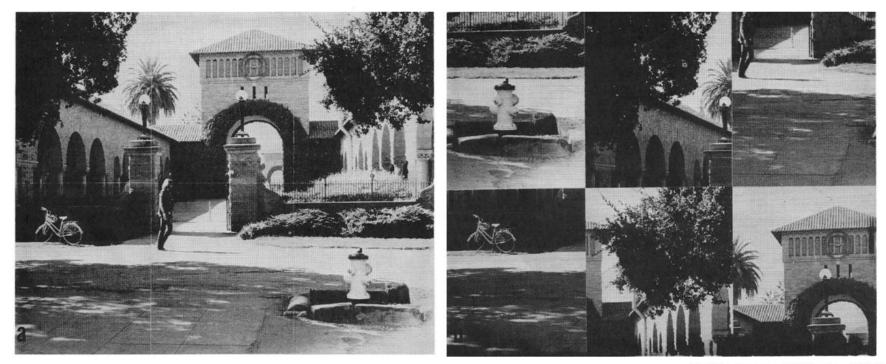
Lecture 1 - 23

March 27, 2023

- Enthusiasm (and funding!) for AI research dwindled
- "Expert Systems" failed to deliver on their promises
- But subfields of AI continued to grow
 - Computer vision, NLP, robotics, compbio, etc.

Ranjay Krishna, Aditya Kusupati

In the meantime...seminal work in cognitive and neuroscience

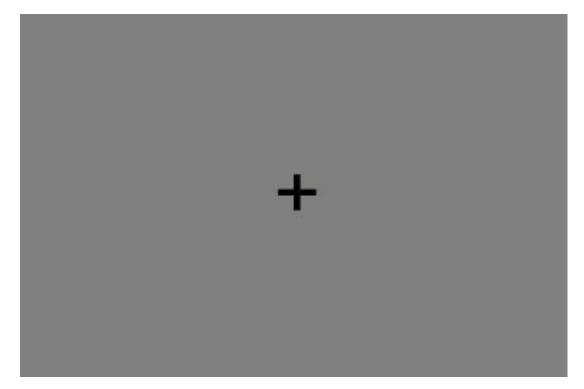

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023

Perceiving real-world scenes

Irving Biederman

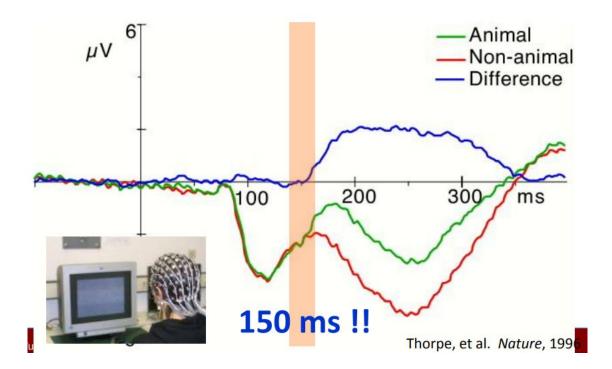


I. Biederman, Science, 1972

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 25 March 27, 2023

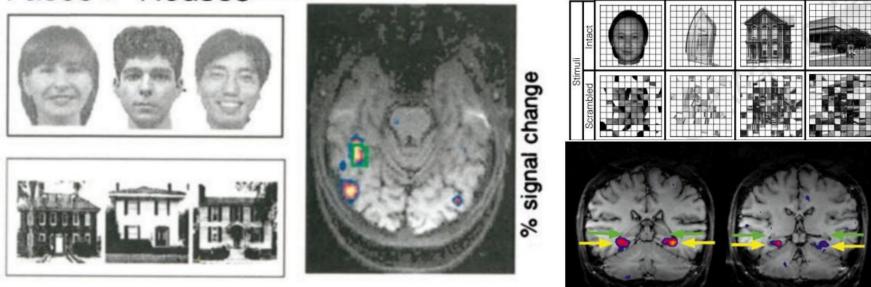
Rapid Serial Visual Perception (RSVP)



Potter, etc. 1970s

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 26 March 27, 2023


Speed of processing in the human visual system (Thorpe et al. Nature 1996)

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 27 March 27, 2023

Neural correlates of object & scene recognition Faces > Houses

Kanwisher et al. J. Neuro. 1997

Epstein & Kanwisher, Nature, 1998

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 28 March 27, 2023

Visual recognition is a fundamental to intelligence

Searching for Computer Vision North Stars

AUTHORS: Fei-Fei Li and Ranjay Krishna

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 29 March 27, 2023

Until the 90s, computer vision was not broadly applied to real world images

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023

The focus was on algorithms! Recognition via Grouping (1990s)

Ranjay Krishna, Aditya Kusupati

Lecture 1 - March 27, 2023

Recognition via Matching (2000s)

Image, is public domain

Image_is public domain

SIFT, David Lowe, 1999

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 32 March 27, 2023

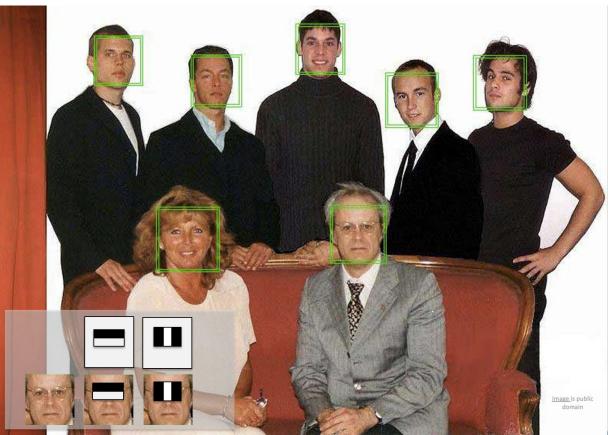
First commercial success of computer vision

It came from embracing machine learning in 2001.

Does anyone know what it was?

Ranjay Krishna, Aditya Kusupati

Lecture 1 -



First commercial success of computer vision

Real time face detection using using an algorithm by Viola and Jones, 2001

- Fujifilm face detection in cameras
- <u>HP patent</u> immediately

Ranjay Krishna, Aditya Kusupa

Designing better feature extraction became the focus

HoG features

- Histogram of oriented gradients
- Handcrafted

[Dalal & Triggs, HoG. 2005]

frequency

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

orientation

Caltech 101 images

PASCAL Visual Object Challenge

Image is CC0 1.0 public domain

Image is CC0 1.0 public domain

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 36 March 27, 2023

IM GENET

www.image-net.org

22K categories and 14M images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate

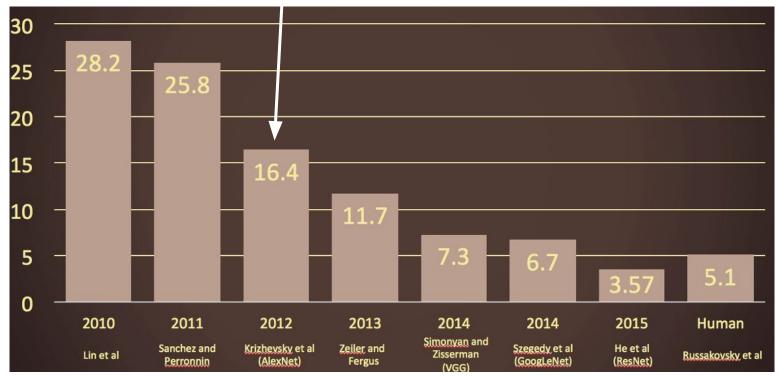
- Plants
 - Tree
 - Flower
- Food
- Materials

- Structures
- Artifact
 - Tools
 - Appliances
 - Structures

- Person
- Scenes
 - Indoor
 - Geological Formations
- Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

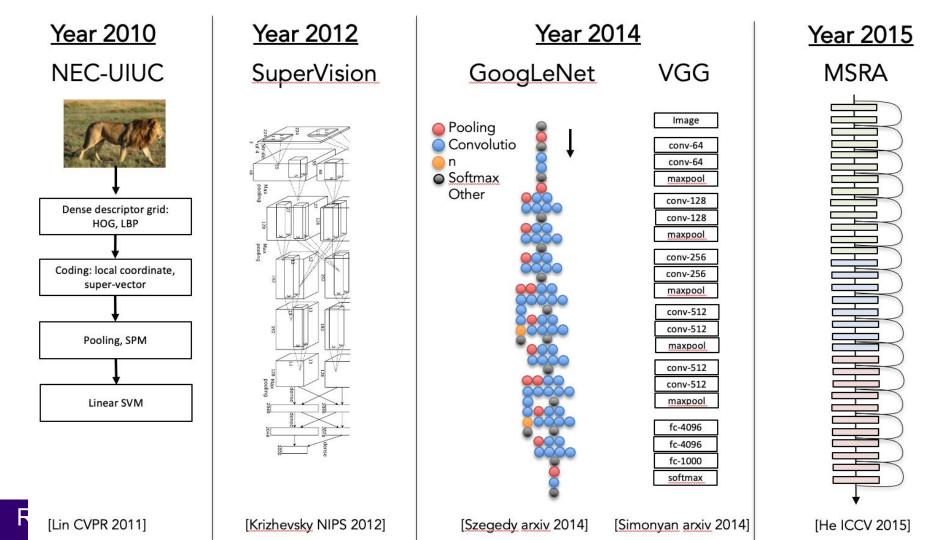
Hypothesis behind ImageNet


- A child sees nearly 3K unique objects by the age of 6
- Calculated by Irving Biederman
 - [Biederman. Recognition-by-components: a theory of human image understanding. 1983]
- But computer vision algorithms are trained on a handful of objects.

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023


Object recognition accuracy drops by half in 2012 (Enter **deep learning**)

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023

AlexNet goes mainstream across computer vision

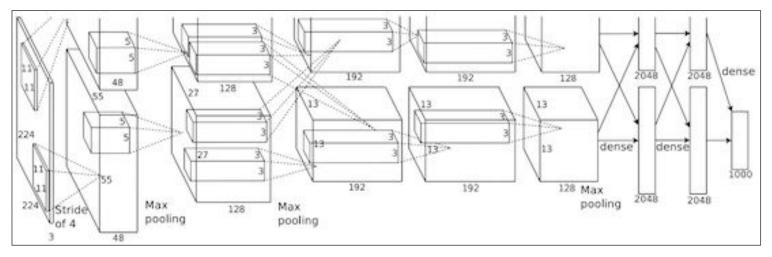


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Lecture 1 - 41

March 27, 2023

"AlexNet"

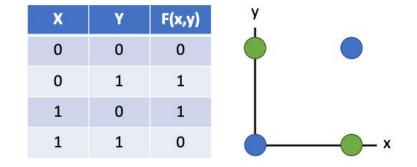
Core ideas go back many decades!

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image.

recognized letters of the alphabet

Frank Rosenblatt, ~1957: Perceptron



This image by Rocky Acosta is licensed under CC-BY 3.0

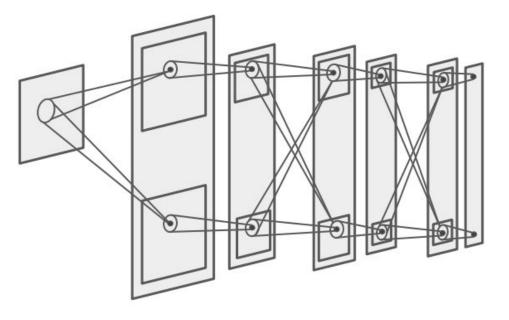
Ranjay Krishna, Aditya Kusupati

Lecture 1 - 42² March 27, 2023

Minsky and Papert, 1969

Showed that Perceptrons could not learn the XOR function Caused a lot of disillusionment in the field Maryan L. Minuky and Seymour A. Papert Perceptrons

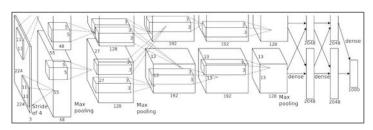
Ranjay Krishna, Aditya Kusupati

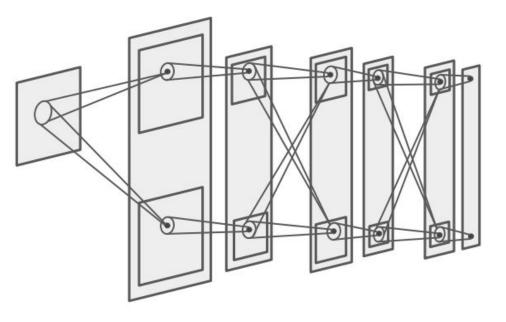

Lecture 1 - 43 March 27, 2023

Neocognitron: Fukushima, 1980

Computational model the visual system, directly inspired by Hubel and Wiesel's hierarchy of complex and simple cells

Interleaved simple cells (convolution) and complex cells (pooling)

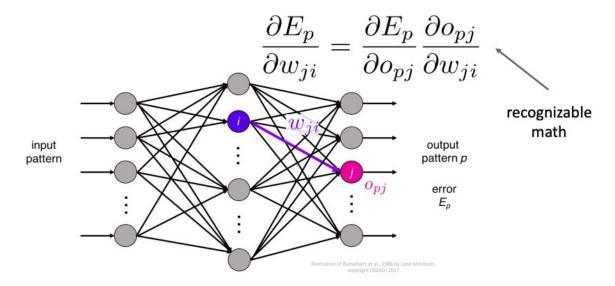

No practical training algorithm


Ranjay Krishna, Aditya Kusupati

Lecture 1 - 44 March 27, 2023

A lot like AlexNet today

"AlexNet"


Ranjay Krishna, Aditya Kusupati

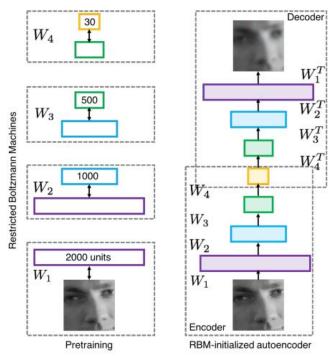
Lecture 1 - 45 March 27, 2023

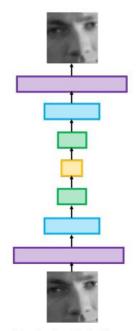
Backprop: Rumelhart, Hinton, and Williams, 1986

Introduced backpropagation for computing gradients in neural networks

Successfully trained perceptrons with multiple layers

Lecture 1 - 46

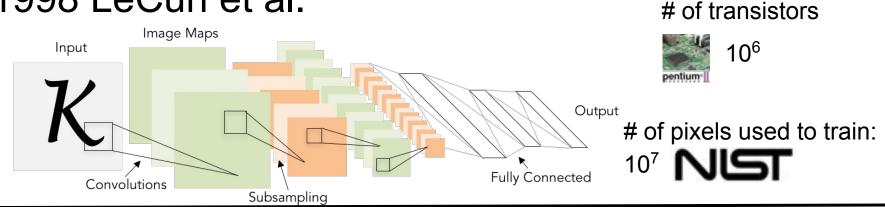

March 27, 2023


2000s: "Deep Learning"

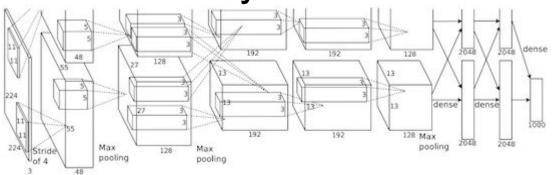
People tried to train neural networks that were deeper and deeper

Not a mainstream research topic at this time

Hinton and Salakhutdinov, 2006 Bengio et al, 2007 Lee et al, 2009 Glorot and Bengio, 2010



Fine-tuning with backprop

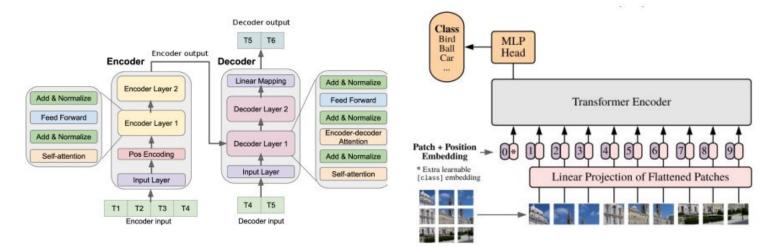

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 47 March 27, 2023

1998 LeCun et al.

2012 Krizhevsky et al.

of transistors


Lecture 1 - 48

of pixels used to train: 10¹⁴ IM GENET

March 27, 2023

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Today: Homogenization of Deep Learning Same models for GPT-4 and image recognition

Transformer Models originally designed for NLP

Almost identical model (Visual Transformers) can be applied to Computer Vision tasks

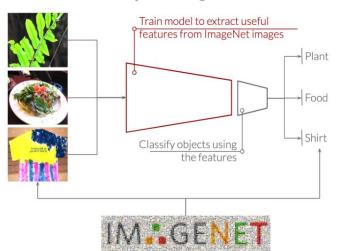
Ranjay Krishna, Aditya Kusupati

Lecture 1 - 49 March 27, 2023

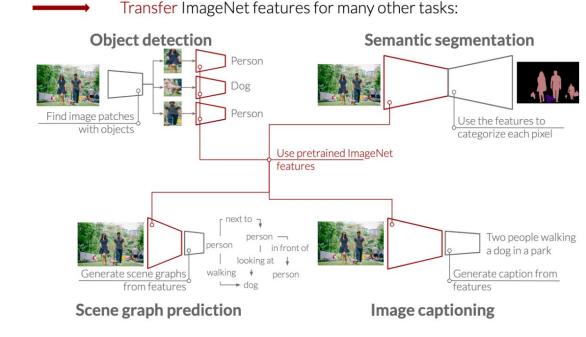
2012 to present: deep learning is everywhere

Image Classification

Image Retrieval



Ranjay Krishna, Aditya Kusupati


Lecture 1 - 50 March 27, 2023

Data hungry machine learning models are now everywhere

Pretraining on ImageNet for object classification

Object recognition

Ranjay Krishna, Aditya Kusupati

Lecture 1 -

March 27, 2023

Object Detection

Ren, He, Girshick, and Sun, 2015

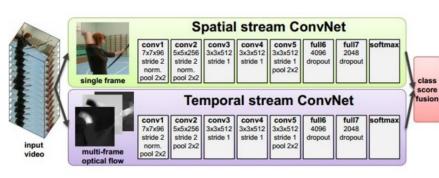
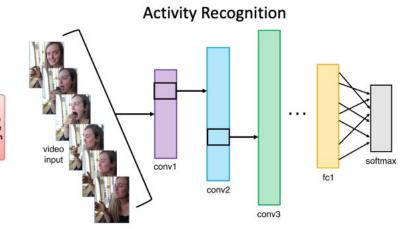

Fabaret et al, 2012

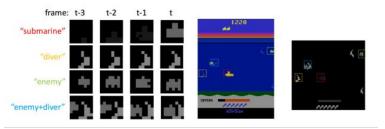
Image Segmentation


Ranjay Krishna, Aditya Kusupati

Lecture 1 - 52 March 27, 2023

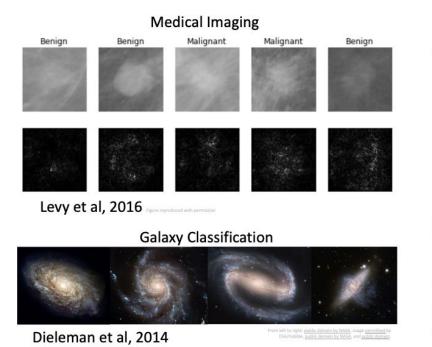
Video Classification

Simonyan et al, 2014


Ranjay Krishna, Aditya Kusupati

Lecture 1 - 53 March 27, 2023

Pose Recognition (Toshev and Szegedy, 2014)


Playing Atari games (Guo et al, 2014)

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 54 March 27, 2023

Kaggle Challenge

This image by Christin Khan is in the public domain and originally came from the U.S. NOAA.

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 55 March 27, 2023

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

Image Captioning Vinyals et al, 2015 Karpathy and Fei-Fei, 2015

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

Ranjay Krishna, Aditya Kusupati

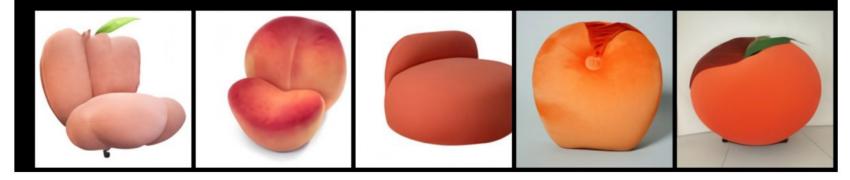
Lecture 1 - 56 March 27, 2023

TEXT PROMPT

an armchair in the shape of an avocado. an armchair imitating an avocado.

AI-GENERATED IMAGES

Ramesh et al, "DALL·E: Creating Images from Text", 2021. https://openai.com/blog/dall-e/

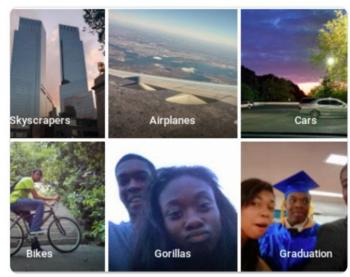

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 57 March 27, 2023

TEXT PROMPT

an armchair in the shape of a peach. an armchair imitating a peach.

AI-GENERATED IMAGES

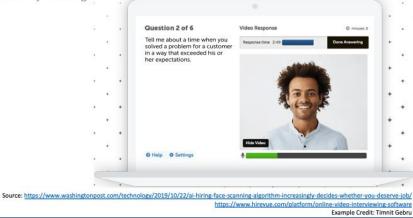

Lecture 1 - <u>58</u>

March 27, 2023

Ramesh et al, "DALL·E: Creating Images from Text", 2021. https://openai.com/blog/dall-e/

Despite progress, deep learning can be harmful

Harmful Stereotypes

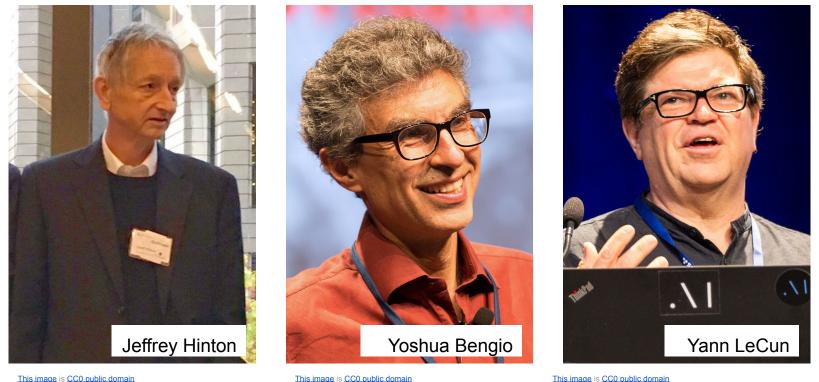

Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote Source: <u>https://twitter.com/lackvalcine/status/515329515090156865</u> (2015)

Affect people's lives

Technology

A face-scanning algorithm increasingly decides whether you deserve the job

HireVue claims it uses artificial intelligence to decide who's best for a job. Outside experts call it 'profoundly disturbing.'



Ranjay Krishna, Aditya Kusupati

Lecture 1 - 59 March 27, 2023

2018 Turing Award for deep learning

most prestigious technical award, is given for major contributions of lasting importance to computing.

Lecture 1 - 60

March 27, 2023


This image is CC0 public domain

This image is CC0 public domain

IEEE PAMI Longuet-Higgins Prize

Award recognizes ONE Computer Vision paper from **ten years ago** with **significant impact on computer vision** research.

In 2019, it was awarded to the 2009 original ImageNet paper

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 61 March 27, 2023

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 62 March 27, 2023

In this course, we will study these algorithms and architectures starting from a grounding in Visual Recognition

A fundamental and general problem in Computer Vision, that has roots in Cognitive Science

Lecture 1 - 63

March 27, 2023

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

cat

Lecture 1 - 644

March 27, 2023

Image by US Army is licensed under CC BY 2.0

Image by Kippelboy is licensed under CC BY-SA 3.0

Image is CC0 1.0 public domain

Image by Christina C. is licensed under CC BY-SA 4.0

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 65 March 27, 2023

Object detection car

This image is licensed under <u>CC BY-NC-SA 2.0;</u> changes made

Action recognition bicycling

This image is licensed under <u>CC BY-SA 3.0;</u> changes made

Scene graph prediction <person - holding - hammer>

Captioning: *a person holding a hammer*

This image is licensed under <u>CC BY-SA 3.0;</u> changes made

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 66 March 27, 2023

Beyond recognition: Segmentation, 2D/3D Generation

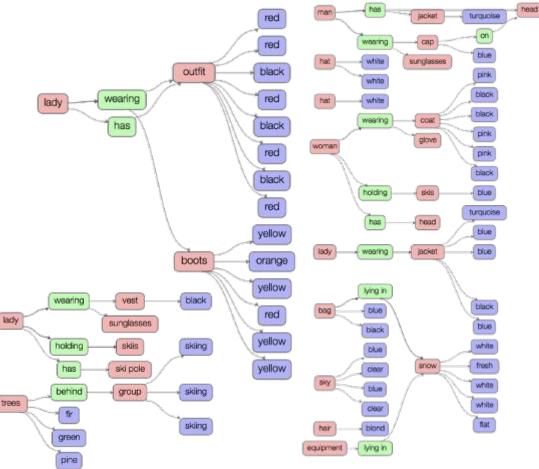
This image is CC0 public domain

Progressive GAN, Karras 2018.

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 67 March 27, 2023


Scene Graphs

This image is CC0 public domain

Three Ways Computer Vision Is Transforming Marketing

- Forbes Technology Council

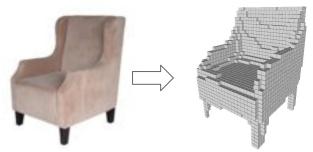
Krishna et al., Visual Genome: Connecting Vision and Language using Crowdsourced Image Annotations, IJCV 2017

Ranjay Krishna, Aditya Kusupati

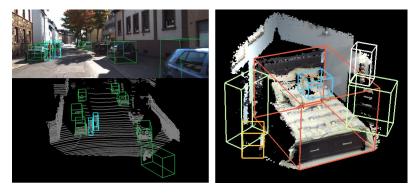
Lecture 1 - 68 March 27, 2023

Spatio-temporal scene graphs

Action Genome: Actions as Spatio-Temporal Scene Graphs

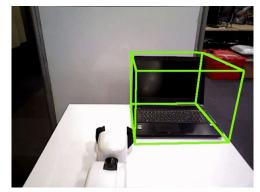


Lecture 1 - 69


March 27, 2023

Ji, Krishna et al., Action Genome: Actions as Composition of Spatio-temporal Scene Graphs, CVPR 2020

3D Vision & Robotic Vision


Choy et al., 3D-R2N2: Recurrent Reconstruction Neural Network (2016)

Xu et al., PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation (2018)

Mandlekar and Xu et al., Learning to Generalize Across Long-Horizon Tasks from Human Demonstrations (2020)

Wang et al., 6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints (2020)

Lecture 1 - 70

March 27, 2023

Human vision

Image is licensed under CC BY-SA 3.0; changes made

PT = 500ms

Some kind of game or fight. Two groups of two men? The man on the left is throwing something. Outdoors seemed like because i have an impression of grass and maybe lines on the grass? That would be why I think perhaps a game, rough game though, more like rugby than football because they pairs weren't in pads and helmets, though I did get the impression of similar clothing. maybe some trees? in the background.

Lecture 1 - 71

March 27, 2023

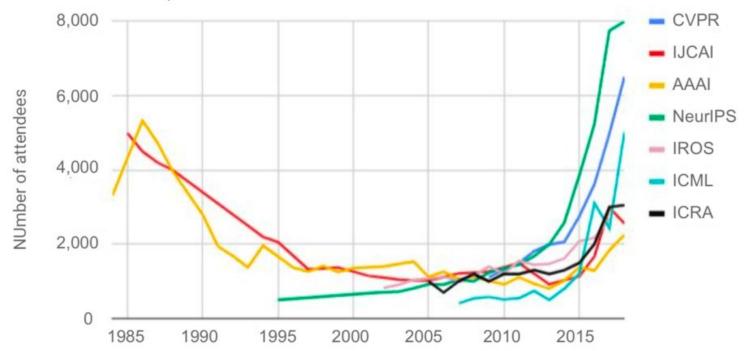
Fei-Fei, Iyer, Koch, Perona, JoV, 2007

And there is a lot we don't know how to do

Lecture 1 - 72

March 27, 2023

https://fedandfit.com/wp-content/uploads/2 020/06/summer-activities-for-kids_optimized -scaled.jpeg


Why is deep learning its own course?

Attendance History (32 years of ICCV)	X 2.41 Growth!
	Google search trends for convolutional neural networks

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 73 March 27, 2023

Attendance at large conferences (1984–2018) Source: Conference provided data

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 74 March 27, 2023

Today's agenda

• A brief history of computer vision

Lecture 1 - 75

March 27, 2023

• CSE 493G1 overview

Survey - A show of hands

Undergrad? M.S.? Ph.D.?

CSE / EE? Other Engineering? Math / Natural Science? Others?

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 76 March 27, 2023

Instructors **Teaching Assistants Friday Lecturer** Shubhang Desai Ranjay Krishna Aditya Kusupati Sarah Pratt Aniket Rege **Benlin Liu** Hours: Thursday, Hours: Tuesday, Hours: Friday, Hours: Wednesday, Hours: Monday ---11:30am - 12:30pm 11:30am - 1:30pm 5:00pm - 7:00pm 2:00pm - 4:00pm 1:00pm - 3:00pm ---CSE2 151 CSE2 304 CSE2 274 CSE2 276 CSE2 274 ---

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 77 March 27, 2023

Syllabus

Deep learning Fundamentals	Practical training skills	Applications
Data-driven approaches Linear classification & kNN Loss functions Optimization Backpropagation Multi-layer perceptrons Neural Networks Convolutions RNNs / LSTMs Transformers	Pytorch 1.4 / Tensorflow 2.0 Activation functions Batch normalization Transfer learning Data augmentation Momentum / RMSProp / Adam Architecture design	Image captioning Interpreting machine learning Generative AI Fairness & ethics Data-centric AI Deep reinforcement learning Self-supervised learning Diffusion LLMs

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 7878 March 27, 2023

Lectures

In person in Gates building: CSE2 G01

- Zoom links and recordings will be shared via canvas:
 - Due to security reasons, please do not share zoom links publicly
- Tuesdays and Thursdays between 10am to 11:20am
 - To watch the lectures later, you must login to canvas. We highly recommend coming in person

Lecture 1 - 79

March 27, 2023

- Slides posted to our website:
 - <u>https://courses.cs.washington.edu/courses/cse493g1/23sp/</u>

Friday recitation sections

Fridays TBD

Hands-on concepts, some tutorials, more practical details than tuesday/thursday lectures

Check the <u>syllabus page</u> for more information on what is going to be covered when.

Lecture 1 - 80

March 27, 2023

This Friday: Python / numpy / Google Cloud (Presenter: Sarah Pratt)

EdStem discussions

For questions about assignments, midterm, projects, logistics, etc, use EdStem!

SCPD students: Use your @uw.edu address to register for EdStem;

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 81 March 27, 2023

Office Hours

See course webpage for schedule.

- Add your name to a queue when you arrive for a particular office hours
- TAs will usually conduct 1-1 conversations in front of the whole group unless otherwise requested for a private conversation.

Lecture 1 - 82

March 27, 2023

Optional textbook resources

- Deep Learning
 - by Goodfellow, Bengio, and Courville
 - Here is a <u>free version</u>
- Mathematics of deep learning
 - Chapters 5, 6 7 are useful to understand vector calculus and continuous optimization
 - Free online version
- Dive into deep learning
 - An interactive deep learning book with code, math, and discussions, based on the NumPy interface.

Lecture 1 - 83

March 27, 2023

- Free online version

Grading

All assignments, coding and written portions, will be submitted via Gradescope.

We use an auto-grading system

- A consistent grading scheme,
- Public tests:
 - Students see results of public tests immediately
- Private tests
 - Generalizations of the public tests to thoroughly test your implementation

Lecture 1 - 84

March 27, 2023

Grading

3 Problem Sets: 10% + 20% + 20% = 45%

Take home 24hr Midterm Exam: 15%

Course Project: 35%

- Project Proposal: 5%
- Milestone: 5%
- Final report: 15%
- Poster presentation: 10%

Participation Extra Credit in lectures: up to 5%

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 85 March 27, 2023

Grading

Late policy

- 2 free late days
- Afterwards, 25% off per day late
- No late days for project report
- Weekends count as 1 day. So using 1 late day for a Friday 11:50pm deadline means you can submit by Sunday 11:59pm

Lecture 1 - 86

March 27, 2023

Overview on communication

Course Website: https://courses.cs.washington.edu/courses/cse493g1/23sp/

Lecture 1 - 87

March 27, 2023

- Syllabus, lecture slides, links to assignment downloads, etc

EdStem:

- Use this for most communication with course staff
- Ask questions about assignments, grading, logistics, etc
- Use private questions if you want to post code

Gradescope:

- For turning in homework and receiving grades

Canvas:

- For watching lecture videos

Assignments

All assignments will be completed using Google Colab

- We have a tutorial for how to use Google Colab on the website

Lecture 1 - 88

March 27, 2023

Assignment 1: IS OUT!!!, due 4/14 by 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Pre-requisite

Proficiency in Python

- All class assignments will be in Python (and use numpy)
- Later in the class, you will be using Pytorch and TensorFlow

Lecture 1 - 89

March 27, 2023

- We will go over a Python tutorial on this Friday's recitation.

College Calculus, Linear Algebra

No longer need Machine Learning as a prerequisite

Collaboration policy

Please follow UW student code of conduct – read it!

Here are our course specific rules:

- **Rule 1**: Don't look at solutions or code that are not your own; everything you submit should be your own work. We have automatic tools that detect plagiarism.
- **Rule 2**: Don't share your solution code with others; however discussing ideas or general strategies is fine and encouraged.
- **Rule 3**: Indicate in your submissions anyone you worked with.

Turning in something late / incomplete is better than violating the code

Lecture 1 - 90

March 27, 2023

Learning objectives

Formalize deep learning applications into tasks

- Formalize inputs and outputs for vision-related problems
- Understand what data and computational requirements you need to train a model

Develop and train deep learning models

- Learn to code, debug, and train convolutional neural networks.
- Learn how to use software frameworks like TensorFlow and PyTorch

Gain an understanding of where the field is and where it is headed

- What new research has come out in the last 0-9 years
- What are open research challenges?
- What ethical and societal considerations should we consider before deployment?

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 91 March 27, 2023

What you should expect from us

Fun: We will discuss fun applications like image captioning, GPT, generative AI

Lecture 1 - 92

March 27, 2023

What we expect from you

Patience.

- This is new for us as much as it is new for you
- Things will break; we will experience technical difficulties

Lecture 1 - 93

March 27, 2023

- Bear with us and trust us to listen to you

Contribute

- Build a community with your peers
- Help one another discuss topics you enjoy
- Give us (annonymous) feedback

Why should you take this class?

Become a deep learning researcher (an incomplete list of conferences)

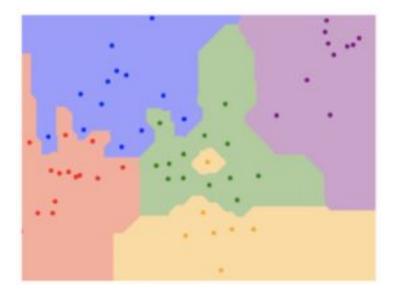
- Get involved with <u>research at UW</u>: apply <u>using this form</u>.

Conferences:

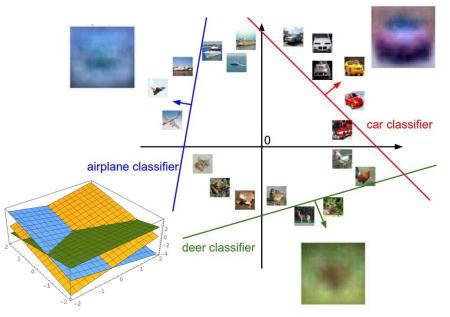
- <u>CVPR 2023</u>, <u>ACL 2023</u>, <u>NeurIPS 2023</u>, <u>ICML 2023</u>

Become a deep learning engineer in industry (an incomplete list of industry teams)

Lecture 1 - 94


March 27, 2023

- Brain team at Google AI
- <u>OpenAl</u>
- Meta's Fundamental AI research team
- <u>Microsoft's AI research team</u>


General interest

Next time: Image classification

k- nearest neighbor

Linear classification

Plot created using Wolfram Cloud

Ranjay Krishna, Aditya Kusupati

Lecture 1 - 95 March 27, 2023

References

•Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005. [PDF]

•Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model." Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008 [PDF]

•Everingham, Mark, et al. "The pascal visual object classes (VOC) challenge." International Journal of Computer Vision 88.2 (2010): 303-338. [PDF]

•Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009. [PDF]

•Russakovsky, Olga, et al. "Imagenet Large Scale Visual Recognition Challenge." arXiv:1409.0575. [PDF]

•Lin, Yuanqing, et al. "Large-scale image classification: fast feature extraction and SVM training." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. [PDF]

•Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. [PDF]

•Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014). [PDF]

•Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [PDF]

•He, Kaiming, et al. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." arXiv preprint arXiv:1406.4729 (2014). [PDF]

Lecture 1 - 96

March 27, 2023

•LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. [PDF] •Fei-Fei, Li, et al. "What do we perceive in a glance of a real-world scene?." Journal of vision 7.1 (2007): 10. [PDF]

References

•Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005. [PDF]

•Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model." Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008 [PDF]

•Everingham, Mark, et al. "The pascal visual object classes (VOC) challenge." International Journal of Computer Vision 88.2 (2010): 303-338. [PDF]

•Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009. [PDF]

•Russakovsky, Olga, et al. "Imagenet Large Scale Visual Recognition Challenge." arXiv:1409.0575. [PDF]

•Lin, Yuanqing, et al. "Large-scale image classification: fast feature extraction and SVM training." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. [PDF]

•Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. [PDF]

•Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014). [PDF]

•Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [PDF]

•He, Kaiming, et al. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." arXiv preprint arXiv:1406.4729 (2014). [PDF]

Lecture 1 - 97

March 27, 2023

•LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. [PDF] •Fei-Fei, Li, et al. "What do we perceive in a glance of a real-world scene?." Journal of vision 7.1 (2007): 10. [PDF]