Foundation Models
(Large Pre-trained Models)

Sarah Pratt
Language Models

Encoders vs Decoders vs Encoder-Decoder Models
Prompting (zero-shot, in-context, chain-of-thought)

Vision + Language Models

CLIP training + inference
Results + Robustness
My prior work
Language Models
Language Models

It’s cold today! Don’t forget to wear a ______.
The ____________ is a popular tourist attraction in Seattle.
I missed ___ bus.
I had 3 pencils and lost one so now I have ______ pencils.
Language Models

It’s cold today! Don’t forget to wear a jacket.

The ____________ is a popular tourist attraction in Seattle.

I missed ___ bus.

I had 3 pencils and lost one so now I have ______ pencils.
Language Models

It’s cold today! Don’t forget to wear a jacket.

The **Space Needle** is a popular tourist attraction in Seattle.

I missed ___ bus.

I had 3 pencils and lost one so now I have ______ pencils.
Language Models

It’s cold today! Don’t forget to wear a jacket.

The Space Needle is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have ______ pencils.
Language Models

It’s cold today! Don’t forget to wear a jacket.

The Space Needle is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have two pencils.
Encoder Only: Capture the meaning of an entire sequence

I love cake
Encoder Only: Capture the meaning of an entire sequence

I love cake

Decoder Only: Generate text based on previously generated text

I love
Encoder Only: Capture the meaning of an entire sequence

I love cake

Decoder Only: Generate text based on previously generated text

I love ___

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

I love cake me gusta
Encoder Only: Capture the meaning of an entire sequence

I love cake

Decoder Only: Generate text based on previously generated text

I love

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

I love cake me gusta
Encoder Only: Capture the meaning of an entire sequence
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Input = text token embeddings (and positional embedding)
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

Outputs: context vectors: \(y \) (shape: \(D_v \))
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Outputs: context vectors: y (shape: D_v)
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Nothing, yet!
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Just copying input
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

How to we force this model to learn semantic/factual/grammatical/logical information?
Language Models

It’s cold today! Don’t forget to wear a jacket.

The Space Needle is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have two pencils.
Language Models

It’s cold today! Don’t forget to wear a jacket. **Semantic**
The **Space Needle** is a popular tourist attraction in Seattle. **Factual**
I missed **the** bus. **Grammatical**
I had 3 pencils and lost one so now I have **two** pencils. **Logical**
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector
Encoder Only: Capture the meaning of an entire sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

Randomly select 15% of tokens.

- 80% - [MASK]
- 10% - random token
- 10% - keep same
Encoder Only: Capture the meaning of an entire sequence

I love cake

Decoder Only: Generate text based on previously generated text

I love

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

I love cake me gusta
Decoder Only: Generate text based on previously generated text
Decoder Only: Generate text based on previously generated text
Decoder Only: Generate text based on previously generated text

Input: Text sequence
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing
Decoder Only: Generate text based on previously generated text

Input: Text sequence
Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing

Solution: predict each word given previous words so far
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing

Solution: predict each word given previous words so far
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence
Decoder Only: Generate text based on previously generated text

Input: Text sequence
Output: Completed text sequence

What’s wrong with this?
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence

What’s wrong with this?

It can see the answer!
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence

What’s wrong with this?

It can see the answer!

Solution: zero out values from future words
Decoder Only: Generate text based on previously generated text

Input: Text sequence

Output: Completed text sequence

What’s wrong with this?

It can see the answer!

Solution: zero out values from future words
Decoder Only: Inference
Decoder Only: Inference

I Love

I

L

y_0 y_1

mul(→) + add (↑)

softmax (↑)

I

I

V_0 V_1

V_0

V_1

I

I

k_0 k_1

k_0

k_1

I

I

q_0 q_1

q_0

q_1

[Start]
Decoder Only: Inference

\[
\text{mul(→) + add (↑)}
\]

\[
y_0, y_1
\]

\[
\text{softmax (↑)}
\]

\[
y_0, y_1
\]

\[
k_0, k_1, k_2
\]

\[
q_0, q_1, q_2
\]

\[
\text{I Love Cake}
\]

\[
\text{Attention}
\]

\[
\text{Alignment}
\]
Encoder Only: Capture the meaning of an entire sequence

```
I  love  cake
```

Decoder Only: Generate text based on previously generated text

```
I  love  
```

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

```
I  love  cake  me  gusta
```
Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence.
Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence.
Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence
Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence.
Which of the three options is GPT?
Which of the three options is GPT?

Decoder Only!
Which of the three options is GPT? Decoder Only!

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence sequence

Decoder Only: Generate text based on previously generated text
GPT-3

1. Translate English to French: task description
2. cheese => prompt

Brown et al “Language Models are Few-Shot Learners”
GPT-3

1. Translate English to French: cheese =>

| Please unscramble the letters into a word, and write that word: |
| taefed = |
| defeat |

Q: What is \((2 \times 4) \times 6\)?
A: 48

Q: ‘Nude Descending A Staircase’ is perhaps the most famous painting by which 20th century artist?
A: MARCEL DUCHAMP

Brown et al “Language Models are Few-Shot Learners”
GPT-3

1. Translate English to French: cheese

2. Please unscramble the letters into a word, and write that word:

 taefed =

 defeat

Q: What is \(2 \times 4 \times 6\)?

A:

48

Q: ‘Nude Descending A Staircase’ is perhaps the most famous painting by which 20th century artist?

A:

MARCEL DUCHAMP

Dataset

- Common Crawl (filtered)
- WebText2
- Books1
- Books2
- Wikipedia

Brown et al “Language Models are Few-Shot Learners”
Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1. Translate English to French: \(\rightarrow \) task description
2. cheese => \(\rightarrow \) prompt
GPT-3

Zero-shot
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1. **Translate English to French:**
2. cheese => ..

One-shot
In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

1. **Translate English to French:**
2. sea otter => loutre de mer
3. cheese => ..

Few-shot
In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

1. **Translate English to French:**
2. sea otter => loutre de mer
3. peppermint => menthe poivrée
4. plush giraffe => girafe peluche
5. cheese => ..
GPT-3

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
1. Translate English to French:  
   cheese => ...........................................
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
1. Translate English to French:  
2.  sea otter => loutre de mer 
3.  cheese => ...........................................
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
1. Translate English to French:  
2.  sea otter => loutre de mer 
3.  peppermint => menthe poivrée 
4.  plush giraffe => girafe peluche 
5.  cheese => ...........................................
```

“Context”

Brown et al “Language Models are Few-Shot Learners”
In-Context Learning

Zero-shot
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot
In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
1 Translate English to French:
2 sea otter => loutre de mer
3 cheese =>
```

Few-shot
In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
1 Translate English to French:
2 sea otter => loutre de mer
3 peppermint => menthe poivrée
4 plush giraffe => girafe peluche
5 cheese =>
```

Brown et al. "Language Models are Few-Shot Learners"
Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. ✗
Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 27.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.
Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. ✗

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have $3 + 6 = 9$. The answer is 9. ✓
Language Models

Encoders vs Decoders vs Encoder-Decoder Models
Prompting (zero-shot, in-context, chain-of-thought)

Vision + Language Models

CLIP training + inference
Results + Robustness
My prior work
Vision + Language
Vision + Language

Text pretraining task: Given previous words, pick the next word
Text pretraining task: Given previous words, pick the next word

Text + Vision: Where can we get large amounts of image and text data?
Vision + Language

Text pretraining task: Given previous words, pick the next word

Text + Vision: Where can we get large amounts of image and text data?

The western slope of Mount Rainier in 2005

https://en.wikipedia.org/wiki/Mount_Rainier
SimCLR
SimCLR

list of positive pairs
SimCLR

Each 2k and 2k + 1 element is a positive pair
CLIP Training
The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall
The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

CLIP Training
The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall
The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

A Pallas's cat at Rotterdam Zoo

The western slope of Mount Rainier in 2005

A very unusual example of a diagonal window set in a brick wall

CLIP Training
The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall
CLIP Training

- The western slope of Mount Rainier in 2005
- A Pallas’s cat at Rotterdam Zoo
- A very unusual example of a diagonal window set in a brick wall

Mathematical equation:
\[
\sum_{i=1}^{n} - \log \left(\frac{e^{u_i v_j}}{\sum_{j=1}^{n} e^{u_i v_j}} \right)
\]
The western slope of Mount Rainier in 2005

A Pallas’s cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

CLIP Training

\[\sum_{i=1}^{n} - \log \left(\frac{e^{\langle u_i, v_i \rangle}}{\sum_{j=1}^{n} e^{\langle u_i, v_j \rangle}} \right) \]
The western slope of Mount Rainier in 2005

A very unusual example of a diagonal window set in a brick wall

A Pallas's cat at Rotterdam Zoo

CLIP Training
CLIP Training (from the CLIP paper)

1. Contrastive pre-training

Radford et al “Learning Transferable Visual Models From Natural Language Supervision”
CLIP Inference (from the CLIP paper)
CLIP Inference (from the CLIP paper)

2. Create dataset classifier from label text

```
plane
car
dog

...,

bird

---

a photo of a (object).

---

Text Encoder

---

...,

T_1
T_2
T_3

...,

T_N
```

3. Use for zero-shot prediction

```
---

Image Encoder

---

I_1
I_1 \cdot T_1
I_1 \cdot T_2
I_1 \cdot T_3

...,

I_1 \cdot T_N

---

a photo of a dog.
```

Radford et al “Learning Transferable Visual Models From Natural Language Supervision”
Image Classification on ImageNet
After training on ~1,000,000 labeled ImageNet train images
After training on ~1,000,000 labeled ImageNet train images

After training on 0 labeled ImageNet train images (but many other “unlabeled” images)
<table>
<thead>
<tr>
<th>DATASET</th>
<th>ImageNet</th>
<th>IMAGENET RESNET101</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATASET</td>
<td>IMAGENET RESNET101</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObjectNet</td>
<td>76.2%</td>
<td></td>
</tr>
<tr>
<td>DATASET</td>
<td>RESNET101</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>76.2%</td>
<td></td>
</tr>
<tr>
<td>ObjectNet</td>
<td>32.6%</td>
<td></td>
</tr>
<tr>
<td>DATASET</td>
<td>IMAGE NET RESNET101</td>
<td>CLIP VIT-L</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>ImageNet</td>
<td>76.2%</td>
<td>76.2%</td>
</tr>
<tr>
<td>ObjectNet</td>
<td>32.6%</td>
<td>72.3%</td>
</tr>
<tr>
<td>DATASET</td>
<td>IMAGENET</td>
<td>RESNET101</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ImageNet</td>
<td>76.2%</td>
<td></td>
</tr>
<tr>
<td>ImageNet V2</td>
<td>64.3%</td>
<td></td>
</tr>
<tr>
<td>ImageNet Rendition</td>
<td>37.7%</td>
<td></td>
</tr>
<tr>
<td>ObjectNet</td>
<td>32.6%</td>
<td></td>
</tr>
<tr>
<td>ImageNet Sketch</td>
<td>25.2%</td>
<td></td>
</tr>
<tr>
<td>ImageNet Adversarial</td>
<td>2.7%</td>
<td></td>
</tr>
</tbody>
</table>
AI-Chaining
(aka a plug for my own past work)
AI-Chaining
(aka a plug for my own past work)
LLM-prompts:

“What does a {lorikeet, marimba, viaduct, papillon} look like?”

GPT-3

Image-prompts:

“A lorikeet is a small to medium-sized parrot with a brightly colored plumage.”

“A marimba is a large wooden percussion instrument that looks like a xylophone.”

“A viaduct is a bridge composed of several spans supported by piers or pillars.”

“A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears.”

Lorikeet Marimba Viaduct Papillon
<table>
<thead>
<tr>
<th></th>
<th>ImageNet</th>
<th>DTD</th>
<th>Stanford Cars</th>
<th>SUN397</th>
<th>Food101</th>
<th>FGVC Aircraft</th>
<th>Oxford Pets</th>
<th>Caltech101</th>
<th>Flowers102</th>
<th>UCF101</th>
<th>Kinetics-700</th>
<th>RESISC45</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
<th>Birdsnap</th>
</tr>
</thead>
<tbody>
<tr>
<td>std</td>
<td>75.54</td>
<td>55.20</td>
<td>77.53</td>
<td>69.31</td>
<td>93.08</td>
<td>32.88</td>
<td>93.33</td>
<td>93.24</td>
<td>78.53</td>
<td>77.45</td>
<td>60.07</td>
<td>71.10</td>
<td>95.59</td>
<td>78.26</td>
<td>50.43</td>
</tr>
<tr>
<td># hw</td>
<td>80</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>34</td>
<td>1</td>
<td>48</td>
<td>28</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>CuPL (base)</td>
<td>76.19</td>
<td>58.90</td>
<td>76.49</td>
<td>72.74</td>
<td>93.33</td>
<td>36.69</td>
<td>93.37</td>
<td>93.45</td>
<td>78.83</td>
<td>77.74</td>
<td>60.24</td>
<td>68.96</td>
<td>95.81</td>
<td>78.47</td>
<td>51.11</td>
</tr>
<tr>
<td>Δ std</td>
<td>+0.65</td>
<td>+3.70</td>
<td>-1.04</td>
<td>+3.43</td>
<td>+0.25</td>
<td>+3.81</td>
<td>+0.04</td>
<td>+0.21</td>
<td>+0.30</td>
<td>+0.29</td>
<td>+0.17</td>
<td>-2.14</td>
<td>+0.22</td>
<td>+0.21</td>
<td>+0.63</td>
</tr>
<tr>
<td># hw</td>
<td>3</td>
</tr>
</tbody>
</table>
Thank you!