Lecture 2:
Image Classification
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Administrative: Assignment 1
Due 10/20 11:59pm

K-Nearest Neighbor

Linear classifiers: SVM, Softmax
Two-layer neural network

Image features
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Administrative: Course Project

Project proposal due 10/27 (Friday) 11:59pm
Find your teammates on EdStem
Collaboration: EdStem

“Is X a valid project for 493G17?”

- Anything related to deep learning
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website
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Syllabus

Deep learning Fundamentals Practical training skills Applications >
Data-driven approaches Pytorch 1.4 / Tensorflow 2.0 Image captioning

Linear classification & kNN Activation functions Interpreting machine learning
Loss functions Batch normalization Generative Al

Optimization Transfer learning Fairness & ethics
Backpropagation Data augmentation Data-centric Al

Multi-layer perceptrons Momentum / RMSProp / Adam Deep reinforcement learning
Neural Networks Architecture design Self-supervised learning
Convolutions Diffusion

RNNs / LSTMs LLMs

Transformers
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Image Classification

A Core Task in Computer Vision

Today:

e The image classification task

e Two basic data-driven approaches to image classification
o K-nearest neighbor and linear classifier
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Image Classification: A core task in Computer Vision

Cat

» Dog
Bird
Truck
Plane

This image by Nikita is
licensed under CC-BY 2.0

(assume given a set of possible labels)
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

The Problem: Semantic Gap
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What the computer sees

An image is a tensor of integers
between [0, 255]:

This image by Nikita is
licensed under CC-BY 2.0

e.g. 800 x 600 x 3
(3 channels RGB)
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

This image by Nikita is
licensed under CC-BY 2.0

Ali Farhadi, Aditya Kusupati
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All pixels change when
the camera moves!
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: lllumination

This image is CC0 1.0 This image is CC0 1.0 This image is CC0 1.0 This image is CC0 1.0

RGB values are a function of surface materials, color, light source, etc.
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https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Occlusion

This image by jonsson is licensed

This image is CCO 1.0 public domain This image is CC0 1.0 public domain under CC-BY 2.0
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https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

; Bt
This image by Umberto Salvagnin This image by Umberto Salvagnin This image by sare bear is This image by Tom Thai is

is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 licensed under CC-BY 2.0 licensed under CC-BY 2.0
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https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Intraclass variation

This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Image classification is a building block for other
tasks

Medical Imaging

Ig t Malignant

Levy et al, 2016

Whale recognition

Galaxy Classification

Dieleman et al, 2014 Kaggle Challenge
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Image classification is a building block for other
tasks

L. A white teddy bear A man in a baseball A woman is holding
Image Captioning sitting in the grass uniform throwing a ball a cat in her hand
Vinyals et al, 2015
Karpathy and Fei-Fei, 2015

A man riding a wave A cat sitting on a A woman standing on a
on top of a surfboard suitcase on the floor beach holding a surfboard
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Image classification is a building block for other
tasks

Example: Playing Go

Where to
play next?
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Modern computer vision algorithms

Classifiers today take 1ms to classify images. And can handle thousands of categories.
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This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

An image classifier: can we implement this as a
normal software function?

def classify_image(image):
return cléss_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.
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This is why expert systems in the 80s led to the Al
winter.

BACKWARD CHAINING
GDAL: Hake $20.00

RULE: If the lawn is shaggy and
the car is dirty and ycu mow

EXPERT SYSTEM E the lawn and wash the car,

then Dad will give you $20.00

m Sdmplei z : : A 1

1
Input ¢ = \ : ‘ l
User Bg R es | Kr AR D h :
> < € Does the lawn Dces the car need
(A(iv_'_i(r-' nterface (_ -ngine | ase : ® need mowing? washing?

Non-expert
User

1
' Knowledge
from an Do you have a mewer?

v
' s ose? bucket? rags?
............................... Expert R N o

Originally called heuristic ; $ v

gas? electric? push?

programming prOjeCt. *** The inference engirne will test each rule or ask the

user for additional information.
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Attempts have been made

Find edges Find corners

- VAN D
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Machine Learning: Data-Driven Approach
1. Collect a dataset of images and labels

Example training set

Ali Farhadi, Aditya Kusupati Lecture 2 - 21 October 3, 2023



Example dataset: MNIST

SANE
¥

wn
o £ o
w — oo
2 o ©
g £ Y
5 0<
w bp @©
w o> £ E
C = .=
Q «
Vv oo — +
7,3 c v
S0 £ 8
O %X & x
O 00 O O
- N LN i

CORex3yx\Nnoeomnogo
NN —-M MmO O
N~Q~ 4NN Hh~>3
HOXNTFTUN ST NDO®~A
M N -~ NMN T
CVWVvbhsaddd—r-rNnVOwN

N~ QXN A s oo
TV eENS~CO&
VWI~NMmMo-YmIX~—-Dnhvih
M-S ~—FomAd%g oI
M= TR~ YT~V

October 3, 2023

Lecture 2 - 22

Ali Farhadi, Aditya Kusupati



Example dataset: CIFAR10

airplane £ Bl )§==ﬁ-ﬁ.
automobile!ﬂﬁmﬁﬁ 10 classes
bird q‘l i.?!&. 50k training images (5k per class)
cat B-B&mgﬂ 10k testing images (1k per class)
deer .T;“==!-f= 32x32 RGB images

dp i AP N B

- T35y

:lmg ‘u=§§= We will use this dataset for
;:.rse a%wj ='£ homework assignments

snip A ‘ !5* ar =
vuck g el N B
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Example dataset: CIFAR100

H Esrﬂp.[]"' 100 classes

-5 Py ‘n.m."ﬂ. 50k training images (500 per class)
gEEE EE%EE 10k testing images (100 per class)
T = . 32x32 RGB images
Ralri= - EaAR5

Ek YR | 7y 20 superclasses with 5 classes each:
’.v‘ g I&ﬂ .’ Agquatic mammals: beaver, dolphin,
ﬁ:ﬁ%% otter, seal, whale

! Yoe ; '_»__:’- "\«_,Ai
SRELNY M -VED

Trees: Maple, oak, palm, pine, willow
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Example dataset: ImageNet (ILSVRC challenge)

1000 classes

"9~ ~1.3Mtraining images (~1.3K per class)
- - 50K validation images (50 per class)
100K test images (100 per class)

Performance metric: Top 5 accuracy
=== Algorithm predicts 5 labels for each
= image; one of them needs to be right

\ @
dalmatian keeshond miniature schnauzer standard schnauzer giant schnauzer
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Example dataset: MIT Places

veterinarians office elevator door

i il A

bedroom cafetena

365 classes of different scene types

~8M training images
= > ¢ e 18.25K val images (50 per class)

o 328.5K test images (900 per class)
i HE S e

; conference center she ShOi n : ralnforest v I mages have va ri ab l e size’ Ofte n

resize to 256x256 for training
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Example dataset: Omniglot

TITXTH 1 1§

J;UAVT 71 P40 1 H |J 1623 categories: characters

0 VLD > [ WM 1 3 1 from50different alphabets
gg@@gﬂ)éﬂﬁ% 0 images per categor
FEFEHw wgs e

P ) h-{_ 1= E’T 3 D R gy oy Meantto test few shot learning
0GB P L =NV

AYULOCEY » o ¥
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Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels
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Nearest Neighbor Classifier
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First classifier: Nearest Neighbor

def train(images, labels): Memorize all

refurn model data and labels

def predict(model, test_images): Predict the label
SEIMOCEL =0 Precict: Labels > of the most similar
training image

return test_labels
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First classifier: Nearest Neighbor

deer bird

What is a
good
distance
metric?
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Distance Metric to compare images

L1 distance:  di(li, L) ZII” |

test image training image pixel-wise absolute value differences
56 | 32 | 10 | 18 10 | 20 | 24 | 17 46 | 12 | 14 | 1
90 | 23 | 128133 8 | 10 | 89 |100 82 (13|39 (33|
24| 26 |178|200| | 12 |16 |78 170|| |12 10 | 0 |30 |
2 | 0 [255]220 4 | 32 [233]112 2 | 32 |22 108
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import numpy as n . P
B Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ ( )is
pass

def train( n DA b
"X is N x D where each row is an example. Y is 1-dimension of size N """

Xtr= X
Jtr =y
def predict( WX

"o X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

np.sum(np.abs( Xtr - X[i,:]), axis = 1)

distances =
min index = np.argmin(distances)
Ypred[i] = .ytrimin_index]

return Ypred
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i t . . g
R LSS R Nearest Neighbor classifier
class NearestNeighbor:

def _init ( } iR

pass
def train( : X ay)s . . .
""" X is N x D where each row is an example. Y is 1-dimension of size N """ I\AEBrT]()r1ZZEB trEaIr1Ir1§J (iEitEi
Xtr= X
Jtr =y
def predict( X

“"* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num _test, dtype = .ytr.dtype)
for i in xrange(num test):

distances np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

min index = np.argmin(distances)
Ypred[i] = f.ytrimin_index]

return Ypred
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import numpy as n . P
B Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ ( )is
pass

def train( n DA b
"% X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtr= X
Jtr =y
def predict( X

""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

Ypred = np.zeros(num _test, dtype = .ytr.dtype)

for iin xrange(num_teét): For eaCh teSt image:

i Bhel LT EeYance ' i ' Find closest train image
distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1) H H
e S s sl Predict label of nearest image
Ypred[i] = f.ytrimin_index] #

return Ypred
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import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _ init_ ( )is
pass

Q: With N examples,
def train( B (e i . .
""" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt are tralnlng

and prediction?

Xtr= X
Jtr =y
def predict(self, X): Ans: Train 0(1 ),
"o X is N x D where each row is an example we wish to predict label for """ .
num_test = X.shape[0] predICt O(N)

Ypred = np.zeros(num test, dtype = .ytr.dtype)

| This is bad: we want
for i in xrange(num test): classifiers that are fast
oy \ | at prediction; slow for
distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1) trfﬂir1ir1gg if; C)P(
min index = np.argmin(distances)
Ypred[i] = f.ytrimin_index]

return Ypred
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import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _ init_ ( )is

pass .
Many methods exist for
def train( G AT f t / . t t
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ as apprOXIma € neares
Xtr = X neighbor
Jtr =y
def predict(self, X): A good implementation:
""" X is N x D where each row is an example we wish to predict label for """ https://aithub.com/facebookresearch/faiss
num_test = X.shape[0]
Ypred = np.zeros(num test, dtype = .ytr.dtype)
for i in xrange(num test):
distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances) Johnson et al, “Billion-scale similarity search with
Ypred[i] = .ytrimin_index] § v GPUSs”, arXiv 2017

return Ypred
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https://github.com/facebookresearch/faiss

Example
outputs from
a NN
classifier on
CIFAR:
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Example
outputs from
a NN
classifier on
CIFAR:

Ali Farhadi, Aditya Kusupati
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Assume each dot is a training . >
image. . . .

Assume all images are two
dimensional. e e Sy

What does this classifier look
like?

1-nearest neighbor
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Decision boundary is the o °
boundary between two .
classification regions - I8

1-nearest neighbor
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Yellow point in the middle of g .
green might be mislabeled. . .

1-NN is not robust to label noise. e * BN Q

1-nearest neighbor
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K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points
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K-Nearest Neighbors

Using more neighbors helps smooth out rough
decision boundaries
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K-Nearest Neighbors

Find more labels near uncertain white regions
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K-Nearest Neighbors

Larger K smooths boundaries more and leads to
more uncertain regions
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K-Nearest Neighbors: Distance Metric
L1 (Manhattan) distance L2 (Euclidean) distance

di(I, 1) Zw’ ed (L) = [ (17 - 1)

dh
OO
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
dilE %) Zl[” hed do(I 1) = |3 (1P - 13)
K=1 K=1
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Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about
the algorithms themselves.

Very problem/dataset-dependent.
Must try them all out and see what works best.
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Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

train
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Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the training data perfectly on training data
train
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Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the training data perfectly on training data
train

Idea #2: choose hyperparameters
that work best on test data

train test
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Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the training data perfectly on training data
train
Idea #2: choose hyperparameters BAD: No idea how algorithm
that work best on test data will perform on new data
train test

Never do this!
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Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works
that work best on the training data perfectly on training data
train
Idea #2: choose hyperparameters BAD: No idea how algorithm
that work best on test data will perform on new data
train test
Idea #3: Split data into train, val; choose Better!

hyperparameters on val and evaluate on test

train validation test
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Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Ali Farhadi, Aditya Kusupati
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane a WHzﬁ—ﬁ.
automobile?!ﬂﬁ@ﬂg
vrd SRR S T
cat T et S R O
deer [ e i o 0 9 i
dog EEREFEER AN
w  HENe®-DHSE
horse mu.&&zg
oo o e
truck ﬂjmﬂ-yﬁm

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane B ) o5 (] Bl = 5 o
utomonile [ 58 3 B 2
d SYRN ] ST
cat I 0 T g 0 6 O
e
oz WEIREFHER AN
g  DIENa®”ESE
horse  uy e N oV O 1 M 5% IR
ship i o S e i
ruck @ Rl sl

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Ali Farhadi, Aditya Kusupati

Test images and nearest neighbors

A~ HANNSEEEEEO
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=~ NSNS
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i - 2 55 i I G ] N B N
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Setting Hyperparameters Example of

| | Cross-validation on k | | 5-fold cross-validation
for the value of k.

031

i , Each point: single
outcome.

T 029}
[

[
2 028}

]
b4

The line goes

through the mean, bars
indicated standard
deviation

i
8
S o27f

0.26 -

025

: 26 . ] (Seems that k ~= 7 works best
k for this data)

0.24
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent
any(*) function!

5 Training points

2.00

150

1.25 —— True function
> 100 e Training points
s —— Nearest Neighbor function

0.50 1

0.25

0.00 1

0.0 0.2 0.4 0.6 0.8 10
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent
any(*) function!

10 Training points

2.00

1751

150

125 —— True function

e e Training points

0.75

-— —— Nearest Neighbor function
0.25

0.00 1

0.0 0.2 0.4 0.6 08 10
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent
any(*) function!

20 Training points

—— True function
=100 e Training points
—— Nearest Neighbor function

0.0 0.2 0.4 0.6 08 10
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest neighbor can represent
any(*) function!

100 Training points

2.00
175
150
125 —— True function
> 1.00 . . .
o e Training points
050 —— Nearest Neighbor function
0.25
0.00 i i
0.0 0.2 04 0.6 08 10
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Problem: curse of dimensionality

Curse of dimensionality: : For uniform coverage of Dimensions = 3
space, number of training points needed grows Points = 4°
exponentially with dimension
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Problem: curse of dimensionality

Curse of dimensionality: : For uniform coverage of
space, number of training points needed grows
exponentially with dimension

Number of possible 32x32 binary images:

232x32 — 10308

Number of elementary particles in the visible universe:
1097
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K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and
must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the K nearest
training examples

Distance metric and K are hyperparameters
Choose hyperparameters using the validation set;

Only run on the test set once at the very end!
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k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

Original image s Original Occluded Shifted (1 pixel) Tinted

CCO0 public domain

(All three images on the right have the same pixel distances to the one on the left)
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https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

Linear Classifier
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Parametric Approach

Image

> f(x,W)
Array of 32x32x3 numbers
(3072 numbers total) VV
parameters
or weights

>

10 numbers giving

class scores
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Parametric Approach: Linear Classifier

f(x,W) = WXx

Image

- f(x,W) > 10 numbers giving
T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1
|mage | f(X’W) = WE

) 10x1 10x3072
10 numbers giving
| > f(x,W) >

T class scores
Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1
f(x,W)|=|WK +b | 10x1
10x1 10x3072

- f(x,W) > 10 numbers giving
T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights

Image
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Neural Network

| ot
| :

.

Linear
classifiers

This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall CIFAR10

airplane

automobile §
bird
cat 50,000 training images
deer each image is 32x32x3
dog 10,000 test images.
frog

horse

ship

QR P

truck
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

> ;;ﬂ J ,3
sy

7 s
ol ‘Yﬁ”‘ e

% 3
Wit

% o
’,‘ e

Input image

56

231

24
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\23 0.2 | -0.5 | 01 | 2.0 1.1 -96.8 | Cat score
7= 1.5 | 1.3 | 21 | 0.0 4+ | 32 | = | 4379 | Dog score
24 502
.5 24
= 0 [025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\23 0.2 | -0.5 | 01 | 2.0 1.1 -96.8 | Cat score
o Yo 1.5 | 1.3 | 21 0.0 4+ | 3.2 | = | 437.9 | Dog score
244275
RS 24
T 0 0.25 | 0.2 | -0.3 -1.2 61.95 | Ship score
Input image

2
(2,2) W b 3,)

(4,)

(3,4) (3,)
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

\% g :;{?1 L r

Vi
F
v

e

Input image

Likelihood of being a cat

02 | 05| 01 | 2.0
1.5 | 1.3 | 21 | 0.0
0 |025| 0.2 | -0.3

56
1.1 -96.8 | (at score

231
4| 3.2 | = | 437.9 | Dog score

24
-1.2 61.95 | Ship score

2
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Algebraic viewpoint: Example with an image with 4 pixels, and 3
classes (cat/dog/ship)

Flatten tensors into a vector

56
\%,‘5 > 02 | -0.5 | 0.1 2.0 1.1 -96.8 | (at score
ﬂgé% _{’34,,. 231
T 15 | 1.3 | 21 | 0.0 4+ | 32 | = | 437.9 | Dog score
24 5"N27 24
G Y
= 0 [025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

W b

Cat template
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Algebraic viewpoint: Bias trick to simply computation

Flatten tensors into a vector

56
‘23 02 | 05| 01 | 20 | 1.1 -96.8 | Cat score
7= 1.5 | 1.3 | 21 | 0.0 | 3.2 — | 437.9
2452 — Dog score
R N 24
o 0 (025 0.2 | -03]-1.2 61.95 | Ship score
Input image )
) 1
(3,5)
(5,)
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Visual Viewpoint: learning templates

Input image

A A
Algebraic viewpoint: 02 | 05 15 | 13 0 | .25
w
Stretch pixels into column 0.1 2.0 21 0.0 02 | -0.3
56 v \ \
ke 23 02 | 05|01 |20 1.1 -96.8 1.1 3.2 1.2
b - b
4 J‘; 15 [ 13 | 21 | 00 4|32 |= | a379 v v v
" =) 24
0 (025 02 |03 12 61.95 Score -96.8 437.9 e
Input image >
(2,2) W (3,4) b (3)

4,
(4) 3)
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Visual Viewpoint: learning templates

airplane )ﬁ = - ﬁ i . Input image

R R i,
bird TERTH S o
cat I et 0 I 2 ' _ '
deer | = u ! i 02 | 05 15 | 13 0 | 25
dog N ! E u E _ﬂ k = 04 | 20 21 | 0.0 02 | -03
frog a®&~pRbEE . . '
horse @ ! H b 1.1 3.2 12
ship = ! ; - = E Score -9:.3 4:37.9 61.*95
truck 1

Ali Farhadi, Aditya Kusupati Lecture 2 - 82 October 3, 2023



Visual Viewpoint: learning templates

airplane ‘ )ﬁ= =--. Input image
automoblle.g mﬁmﬂﬁ

bird ST EETHKE \

cat ! uggnngﬂ Y \ Y
deer .A’ﬂ ﬂ..-E " 0.2 | 05 15 | 13 0 | 25
dog iﬂ \!Enlm 01 | 20 21 | 0.0 0.2 | 03
wy BN & DG 2 I
horse gy e PO P20 I % R 5 > N - s
ship E . ﬁ e . . i B a E Score | -9.8 437.9 61.95
wuck @ Rl M s @

horse

plane deer

. ' . ! |
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Visual Viewpoint: learning templates

airplane ')ﬁ==-i.
automoblle. EQ@GE
bird = ..fﬁ.
cat T et 0 R
deer . ' .--E
dog whiRRFEDOR AN
frog u ’ ..f?.
horse R 12 5 TR
ship ..i.ﬁg
truck ‘E
plane d

Ali Farhadi, Aditya Kusupati

Input image

\J A \
02 | -05 1.5 | 1.3 0 25
W
01 | 2.0 21 | 0.0 02 | -0.3
\ \ \
b 1.1 3.2 12
v v v
Score -96.8 437.9 61.95
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Visual Viewpoint: learning templates

airplane ' )ﬁ= =--. Input image

=

LT

Tal] BETH M

) 0 T et R B ! , |
A’ﬂ ﬂ..-E - 02 | 05 15 | 1.3 0 | 25
H \!Enlm 01 | 2.0 21 | 0.0 02 | 0.3
BSae"REEE ; ; .
o v B e R D I 5 TR b f -
Eﬁ e . i . a E Score | -9.8 437.9 61.95
EhadWresln

a
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Geometric Viewpoint: linear decision boundaries

o

airplane classifie/ &
Array of 32x32x3 numbers
deer classifier (3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Geometric Viewpoint: linear decision boundaries

= g’ f(x,W)=Wx +Db

airplane classifier g
‘

deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Geometric Viewpoint: linear decision boundaries

Array of 32x32x3 numbers
(3072 numbers total)

/

4
airplane classifier/ &%
NN N\
T :
00‘::::” > v
“" NN ‘$"‘“&
4 8%
& S

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard cases for a linear classifier

Class 1: Class 1: Class 1:

First and third quadrants 1<=L2norm<=2 Three modes
Class 2 Class 2.: Class 2.:
Second and fourth quadrants Everything else Everything else
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Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

ENEEIT]
0 0 0 ‘
0 1 1
1 0 1
i 1 0 X

I
i
!
18
18
k
i
|
i
b
|
i
'
i
ll
i
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Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space

3 20 11 -96.8 | Cat score

plane car bard cat deer
dog frog horse ship truck

00 | | +| 32| = | 43729 | pog score

2 | 03 | |

1.2 61.95 | Ship score
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Coming up: f(x,W) =Wx +Db

- Loss function (quantifying what it means to have a
- Optimization good™ W)
- ConVvNets! (start with random W and find a W that

minimizes the loss)

(tweak the functional form of f)
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