Lecture 9: Self-Supervised Learning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 1 November 2, 2023

Recall: Supervised

Data: (x, y) x is the input data, y is the output label.

Goal: Learn a function f: x -> y

Example: in image classification, x is the image and y is the object category

Lecture 9 - 2 November 2, 2023

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 3 November 2, 2023

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

(1,400,000 images) × (10 seconds/image) × (1/3600 hours/second) × (\$15 / hour) (Small to medium sized dataset) (Fast annotation)

(Low wage paid to annotator)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 4 November 2, 2023

Assume that we want to label re-label ImageNet's 1.4 Million images.

How much will it cost?

(1,400,000 images) × (10 seconds/image) × (1/3600 hours/second) × (\$15 / hour) = \$58.333 (Small to medium sized dataset) (Fast annotation)

(Low wage paid to annotator)

Assumptions:

- one annotator per image,
- no benefits / payroll tax / crowdsourcing fee for annotators;
- not accounting for front end developer time to set up tasks for annotators.
- Real costs could easily be 3x this or more: >\$175,000

Ali Farhadi, Aditya Kusupati

Lecture 9 - 5 November 2, 2023

Assume that we want to label CLIP's 1B images. (GPT also needs billions of documents)

How much will it cost?

(1,000,000,000 images) × (10 seconds/image) × (1/3600 hours/second) × (\$15 / hour) = \$41,666,667 (Small to medium sized dataset) (Fast annotation)

(Low wage paid to annotator)

41 Million dollars (again, not including all other costs)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 6 November 2, 2023

Supervised Learning is Not How We Learn

Babies don't get supervision for everything they see!

Baby image is CCO public domain

Ali Farhadi, Aditya Kusupati

Lecture 9 - 7

November 2, 2023

Solution: self-supervised learning

Lets build methods that learn from "raw" data – no annotations required

Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring signal in the raw data rather than human annotations.

Lecture 9 - 8 November 2, 2023

Solution: self-supervised learning

Lets build methods that learn from "raw" data – no annotations required

Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally occurring signal in the raw data rather than human annotations.

Semi-Supervised Learning: Train jointly with some labeled data and (a lot) of unlabeled data.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 9 November 2, 2023

Self-Supervised Learning: Pretext then Transfer

Step 1: <u>Pretrain</u> a network on a <u>pretext</u> <u>task</u> that doesn't require supervision

Step 2: Transfer encoder to <u>downstream tasks</u> via linear classifiers, KNN, finetuning

Downstream tasks: Image classification, object detection, semantic segmentation

Ali Farhadi, Aditya Kusupati

Lecture 9 - 10 November 2, 2023

Goal of Self-Supervised Learning: Define pre-text tasks that do better than supervised learning

Step 1: <u>Pretrain</u> a network on a <u>pretext</u> <u>task</u> that doesn't require supervision

Step 2: Transfer encoder to <u>downstream tasks</u> via linear classifiers, KNN, finetuning

Downstream tasks: Image classification, object detection, semantic segmentation

Ali Farhadi, Aditya Kusupati

Lecture 9 - 11 November 2, 2023

Self-Supervised Learning: Pretext Tasks

Generative: Predict part of the input signal

- Autoencoders (sparse, denoising, masked)
- Autoregressive
- GANs
- Colorization
- Inpainting

Discriminative: Predict something about the input signal

- Context prediction
- Rotation Clustering
- Contrastive

Multimodal: Use some additional signal in addition to RGB images

- Video
- 3D
- Sound
- Language

Ali Farhadi, Aditya Kusupati

Lecture 9 - 12 November 2, 2023

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 13 November 2, 2023

Generative Self-supervised Learning

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein, 2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

Lecture 9 - 14

Source: Anand, 2020

November 2, 2023

Ali Farhadi, Aditya Kusupati

How to evaluate a self-supervised learning method?

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Lecture 9 - 15 November 2, 2023

How to evaluate a self-supervised learning method?

Step 1: <u>Pretrain</u> a network on a <u>pretext task</u> that doesn't require supervision

Ali Farhadi, Aditya Kusupati

Lecture 9 - 16 November 2, 2023

How to evaluate a self-supervised learning method?

Step 1: <u>Pretrain</u> a network on a <u>pretext task</u> that doesn't require supervision

Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 17 November 2, 2023

Broader picture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

Language Models are Few-Shot Learners

Tom B. Brown* Benjam		Mann* Nick H	Ryder* Me	lanie Subbiah*	
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyan	Girish Sastr	
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Kruege	r Tom Henigha	
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter	
Christopher He	sse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray	
Benjamin Chess		Jack Clark	Christopher Berner		
Sam McCandlish Alec		dford Ilya Su	itskever	Dario Amodei	

OpenAI

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

speech synthesis

Wavenet (van den Oord et al., 2016)

- - -

Ali Farhadi, Aditya Kusupati

Lecture 9 - 18 November 2, 2023

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 9 - 19

November 2, 2023

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning**
 - Intuition and formulation
 - Instance contrastive learning: SimCLR and MOCO

Lecture 9 - 20 November 2, 2023

Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

Lecture 9 - 21

(Image source: Gidaris et al. 2018)

November 2, 2023

Ali Farhadi, Aditya Kusupati

Pretext task: predict rotations

Ali Farhadi, Aditya Kusupati

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

(Image source: Gidaris et al. 2018)

Lecture 9 - 22 November 2, 2023

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

(Image source: Gidaris et al. 2018)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 23 November 2, 2023

Evaluation on semi-supervised learning

Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

(Image source: Gidaris et al. 2018)

November 2, 2023

Lecture 9 - 24

Ali Farhadi, Aditya Kusupati

Transfer learned features to supervised learning

	Classif (%n	fication nAP)	Detection (%mAP)	Segmentation (%mIoU)	n
Trained layers	fc6-8	all	all	all	Pretrained with
ImageNet labels	78.9	79.9	56.8	48.0	ImageNet supe
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	No pretraining
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015) Colorization (Zhang et al., 2016a) BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016) NAT (Bojanowski & Joulin, 2017)	31.0 34.6 55.6 55.1 61.5 52.3 - 56.7	54.2 56.5 63.1 65.3 65.6 60.1 67.6 65.3	43.9 44.5 47.4 51.1 46.9 46.9 53.2 49.4	29.7 35.6 34.9 37.6	Self-supervi ImageNet (set) with Ale
Split-Brain (Zhang et al., 2016b) ColorProxy (Larsson et al., 2017) Counting (Noroozi et al., 2017)	63.0 -	67.1 65.9 67.7	46.7 51.4	36.0 38.4 36.6	Finetune on from Pasca
(Ours) Kotinet	/0.8/	12.91	34.4	39.1	

retrained with full nageNet supervision

Self-supervised learning on mageNet (entire training et) with AlexNet.

inetune on labeled data rom Pascal VOC 2007.

Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 25 November 2, 2023

Visualize learned visual attentions

(a) Attention maps of supervised model

(b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 26 November 2, 2023

Pretext task: predict relative patch locations

(Image source: Doersch et al., 2015)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 27 November 2, 2023

Pretext task: solving "jigsaw puzzles"

(Image source: Noroozi & Favaro, 2016)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 28 November 2, 2023

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	$3 \mathrm{~days}$	1000 class labels	78.2%	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{~days}$	context	$\mathbf{67.6\%}$	$\mathbf{53.2\%}$	37.6%

"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

November 2, 2023

Lecture 9 - 29

Ali Farhadi, Aditya Kusupati

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al., 2016

Ali Farhadi, Aditya Kusupati

Lecture 9 - 30 November 2, 2023

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

Ali Farhadi, Aditya Kusupati

Lecture 9 - 31 November 2, 2023

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016

Ali Farhadi, Aditya Kusupati

Lecture 9 - 32 November 2, 2023

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= ||M*(x-F_{ heta}((1-M)*x))||_2^2 \ L_{adv} &= \max_D \mathbb{E}[\log(D(x))] + \log(1-D(F(((1-M)*x)))] \end{aligned}$$

Lecture 9 - 33

Adversarial loss between "real" images and inpainted images

Source: Pathak et al., 2016

November 2, 2023

Ali Farhadi, Aditya Kusupati

Inpainting evaluation

Input (context)

reconstruction

adversarial

recon + adv

Source: Pathak et al., 2016

Ali Farhadi, Aditya Kusupati

Lecture 9 - 34 November 2, 2023

Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal <i>et al</i> . [1]	egomotion	10 hours	52.9%	41.8%	-
Wang <i>et al</i> . [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Source: Pathak et al., 2016

Ali Farhadi, Aditya Kusupati

Lecture 9 - 35 November 2, 2023

Pretext task: image coloring

Grayscale image: \emph{L} channel $\mathbf{X} \in \ \mathbb{R}^{H imes W imes 1}$

Color information: ab channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H imes W imes 2}$

ab

Lecture 9 - 36

Source: Richard Zhang / Phillip Isola

November 2, 2023

Ali Farhadi, Aditya Kusupati
Pretext task: image coloring

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

Concatenate (*L*,*ab*) channels $(\mathbf{X}, \widehat{\mathbf{Y}})$

ab

Source: Richard Zhang / Phillip Isola

Lecture 9 - 37 November 2, 2023

Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola

Ali Farhadi, Aditya Kusupati

Lecture 9 - 38 November 2, 2023

Learning features from colorization: Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola

Ali Farhadi, Aditya Kusupati

Lecture 9 - 39 November 2, 2023

Learning features from colorization: Split-brain Autoencoder

Ali Farhadi, Aditya Kusupati

Lecture 9 - 40 Novem

November 2, 2023

Transfer learned features to supervised learning

Source: Zhang et al., 2017

Ali Farhadi, Aditya Kusupati

Lecture 9 - 41 November 2, 2023

Real world application: image coloring

Source: Richard Zhang / Phillip Isola

Ali Farhadi, Aditya Kusupati

Lecture 9 - 42 November 2, 2023

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

Ali Farhadi, Aditya Kusupati

Lecture 9 - 43 November 2, 2023

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

how should I color these frames?

t = 0

Source: Vondrick et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 44 November 2, 2023

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

Source: Vondrick et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 45 November 2, 2023

Reference Frame

Input Frame

Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

Reference Colors

Target Colors

Source: Vondrick et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 46 November 2, 2023

Lecture 9 - 47

attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

Source: Vondrick et al., 2018

November 2, 2023

attention map on the reference frame

predicted color = weighted sum of the reference color

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

Source: Vondrick et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 48 November 2, 2023

attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{\theta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}\right)$$
Source: Vondrick et al., 201

Ali Farhadi, Aditya Kusupati

Lecture 9 - 49 November

November 2, 2023

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google AI blog post

Ali Farhadi, Aditya Kusupati

Lecture 9 - 50 November 2, 2023

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google AI blog post

Ali Farhadi, Aditya Kusupati

Lecture 9 - 51 November 2, 2023

Tracking emerges from colorization Propagate segmentation masks using learned attention

Source: Google AI blog post

Ali Farhadi, Aditya Kusupati

Lecture 9 - 52 November 2, 2023

Tracking emerges from colorization Propagate pose keypoints using learned attention

Source: Google AI blog post

Ali Farhadi, Aditya Kusupati

Lecture 9 - 53 November 2, 2023

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Lecture 9 - 54 November 2, 2023

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be generally useful for all downstream tasks.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 55 November 2, 2023

Pretext tasks from image transformations

image completion

rotation prediction

"jigsaw puzzle"

colorization

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 56 November 2, 2023

A more general pretext task?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 57 November 2, 2023

A more general pretext task?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 58 November 2, 2023

Contrastive Representation Learning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 59 November 2, 2023

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Lecture 9 - 60 November 2, 2023

Self-Supervised Learning: Pretext then Transfer

Step 1: <u>Pretrain</u> a network on a <u>pretext</u> task that doesn't require supervision

Step 2: Transfer encoder to <u>downstream tasks</u> via linear classifiers, KNN, finetuning

Downstream tasks: Image classification, object detection, semantic segmentation

Ali Farhadi, Aditya Kusupati

Lecture 9 - 61 November 2, 2023

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be generally useful for all downstream tasks.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 62 November 2, 2023

Contrastive Representation Learning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 63 November 2, 2023

Contrastive Representation Learning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 64 November 2, 2023

What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder** function *f* that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x).

Lecture 9 - 65

November 2, 2023

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Q. What does this loss function remind you of?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 66 November 2, 2023

Loss function given 1 positive sample and N - 1 negative samples:

Ali Farhadi, Aditya Kusupati

Lecture 9 - 67 November 2, 2023

. . .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive pair
This score for the N-1 negative pairs

This seems familiar ...

Ali Farhadi, Aditya Kusupati

Lecture 9 - 68 November 2, 2023

Loss function given 1 positive sample and N - 1 negative samples:

This seems familiar ...

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

Lecture 9 - 69

November 2, 2023

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$

Very similar to the softmax classifier we talked about a few lectures ago.

- We want to compare the reference image against all other positive and negative images.
- We can exponentiate and normalize these scores like we did with the softmax classifier.

Lecture 9 - 70

November 2, 2023

- And we get the above similar equation.

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

Lecture 9 - 71

The larger the negative sample size (*N*), the tighter the bound

Detailed derivation: Poole et al., 2019

November 2, 2023

SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network *h(·)* to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

• random cropping, random color distortion, and random blur.

Lecture 9 - 72

Source: Chen et al., 2020

November 2, 2023
SimCLR: generating positive samples from data augmentation

(j) Sobel filtering Source: <u>Chen et al., 2020</u>

Ali Farhadi, Aditya Kusupati

Lecture 9 - 73

November 2, 2023

Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 74 Nove

November 2, 2023

Source: Chen et al., 2020

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i, k}/\tau)}$ samples in the $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x^{-} update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 75 Nov

November 2, 2023

*We use a slightly different

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive Iterate through and define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i, k}/\tau)}$ samples in the use each of the 2N $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x^{-} sample as reference, update networks f and q to minimize \mathcal{L} compute average loss end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 76

November 2, 2023

*We use a slightly different

SimCLR: mini-batch training

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 77 November 2, 2023

SimCLR: mini-batch training

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 78 November 2, 2023

= classification label for each row

SimCLR: what a batch looks like

Ali Farhadi, Aditya Kusupati

Lecture 9 - 79 November 2, 2023

Training linear classifier on SimCLR features

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Lecture 9

- 80

Source: Chen et al., 2020

November 2, 2023

Semi-supervised learning on SimCLR features

Mathad	Architactura	Label 1	fraction	
Method	Architecture	Top 5		
Supervised baseline	ResNet-50	48.4	80.4	
Methods using other labe	l-propagation:			
Pseudo-label	ResNet-50	51.6	82.4	
VAT+Entropy Min.	ResNet-50	47.0	83.4	
UDA (w. RandAug)	ResNet-50	-	88.5	
FixMatch (w. RandAug)	ResNet-50	-	89.1	
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2	
Methods using representa	tion learning only:			
InstDisc	ResNet-50	39.2	77.4	
BigBiGAN	RevNet-50 $(4 \times)$	55.2	78.8	
PIRL	ResNet-50	57.2	83.8	
CPC v2	ResNet-161(*)	77.9	91.2	
SimCLR (ours)	ResNet-50	75.5	87.8	
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2	
SimCLR (ours)	ResNet-50 (4 \times)	85.8	92.6	

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Lecture 9 - 81

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al., 2020

November 2, 2023

SimCLR design choices: projection head

Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 82 November 2, 2023

SimCLR design choices: large batch size

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

Lecture 9 - 83

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Source: Chen et al., 2020

November 2, 2023

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 84 November 2, 2023

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

$$\theta_{\mathbf{k}} \leftarrow m \theta_{\mathbf{k}} + (1-m) \theta_{\mathbf{q}}$$

Source: He et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 85 November 2, 2023

Ali Farhadi, Aditya Kusupati

Lecture 9 - 86

November 2, 2023

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020

November 2, 2023

Lecture 9 - 87

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	√	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 88 November 2, 2023

MoCo vs. SimCLR vs. MoCo V2

		ImageNet				
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longer unsupervised training follow:						
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** \times **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 89 November 2, 2023

MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch. † : based on our estimation.

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Source: Chen et al., 2020

Ali Farhadi, Aditya Kusupati

Lecture 9 - 90 November 2, 2023

Problem with MoCoV2: Need to keep around a set of negatives

Do we need these negatives?

Ali Farhadi, Aditya Kusupati

Lecture 9 - 91 November 2, 2023

Solution: DINO: self-distillation with no labels

- Similar to SimCLR and MOCO but with one big difference: no negatives
- Reformulates contrastive learning as knowledge distillation between a student and a teacher model.

November 2, 2023

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Lecture 9 - 92

Solution: DINO: self-distillation with no labels

 The teacher model is not trained: sg stands for stop-gradient: meaning that gradients are prevented from flowing back.

November 2, 2023

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Lecture 9 - 93

 The teacher model is like the momentum encoder. It is a running average of the student model

$$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\lambda} \boldsymbol{\theta}_t + (1 - \boldsymbol{\lambda}) \boldsymbol{\theta}_s$$

- The teacher sees a global view augmentation of the image
- Student only sees augmented local crops of the image

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Ali Farhadi, Aditya Kusupati

Lecture 9 - 94 November 2, 2023

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Ali Farhadi, Aditya Kusupati

Lecture 9 - 95 November 2, 2023

Ali Farhadi, Aditya Kusupati

Training tricks:

- **Centering**: prevents one dimension from dominating.
 - A constant value c is added to all dimensions of the teacher's output.
 - c is a running average of outputs

November 2, 2023

$$g_t(x) \leftarrow g_t(x) + c, \ c \leftarrow mc + (1-m) \frac{1}{B} \sum_{i=1}^B g_{\theta_t}(x_i)$$

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Lecture 9 - 96

Training tricks:

- **Sharpening**: Opposite of centering.
 - A temperature (Tau) hyperparameter is used to sharpen the distributions towards one dimension.

November 2, 2023

$$rac{\exp(g_{{ heta}_s}(x)^{(i)}/ au_s)}{\sum_{k=1}^{K}\exp(g_{{ heta}_s}(x)^{(k)}/ au_s)}$$

Source: Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021

Lecture 9 - 97

DINO code

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop. gs, gt: student and teacher networks C: center (K) tps, tpt: student and teacher temperatures # 1, m: network and center momentum rates gt.params = gs.params for x in loader: # load a minibatch x with n samples x1, x2 = augment(x), augment(x) # random views s1, s2 = gs(x1), gs(x2) # student output n-by-K t1, t2 = gt(x1), gt(x2) # teacher output n-by-K loss = H(t1, s2)/2 + H(t2, s1)/2loss.backward() # back-propagate # student, teacher and center updates update(gs) # SGD $(\mathbf{1})$ gt.params = 1*gt.params + (1-1)*gs.params C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)def H(t, s): t = t.detach() # stop gradient s = softmax(s / tps, dim=1) (2) t = softmax((t - C) / tpt, dim=1) # center + sharpen return - (t * log(s)).sum(dim=1).mean()

Ali Farhadi, Aditya Kusupati

Lecture 9 - 98 November 2, 2023

Results: DINO. Also DINO V2 just released last week

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5

Ali Farhadi, Aditya Kusupati

Lecture 9 - 99 November 2, 2023

Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning:

contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo

Source: van den Oord et al., 2018

Sequence-level contrastive learning:

contrastive learning based on sequential / temporal orders. Example: Contrastive Predictive Coding (CPC)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 100 November 2, 2023

Figure <u>source</u>

Ali Farhadi, Aditya Kusupati

Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Source: van den Oord et al., 2018,

Lecture 9 - 101 November 2, 2023

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: van den Oord et al., 2018,

Ali Farhadi, Aditya Kusupati

Lecture 9 - 102 November 2, 2023

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}) . The original paper uses GRU-RNN here.

Source: van den Oord et al., 2018,

Figure <u>source</u>

Ali Farhadi, Aditya Kusupati

Lecture 9 - 103 November 2, 2023

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})

3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

, where W_k is a trainable matrix.

Source: van den Oord et al., 2018,

Lecture 9 - 104 November 2, 2023

Figure <u>source</u>

CPC example: modeling audio sequences

Source: van den Oord et al., 2018,

Ali Farhadi, Aditya Kusupati

Lecture 9 - 105 November 2, 2023

CPC example: modeling audio sequences

Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC				
Phone classification					
Random initialization	27.6				
MFCC features	39.7				
CPC	64.6				
Supervised	74.6				
Speaker classification					
Random initialization	1.87				
MFCC features	17.6				
CPC	97.4				
Supervised	98.5				

Linear classification on trained representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,

Lecture 9 - 106 November 2, 2023

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.

Source: van den Oord et al., 2018,

Ali Farhadi, Aditya Kusupati

Lecture 9 - 107 November 2, 2023

CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext task-based self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.

Source: van den Oord et al., 2018,

Ali Farhadi, Aditya Kusupati

Lecture 9 - 108 November 2, 2023
A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+))>>\operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

Ali Farhadi, Aditya Kusupati

Lecture 9 - 109 November 2, 2023

SimCLR: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint

Ali Farhadi, Aditya Kusupati

Lecture 9 - 110 November 2, 2023

MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning

Ali Farhadi, Aditya Kusupati

Lecture 9 - 111 November 2, 2023

CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.

Ali Farhadi, Aditya Kusupati

Lecture 9 - 112 November 2, 2023

1. Contrastive pre-training

Contrastive learning between image and natural language sentences

plane car pepper the Text aussie pup a photo of Text Encoder dog a {object}. Encoder bird I₁ $I_1 \cdot T_1 \quad I_1 \cdot T_2$ I1.TN 3. Use for zero-shot prediction I_2 $I_2 \cdot T_1 \quad I_2 \cdot T_2$ T₁ Τ. Image I_3 Encoder Image $I_1 \cdot T_1 \quad I_1 \cdot T_2$ $I_1 \cdot T_N$ I1.T3 Encoder : INTN I_N $I_N \cdot T_1 \quad I_N \cdot T_2 \quad I_N \cdot T_3$ a photo of a dog.

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Ali Farhadi, Aditya Kusupati

2. Create dataset classifier from label text

Lecture 9 - 113 November 2, 2023

Contrastive learning on pixel-wise feature descriptors

Dense Object Net, Florence et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 114 November 2, 2023

Dense Object Net, Florence et al., 2018

Ali Farhadi, Aditya Kusupati

Lecture 9 - 115 November 2, 2023

Ali Farhadi, Aditya Kusupati

Lecture 9 - 116 November 2, 2023

Next time: Vision and Language + RNNs

Ali Farhadi, Aditya Kusupati

Lecture 9 - 117 November 2, 2023

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring Contrastive representation learning
 - Intuition and formulation
 - Instance contrastive learning: SimCLR and MOCO
 - Sequence contrastive learning: CPC

Frontier:

- Contrastive Language Image Pre-training (CLIP)

Lecture 9 - 118 November 2, 2023

Frontier: Contrastive Language–Image Pre-training (CLIP)

Ali Farhadi, Aditya Kusupati

Lecture 9 - 119 November 2, 2023

Self-Supervised Learning

General idea: pretend there is a part of the data you don't know and train the neural network to predict that.

Source: Lecun 2019 Keynote at ISSCC

Ali Farhadi, Aditya Kusupati

Lecture 9 - 120 November 2, 2023

"The Cake of Learning"

How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once ir a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data

> 10 \rightarrow 10,000 bits per sample

Learn good features through self-supervision

downstream tasks

feature

extractor

- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
 2019 IEEE International Solid-State Circuits Conference

1.1: Deep Learning Hardware: Past, Present, & Future

59

Y. LeCun

Source: Lecun 2019 Keynote at ISSCC

Ali Farhadi, Aditya Kusupati

Lecture 9 - 121 November 2, 2023

Can we do better?

Source: Chen et al., 2020b

Ali Farhadi, Aditya Kusupati

Lecture 9 - 122 November 2, 2023