Foundation Models

(Large Pre-trained Models)

Sarah Pratt

Encoders vs Decoders vs Encoder-Decoder Models

Prompting (zero-shot, in-context, chain-of-thought)

Vision + Language Models

CLIP training + inference

Results + Robustness

My prior work

It's cold today! Don't forget to wear a _____.

The _____ is a popular tourist attraction in Seattle.

I missed ____ bus.

I had 3 pencils and lost one so now I have ____ pencils.

It's cold today! Don't forget to wear a jacket.

The _____ is a popular tourist attraction in Seattle.

I missed ___ bus.

I had 3 pencils and lost one so now I have _____ pencils.

It's cold today! Don't forget to wear a **jacket**.

The **Space Needle** is a popular tourist attraction in Seattle.

I missed ___ bus.

I had 3 pencils and lost one so now I have _____ pencils.

It's cold today! Don't forget to wear a jacket.

The **Space Needle** is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have _____ pencils.

It's cold today! Don't forget to wear a jacket.

The **Space Needle** is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have two pencils.

Decoder Only: Generate text based on previously generated text

Decoder Only: Generate text based on previously generated text

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

Decoder Only: Generate text based on previously generated text

<u>Encoder-Decoder:</u> Generate text based on previously generated text and the meaning of a separate sequence

I love cake me gusta

Example Model: BERT

Encoder Only: Capture the meaning of an entire sequence Example Model: BERT

Example Model: BERT

Input: Text sequence

Example Model: BERT

Input: Text sequence

Example Model: BERT

Input: Text sequence

Output: Feature Vector

Outputs:

context vectors: **y** (shape: D)

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Outputs:

context vectors: **y** (shape: D_j)

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Nothing, yet!

Outputs:

context vectors: **y** (shape: D)

Example Model: BERT

Input: Text sequence

Output: Feature Vector

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Example Model: BERT

Input: Text sequence

Output: Feature Vector

What information do the y vectors contain?

Just copying input

Example Model: BERT

Input: Text sequence

Output: Feature Vector

How to we force this model to learn semantic/factual/gram matical/logical information?

It's cold today! Don't forget to wear a jacket.

The **Space Needle** is a popular tourist attraction in Seattle.

I missed the bus.

I had 3 pencils and lost one so now I have two pencils.

It's cold today! Don't forget to wear a jacket. Semantic

The **Space Needle** is a popular tourist attraction in Seattle. **Factual**

I missed the bus. Grammatical

I had 3 pencils and lost one so now I have two pencils. Logical

Example Model: BERT

Input: Text sequence

Output: Feature Vector

Example Model: BERT

<u>Input:</u> Text sequence
<u>Output</u>: Feature Vector

Randomly select 15% of tokens.

80% - [MASK]

10% - random token

10% - keep same

Decoder Only: Generate text based on previously generated text

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence sequence

I love cake me gusta

Input: Text sequence

Input: Text sequence

Output: Completed text sequence

Input: Text sequence

Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing

Input: Text sequence

Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing

Solution: predict each word given previous words so far

Input: Text sequence

Output: Completed text sequence

Cons: Need to process entire sentence in order to get loss from one word - not very much signal for the amount of processing

Solution: predict each word given previous words so far

Input: Text sequence

Output: Completed text sequence

Input: Text sequence

Output: Completed text sequence

What's wrong with this?

Input: Text sequence

Output: Completed text sequence

What's wrong with this?

It can see the answer!

Input: Text sequence

Output: Completed text sequence

What's wrong with this?

It can see the answer!

Solution: zero out values from future words

Input: Text sequence

Output: Completed text sequence

What's wrong with this?

It can see the answer!

Solution: zero out values from future words

Decoder Only: Inference

Decoder Only: Inference

Decoder Only: Inference

Encoder Only: Capture the meaning of an entire sequence

l love cake

Decoder Only: Generate text based on previously generated text

l love

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence

I love cake me gusta

Which of the three options is GPT?

Which of the three options is GPT? <u>Decoder Only!</u>

Which of the three options is GPT? <u>Decoder Only!</u>

Encoder-Decoder: Generate text based on previously generated text and the meaning of a separate sequence sequence

Decoder Only: Generate text based on previously generated text

English: I Love Cake Spanish:

```
Translate English to French:
                                           task description
   cheese =>
                                           prompt
Please unscramble the letters into a word, and write that word:
taefed =
defeat
Q: What is (2 * 4) * 6?
A:
48
Q: 'Nude Descending A Staircase' is perhaps the most famous painting by
which 20th century artist?
```

MARCEL DUCHAMP

A:

```
Translate English to French:
                                           task description
    cheese =>
                                           prompt
Please unscramble the letters into a word, and write that word:
taefed =
defeat
Q: What is (2 * 4) * 6?
A:
48
```

Q: 'Nude Descending A Staircase' is perhaps the most famous painting by

Dataset

Common Crawl (filtered)
WebText2
Books1
Books2
Wikipedia

MARCEL DUCHAMP

A:

which 20th century artist?

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

"Context"

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

"Context"

In-Context Learning

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Language Models

Encoders vs Decoders vs Encoder-Decoder Models

Prompting (zero-shot, in-context, chain-of-thought)

Vision + Language Models

CLIP training + inference

Results + Robustness

My prior work

Text pretraining task: Given previous words, pick the next word

Text pretraining task: Given previous words, pick the next word

<u>Text + Vision:</u> Where can we get large amounts of image and text data?

Text pretraining task: Given previous words, pick the next word

<u>Text + Vision:</u> Where can we get large amounts of image and text data?

SimCLR

SimCLR

SimCLR

SimCLR

The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

The western slope of Mount Rainier in 2005

A Pallas's cat at Rotterdam Zoo

A very unusual example of a diagonal window set in a brick wall

diagonal window set in a brick wall

in a brick wall

CLIP Training (from the CLIP paper)

1. Contrastive pre-training

CLIP Inference (from the CLIP paper)

2. Create dataset classifier from label text

Image Classification on ImageNet

Image Classification on ImageNet

Image Classification on ImageNet

DATASET

IMAGENET RESNET101

76.2%

ImageNet

DATASET

IMAGENET RESNET101

76.2%

ImageNet

ObjectNet

DATASET

IMAGENET RESNET101

76.2%

ImageNet

32.6%

ObjectNet

DATASET IMAGENET RESNET101 CLIP VIT-L 76.2% 76.2%

ObjectNet

32.6%

72.3%

Al-Chaining

(aka a plug for my own past work)

Al-Chaining

(aka a plug for my own past work)

LLM-prompts:

"What does a
{Iorikeet, marimba,
viaduct, papillon}
look like?"

Image-prompts:

"A lorikeet is a small to medium-sized parrot with a brightly colored plumage."

"A marimba is a large wooden percussion instrument that looks like a xylophone."

"A viaduct is a bridge composed of several spans supported by piers or pillars."

"A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears."

Lorikeet

Marimba

Viaduct

Papillon

	ImageNet	DTD	Stanford C	SUN397	Food101	FGVC Air	Oxford Per	Caltech10	Flowers 10	UCF101	Kinetics-7	RESISC45	CIFAR-10	CIFAR-10	Birdsnap
std	75.54	55.20	77.53	69.31	93.08	32.88	93.33	93.24	78.53	77.45	60.07	71.10	95.59	78.26	50.43
# hw	80	8	8	2	1	2	1	34	1	48	28	18	18	18	1

CuPL (base) 76.19 58.90 76.49 72.74 93.33 36.69 93.37 93.45 78.83 77.74 60.24 68.96 95.81 78.47 51.11

+0.65 +3.70 -1.04 +3.43 +0.25 +3.81 +0.04 +0.21 +0.30 +0.29 +0.17 -2.14 +0.22 +0.21 +0.63

 Δ std

hw

