
Sequential Decision Making

WARNING 1

Do not use this stuff because it’s cool, or it seems fancy or because
you think it works better.

It doesn’t work better.

It’s worse. It’s provably worse.

You use these methods when you don’t have any other options.

WARNING 2

We only have time to cover the high level intuition of these methods
in one lecture, so a lot of this will be incomplete.

The goal is to give you a flavor for the kinds of things you need to
pay attention to when using RL.

Sequential Decision Making

Environment

Sequential Decision Making

Observation (x)

Environment

Sequential Decision Making

Action (u)Policy (π)

Environment

Observation (x)

Sequential Decision Making

Environment

Action (u)Policy (π)Observation (x)

Sequential Decision Making

Environment

Action (u)Policy (π)Observation (x)

Sequential Decision Making

Environment

Action (u)Policy (π)Observation (x)

Reward (r)

Sequential Decision Making

…
x1 a1 x2 a2 x3 a3

r2 r3 r4

Two High Level Categories

Imitation Learning (covered briefly last time)

- Learn from advice/instructions
- Learn from a knowledgeable teacher

Reinforcement Learning (today)

- Learn from a reward signal that tells us how well we did
- Learn by trial and error

Reinforcement Learning

Mnih et al. 2013 “Playing Atari with Deep Reinforcement Learning”

http://www.youtube.com/watch?v=rQIShnTz1kU

Silver et al. 2016 “Mastering the game of Go with deep neural networks and tree search”

OpenAI et al. 2019 “Solving Rubik's Cube with a Robot Hand”

http://www.youtube.com/watch?v=kVmp0uGtShk

Vinyals et al. 2019 “Grandmaster level in StarCraft II using multi-agent reinforcement learning”
Berner et al. 2019 “Dota 2 with large scale deep reinforcement learning”

http://www.youtube.com/watch?v=tfb6aEUMC04

Haarnoja et al. 2023 “Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning”

http://www.youtube.com/watch?v=KSvLcr5HtNc

What is Common About These Domains?

What is Common About These Domains?

1. Difficult to provide direct instruction

What is Common About These Domains?

1. Difficult to provide direct instruction
2. Search methods may not be tractable

What is Common About These Domains?

1. Difficult to provide direct instruction
2. Search methods may not be tractable
3. May not even know how good optimal performance can be (AlphaGo)

Policy Gradient
(REINFORCE aka Vanilla Policy Gradient)

(Ancestor of A2C, A3C, TRPO, PPO)

Policy Gradient

● States/Observations : x

x1

● States/Observations : x
● Policy : π

x1 π

Policy Gradient

● States/Observations : x
● Policy : π

x1 π

This is what we
are trying to learn

Policy Gradient

● States/Observations : x
● Policy : π
● Actions Space : u

x1 u1π

This is what we
are trying to learn

Policy Gradient

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

Environmentx1 u1π x2

This is what we
are trying to learn

r2

Policy Gradient

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 u1π x2

This is what we
are trying to learn

Reward Function

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

Reward Function

p(u1=A|x1)

A~p(u1=B|x1)

p(u1=C|x1)

x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

Idea 1: If r2 is kind of the opposite of a
loss function (something we want to
maximize rather than minimize), can we
just backprop through this chain of
operations?

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 1: If r2 is kind of the opposite of a
loss function (something we want to
maximize rather than minimize), can we
just backprop through this chain of
operations?

Unfortunately, we don’t know the
reward function or state-transition
probabilities…

x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 1: If r2 is kind of the opposite of a
loss function (something we want to
maximize rather than minimize), can we
just backprop through this chain of
operations?

Unfortunately, we don’t know the
reward function or state-transition
probabilities, so we can’t backprop
through the reward function.

x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 1: If r2 is kind of the opposite of a
loss function (something we want to
maximize rather than minimize), can we
just backprop through this chain of
operations?

Unfortunately, we don’t know the
reward function or state-transition
probabilities, so we can’t backprop
through the reward function.

Sampling is also
not differentiable* so
we can’t backprop this
step either.

*there are hacks around this though

x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 1: If r2 is kind of the opposite of a
loss function (something we want to
maximize rather than minimize), can we
just backprop through this chain of
operations?

Unfortunately, we don’t know the
reward function or state-transition
probabilities, so we can’t backprop
through the reward function.

Sampling is also
not differentiable* so
we can’t backprop this
step either.

*we may see a way around this in a later lecture

NO
x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2: Can we just increase or decrease
the probability of the sampled action
based on how good r2 is?

x2

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2: Can we just increase or decrease
the probability of the sampled action
based on how good r2 is?

Remember that this is one action in a
large sequence though! What if x2 is
terrible?

x2

Policy Gradient

r2

x2

x1 r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2: Can we just increase or decrease
the probability of the sampled action
based on how good r2 is?

Remember that this is one action in a
large sequence though! What if x2 is
terrible?

π u2

ST

RF

r3
So we also need to think
about future rewards as well

Policy Gradient

r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2: Can we just increase or decrease
the probability of the sampled action
based on how good r2 is?

Remember that this is one action in a
large sequence though! What if x2 is
terrible?

π u2

ST

RF

So we also need to think
about future rewards as well

NO… but

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2.5: Can we just increase or
decrease the probability of the sampled
action based on how good the sum of
future rewards is?

π u2

ST

RF

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

Idea 2.5: Can we just increase or
decrease the probability of the sampled
action based on how good the sum of
future rewards is?

YES! This is the rough intuition behind
policy gradients.

π u2

ST

RF

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

One more thing to say about this though.

π u2

ST

RF

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

One more thing to say about this though.
We just saw what can happen if x2 is
bad…

π u2

ST

RF

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

One more thing to say about this though.
We just saw what can happen if x2 is bad,
but there’s another thing that can cause
r3 to be bad…

π u2

ST

RF

Policy Gradient

r3r2

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

One more thing to say about this though.
We just saw what can happen if x2 is bad,
but there’s another thing that can cause
r3 to be bad and it’s us!

π u2

ST

RF

Policy Gradient

r3r2

$10M If someone offers you $10 million to
jump this ramp on a skateboard do you

take it?

YES!

If someone offers you $10 million to
jump this ramp on a skateboard do you

take it?

If you are Tony Hawk:

NO!

If someone offers you $10 million to
jump this ramp on a skateboard do you

take it?

If you are Aaron Walsman with
grad student health insurance:

● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
x1 π x2

This is what we
are trying to learn

~

p(u1=A|x1)

p(u1=B|x1)

p(u1=C|x1) Reward Function
A

The point is that r3 depends not only on
the physical environment, but also the
capability of our current model π! This
will come back to haunt us later!

π u2

ST

RF

Policy Gradient

r3r2

How do we adjust the probability based on the sum of rewards?

Policy Gradient

How do we adjust the probability based on the sum of rewards?

We will look at two ways:

Policy Gradient

How do we adjust the probability based on the sum of rewards?

We will look at two ways:

1. Derivation!

Policy Gradient

How do we adjust the probability based on the sum of rewards?

We will look at two ways:

1. Derivation!
2. Simple-ish Intuition!

Policy Gradient

How do we adjust the probability based on the sum of rewards?

We will look at two ways:

1. Derivation!
2. Simple-ish Intuition!

Policy Gradient

So the derivation… I was actually going to walk through all of this, but then realized we
wouldn’t have time.

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

So the derivation… I was actually going to walk through all of this, but then realized we
wouldn’t have time. This is the important part though, this is the “answer.”

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

The objective
function

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

The objective
function

Model
parameters

(NN weights)

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

The objective
function

Model
parameters

(NN weights)

Expectation is with respect to
unknown transition dynamics and

our own action distribution

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

The objective
function

Model
parameters

(NN weights)

Expectation is with respect to
unknown transition dynamics and

our own action distribution

The sum of future rewards

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

The objective
function

Model
parameters

(NN weights)

Expectation is with respect to
unknown transition dynamics and

our own action distribution

The sum of future rewards
There is often a discount factor in
here, but we will ignore it for now

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

So what we want is to maximize this thing, which is the expected sum of future rewards

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

And what we want is the gradient
of this objective function…

…so we can adjust our network
parameters in the direction that

increases this objective.

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

This is the “answer” that we highlighted earlier

What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

What it says is that the
gradient is the sum over all

steps in a trajectory…

…of the log of the probability
of taking whichever action

was taken…

…times the empirical return
(the sum of future rewards).

How do we adjust the probability based on the sum of rewards?

We will show this two ways:

1. Derivation!
2. Simple-ish Intuition!

Policy Gradient

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

∑i=0…9 exi

exi

0

1

2

3

4

5

6

7

8

9

Normalized
Probabilities (pxi)

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

∑i=0…9 exi

exi

0

1

2

3

4

5

6

7

8

9

Normalized
Probabilities (pxi)

0

1

2

3

4

5

6

7

8

9

Target (qxi)

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

∑i=0…9 exi

exi

0

1

2

3

4

5

6

7

8

9

Normalized
Probabilities (pxi)

0

1

2

3

4

5

6

7

8

9

Target (qxi)

-∑i=1…9log(pxi) qxi

Cross Entropy

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

∑i=0…9 exi

exi

0

1

2

3

4

5

6

7

8

9

Normalized
Probabilities (pxi)

0

1

2

3

4

5

6

7

8

9

Target (qxi)

…
-log(px6) 0
-log(px7) 1
-log(px8) 0

…

Cross Entropy

-log(px7) 1

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

0

1

2

3

4

5

6

7

8

9

Unnormalized Log
Probabilities

∑i=0…9 exi

exi

0

1

2

3

4

5

6

7

8

9

Normalized
Probabilities (pxi)

0

1

2

3

4

5

6

7

8

9

Target (qxi)

Cross Entropy

-log(px7) 1

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

Policy Gradient

Cross Entropy

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

-log(px+) 1

Policy Gradient

Cross Entropy

The “correct” class label

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

-log(px+) 1

Policy Gradient

Cross EntropyPolicy Gradient

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

-log(px+) 1

Policy Gradient

Cross EntropyPolicy Gradient

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

∇θ-log(px+) 1

Policy Gradient

Cross Entropy GradientPolicy Gradient

How do we adjust the probability based on the sum of rewards?

Cross Entropy Minimization:

∇θ-log(px+) 1

Policy Gradient

Cross Entropy GradientPolicy Gradient

Policy Distribution Class Distribution

This is the cross
entropy gradient

scaled by the return

How do we adjust the probability based on the sum of rewards?

Take the update you would make to the network if the action you took was “correct”
according to a standard classification objective and scale it by the return

∇θ-log(px+) 1

Policy Gradient

Cross Entropy GradientPolicy Gradient

Policy Distribution Class Distribution

One Caveat:

What is the optimal policy for
both of these environments?

Policy Gradient

-10

+10

-1

+1

Reward:

Crashing: -1

Making the first turn: +1

Reward:

Crashing: -10

Making the first turn: +10

One Caveat:

What about these two?

Policy Gradient

+4

+5

-1

+1

Reward:

Crashing: -1

Making the first turn: +1

Reward:

Crashing: +4

Making the first turn: +5

One Caveat:

The “ordering” of policies is
invariant to linear
transformations of reward!

Policy Gradient

+4

+5

-1

+1

Reward:

Crashing: -1

Making the first turn: +1

Reward:

Crashing: +4

Making the first turn: +5

One Caveat:

The “ordering” of policies is
invariant to linear
transformations of reward!

But our learning rule is definitely
sensitive to these
transformations!

Policy Gradient

+4

+5

-1

+1

Reward:

Crashing: -1

Making the first turn: +1

Reward:

Crashing: +4

Making the first turn: +5

The simplest fix:

Subtract the mean and divide by
the standard deviation before
using returns for training.

Encourages above average
actions while discouraging
below-average actions.

Policy Gradient

+4

+5

-1

+1

Reward:

Crashing: -0.707

Making the first turn: +0.707

Reward:

Crashing: -0.707

Making the first turn: +0.707

- mean
std()

Second Caveat:

Some states are actually better
than others.

Policy Gradient

Second Caveat:

Some states are actually better
than others.

Imagine our episode only lasts
for a certain number of steps.

Policy Gradient

Second Caveat:

Some states are actually better
than others.

Imagine our episode only lasts
for a certain number of steps.

And you get reward for making
progress along the way.

Policy Gradient

+1 +1
+1

+1

+1

+1

Second Caveat:

Some states are actually better
than others.

Imagine our episode only lasts
for a certain number of steps.

And you get reward for making
progress along the way.

What happens?

Policy Gradient

+1 +1
+1

+1

+1

+1

Second Caveat:

Some states are actually better
than others.

Imagine our episode only lasts
for a certain number of steps.

And you get reward for making
progress along the way.

What happens?

Policy Gradient

+1 +1
+1

+1

+1

+1

How good can
we do here?

How good
can we do

here?

Second Caveat:

Some states are actually better
than others.

Imagine our episode only lasts
for a certain number of steps.

And you get reward for making
progress along the way.

What happens?

Policy Gradient

+1 +1
+1

+1

+1

+1
Any action we

take here looks
great…

…while any
action here
looks bad.

The simplest fix:

Train a second “baseline”
network to estimate future
returns of each state.

Subtract the baseline from
returns.

Policy Gradient

+1 +1
+1

+1

+1

+1
Actions here are
scored relative

to a higher
baseline…

…than
actions

here.

- mean
std()- baseline(st)

Ok, so everything we’ve done so far has only shown us how to do a single update. How
do we turn this into an entire algorithm?

Policy Gradient

Policy Gradient

1. Collect data by letting the agent drive in the
environment

+1

+1 -1

+1 +1

+1

Policy Gradient

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

+1

+1 -1

+1 +1

+1

γ = 0.9

1.089

0.1

-1

2.71
1.9

1

Policy Gradient

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

+1

+1 -1

+1 +1

+1

γ = 0.9

1.0937

-0.6628

1.3337
0.7141

-0.0256

-1.5042

Policy Gradient

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

4. Update the baseline by training it to match
the current returns at each of the states
visited

+1

+1 -1

+1 +1

+1

γ = 0.9

1.0937

-0.6628

1.3337
0.7141

-0.0256

-1.5042

Baseline Targets

Policy Gradient

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

4. Update the baseline by training it to match
the current returns at each of the states
visited

5. Update the Policy using the policy gradient
and the returns from step 3 offset by the
baseline

+1

+1 -1

+1 +1

+1

γ = 0.9

1.0937

-0.6628

1.3337
0.7141

-0.0256

-1.5042

Policy Gradient

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

4. Update the baseline by training it to match
the current returns at each of the states
visited

5. Update the Policy using the policy gradient
and the returns from step 3 offset by the
baseline

6. Repeat

+1

+1 -1

+1 +1

+1

γ = 0.9

1.0937

-0.6628

1.3337
0.7141

-0.0256

-1.5042

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

4. Update the baseline by training it to match
the current returns at each of the states
visited

5. Update the Policy using the policy gradient
and the returns from step 3 offset by the
baseline

6. Repeat

Policy Gradient

In the basic policy
gradient algorithm, these
two parts only train on the
most recent data, can we
somehow keep data
around from the past like
we did with DAgger and
keep training on that too?

In the basic policy
gradient algorithm, these
two parts only train on the
most recent data, can we
somehow keep data
around from the past like
we did with DAgger and
keep training on that too?

1. Collect data by letting the agent drive in the
environment

2. Compute returns from the rewards in the
trajectories

3. Normalize the returns using the mean, and
std

4. Update the baseline by training it to match
the current returns at each of the states
visited

5. Update the Policy using the policy gradient
and the returns from step 3 offset by the
baseline

6. Repeat

Policy Gradient

NO!

Why not?

Policy Gradient

Why not?

Let’s consider the trajectory that crashed.

Policy Gradient

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042

Why not?

Let’s consider the trajectory that crashed.

And let’s assume that after training for a while,
we would learn from our mistakes and perform
better from these intermediate states.

Policy Gradient

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042

We would get
completely

different better
numbers if we
took similar
actions now

Why not?

Let’s consider the trajectory that crashed.

And let’s assume that after training for a while,
we would learn from our mistakes and perform
better from these intermediate states.

But if we keep around the old data and keep
training on it, the return values no longer reflect
how well we would do if we take this action.

Policy Gradient

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042
STALE!

We would get
completely

different better
numbers if we
took similar
actions now

Why not?

Let’s consider the trajectory that crashed.

And let’s assume that after training for a while,
we would learn from our mistakes and perform
better from these intermediate states.

But if we keep around the old data and keep
training on it, the return values no longer reflect
how well we would do if we take this action.

For this reason, we call these algorithms
“On Policy” because they only work when training
from data generated by the CURRENT policy.

Policy Gradient

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042
STALE!

We would get
completely

different better
numbers if we
took similar
actions now

Correlated Data!

What is good about this?

Policy Gradient

What is good about this?

- Doesn’t require expert advice!

Policy Gradient

What is good about this?

- Doesn’t require expert advice!
- Can potentially learn a model better than any performance level you’re aware of

Policy Gradient

What is bad about this?

Policy Gradient

What is bad about this?

- So slow!

Policy Gradient

What is bad about this?

- So slow!
- Only get feedback on one action at a time (scales with size of action space)

Policy Gradient

What is bad about this?

- So slow!
- Only get feedback on one action at a time (scales with size of action space)
- Combining feedback from the future may be confusing (depends on horizon)

Policy Gradient

What is bad about this?

- So slow!
- Only get feedback on one action at a time (scales with size of action space)
- Combining feedback from the future may be confusing (depends on horizon)
- Have to constantly throw away your data (reuse data 100x in other settings)

Policy Gradient

Off-Policy Methods
(DQN, DDPG, SAC)

We discovered that we cannot train on old data
when using policy gradient.

If we have some data from the beginning of
training…

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042

The Problem With On-Policy Methods

We discovered that we cannot train on old data
when using policy gradient.

If we have some data from the beginning of
training and then improve our performance…

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042

The Problem With On-Policy Methods

We discovered that we cannot train on old data
when using policy gradient.

If we have some data from the beginning of
training and then improve our performance, the
return information that we collected when we
gathered the data is no longer relevant. The data
is stale.

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042
STALE!

We would get
completely

different better
numbers if we
took similar
actions now

The Problem With On-Policy Methods

We discovered that we cannot train on old data
when using policy gradient.

If we have some data from the beginning of
training and then improve our performance, the
return information that we collected when we
gathered the data is no longer relevant. The data
is stale.

We said that this is called “On-Policy” because
we can only train on data collected with the
current policy.

+1

+1 -1

γ = 0.9

1.0937

-0.6628

-1.5042
STALE!

We would get
completely

different better
numbers if we
took similar
actions now

The Problem With On-Policy Methods

Why is this bad?

If your environment is a really fast simulator
that’s very cheap to run, it’s not that bad.

The Problem With On-Policy Methods

Why is this bad?

If your environment is a really fast simulator
that’s very cheap to run, it’s not that bad.

But if your environment is an expensive robot that
can break if you do something wrong, then it’s a
huge burden.

The Problem With On-Policy Methods

Why is this bad?

If your environment is a really fast simulator
that’s very cheap to run, it’s not that bad.

But if your environment is an expensive robot that
can break if you do something wrong, then it’s a
huge burden.

Your main loop is:

1. Collect data on the robot (Manual labor!)
2. Train the robot using the data

The Problem With On-Policy Methods

Latest Policy

Latest Data

Train Collect
Data

Why is this bad?

If your environment is a really fast simulator
that’s very cheap to run, it’s not that bad.

But if your environment is an expensive robot that
can break if you do something wrong, then it’s a
huge burden.

Your main loop is:

1. Collect data on the robot (Manual labor!)
2. Train the robot using the data

It’s also very inconvenient if you have to keep
switching back and forth frequently.

The Problem With On-Policy Methods

Latest Policy

Latest Data

Train Collect
Data

It is common to measure the performance of RL
algorithms using “Sample Complexity” or the
amount of interactions you have need to have
with an environment in order to reach a certain
performance level.

The Problem With On-Policy Methods

It is common to measure the performance of RL
algorithms using “Sample Complexity” or the
amount of interactions you have need to have
with an environment in order to reach a certain
performance level.

On-Policy methods usually have very high Sample
Complexity because you need to interact with the
environment every time you want to improve your
model.

The Problem With On-Policy Methods

It is common to measure the performance of RL
algorithms using “Sample Complexity” or the
amount of interactions you have need to have
with an environment in order to reach a certain
performance level.

On-Policy methods usually have very high Sample
Complexity because you need to interact with the
environment every time you want to improve your
model.

We can also measure how many training steps
we need, but in almost all applications, training
steps are much cheaper than interacting with the
environment to collect data.

The Problem With On-Policy Methods

The x-axis is environment steps, not training steps!

Program Sketch:

What We Would Like

Program Sketch:

1. initialize an empty dataset

What We Would Like

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

What We Would Like

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction

with the environment

What We Would Like

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction

with the environment
b. Add the data to a growing dataset

(like DAgger)

What We Would Like

Dataset

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction

with the environment
b. Add the data to a growing dataset

(like DAgger)
c. for n steps:

i. Do one training step on a
randomly sampled batch from
the dataset

What We Would Like

Dataset

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction

with the environment
b. Add the data to a growing dataset

(like DAgger)
c. for n steps:

i. Do one training step on a
randomly sampled batch from
the dataset

What We Would Like

Dataset

Saving old data into a large dataset and
sampling random batches has the additional
advantage of providing data diversity in each
batch.

Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction

with the environment
b. Add the data to a growing dataset

(like DAgger)
c. for n steps:

i. Do one training step on a
randomly sampled batch from
the dataset

What We Would Like

And just to reiterate, in Policy
Gradient and other On-Policy
methods, we can’t store a large
dataset and have to train only
on the most recent data.

Let’s unpack our previous illustration:

How do we get what we want?

Let’s unpack our previous illustration:

We showed that the returns captured early on…

+1

-1

Training ProgressReturn: 0

How do we get what we want?

Let’s unpack our previous illustration:

We showed that the returns captured early on may not reflect the returns we will see after our
policy has improved if we were to visit a similar state.

+1

-1

+1

+1 +1

+1 +1

Training ProgressReturn: 0

Return: 5

How do we get what we want?

Let’s unpack our previous illustration:

Let’s label the actions that we took originally as ai
old…

+1

-1

+1

+1 +1

+1 +1
a1

old

a2
old

Training ProgressReturn: 0

Return: 5

How do we get what we want?

Let’s unpack our previous illustration:

Let’s label the actions that we took originally as ai
old and the actions we would take in the future as

ai
new.

+1

-1

+1

+1 +1

+1 +1
a1

old

a2
old

a2
new

a3
new

a4
new

a5
new

Training ProgressReturn: 0

Return: 5

How do we get what we want?

Let’s unpack our previous illustration:

Next note that the first step of this experience is actually still fine. If I take action a1
old the reward

that I originally got does not depend on the shift in policy distributions.

+1

-1

+1

+1 +1

+1 +1
a1

old

a2
old

a2
new

a3
new

a4
new

a5
new

Training ProgressReturn: 0

Return: 5

Still Fine

How do we get what we want?

Let’s unpack our previous illustration:

Next note that the first step of this experience is actually still fine. If I take action a1
old the reward

that I originally got does not depend on the shift in policy distributions.

It might be true that even the first step would be different under the new policy, BUT if I take the
a1

old I can expect similar results to what I saw last time. The problem is with the part that comes
afterward.

+1

-1

+1

+1 +1

+1 +1
a1

old

a2
old

a2
new

a3
new

a4
new

a5
new

Training ProgressReturn: 0

Return: 5

Still Fine

Stale

How do we get what we want?

Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: ?

Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training…

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: -1

Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training, but 4 later then we can train on r + γ estimate(si+1) and
everything is fine.

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: 4

Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training, but 4 later then we can train on r + γ estimate(si+1) and
everything is fine.

So what we can do is keep the old data around, but use NEW estimates of future return.

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: 4

We could use these estimated returns (r + γ estimate(si+1)) in a policy gradient framework, which
would lead to something like the actor-critic framework we talked about last time. We’re actually
going to go a bit further, but to do so, we need some new tools.

How do we get what we want?

We could use these estimated returns (r + γ estimate(si+1)) in a policy gradient framework, which
would lead to something like the actor-critic framework we talked about last time. We’re actually
going to go a bit further, but to do so, we need some new tools.

Also, I am so sorry guys, I really tried to avoid this, but I’m going to
pass along some generational trauma in the form of grinding through
some math over the next few slides. This is how most people teach
RL and I hate it, but it’s kind of necessary to get where we need to be.

How do we get what we want?

New Tool 1:

1. policy (π) : some agent capable of acting in the environment. Often written as πθ when it is a network with parameters θ.
2. states/observations (si or xi or occasionally oi) : the states or observations used to make decisions at step i.
3. actions (ai or ui) : the actions an agent takes at step i
4. reward (ri) : the reward returned from the environment at step i
5. discount (γ) : a scalar constant describing how much we care about short term vs. long term reward
6. return (gi = ∑t=i…T γ(t-i)rt) : the discounted empirical sum of future rewards after taking an action
7. value (vπ(si) = Eai…T~π gi) : the expected return of being in state si and acting using the policy π until the end of an episode
8. action value (qπ(si , ai) = Eri~r(si,ai)ri + γ vπ(si+1)): the expected value of taking action ai in state si then following π until the end

How do we get what we want?

qπ(si , ai) = Eri~r(si,ai)ri + γ vπ
(si+1)

How do we get what we want?

qπ(si , ai) = Eri~r(si,ai)ri + γ vπ
(si+1)

a1

a2

a3

How do we get what we want?

qπ(si , ai) = Eri~r(si,ai)ri + γ vπ
(si+1)

a1

a2

a3

In our next algorithm
DQN, we’re going to be
learning this

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

How do we get what we want?

expand

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

How do we get what we want?

expand

Factor out γ

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

How do we get what we want?

expand

Factor out γ

Substitute

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

vπ(si) = Eai…T~π ri + γ gi+1

How do we get what we want?

Factor out γ

Substitute

expand

Separate the Expectation

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

vπ(si) = Eai…T~π ri + γ gi+1

vπ(si) = Eai~π ri + Eai+1…Tγ gi+1

How do we get what we want?

Separate the Expectation

Factor out γ

Substitute

expand

Move γ outside the expectation

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

vπ(si) = Eai…T~π ri + γ gi+1

vπ(si) = Eai~π ri + Eai+1…Tγ gi+1

vπ(si) = Eai~π ri + γEai+1…T gi+1

How do we get what we want?

Separate the Expectation

Factor out γ

Substitute

expand

Move γ outside the expectation

Substitute

New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

vπ(si) = Eai…T~π ri + γ gi+1

vπ(si) = Eai~π ri + Eai+1…Tγ gi+1

vπ(si) = Eai~π ri + γEai+1…T gi+1

vπ(si) = Eai~π ri + γ vπ(si+1)

How do we get what we want?

vπ(si) = Eai~π ri + γ vπ(si+1)

The Bellman Equation

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

How do we get what we want?

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

Our Q estimator takes an observation in and
produces q values for all possible actions.

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q,
what is vπ(si+1) = Eai+1…T~π gi+1?

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q,
what is vπ(si+1) = Eai+1…T~π gi+1?

vπ(si+1) = Eai+1…T~π gi+1

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

vπ(si+1) = Eai+1~π ri+1 + γ vπ(si+2)

Bellman

Expand
Expectation

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q,
what is vπ(si+1) = Eai+1…T~π gi+1?

vπ(si+1) = Eai+1…T~π gi+1

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

vπ(si+1) = Eai+1~π ri+1 + γ vπ(si+2)

vπ(si+1) = ∑ai+1π(ai+1) Eri+1~r(si+1,ai+1)ri+1 + γ vπ
(si+2)Bellman

Expand
Expectation

Sub q

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q,
what is vπ(si+1) = Eai+1…T~π gi+1?

vπ(si+1) = Eai+1…T~π gi+1

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

vπ(si+1) = Eai+1~π ri+1 + γ vπ(si+2)

vπ(si+1) = ∑ai+1π(ai+1) Eri+1~r(si+1,ai+1)ri+1 + γ vπ
(si+2)

vπ(si+1) = ∑ai+1π(ai+1) qπ(si+1,ai+1)

Bellman

Expand
Expectation

Deterministic

Sub q

Let’s say we’re trying to play Mario, and we
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act?
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q,
what is vπ(si+1) = Eai+1…T~π gi+1?

vπ(si+1) = Eai+1…T~π gi+1

A
B
⬆

⬅

➡

⬇

100
20
0
30
10
-10

Q Estimator

How do we get what we want?

vπ(si+1) = Eai+1~π ri+1 + γ vπ(si+2)

vπ(si+1) = ∑ai+1π(ai+1) Eri+1~r(si+1,ai+1)ri+1 + γ vπ
(si+2)

vπ(si+1) = ∑ai+1π(ai+1) qπ(si+1,ai+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

Bellman

Expand
Expectation

Deterministic

Sub q

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

How do we get what we want?
From our definition

We just showed

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.
What if our Q function is bad and we want to
improve it?

How do we get what we want?
From our definition

We just showed

Substitution

qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.
What if our Q function is bad and we want to
improve it?

How do we get what we want?

qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.
What if our Q function is bad and we want to
improve it?

We can act in the environment and collect
(si,ai,ri,si+1) tuples for each step.

How do we get what we want?

qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.
What if our Q function is bad and we want to
improve it?

We can act in the environment and collect
(si,ai,ri,si+1) tuples for each step.

Then we update qπ(si,ai) in the direction of:

qπ(si,ai) := ri + γ maxai+1 qπ(si+1,ai+1)

How do we get what we want?

Our current best estimate
of the future

Finally we got what we want!

DQN:
1. initialize an empty dataset

2. for some number of rounds:
a. for m steps:

i. Do one step of interaction with the
environment using ε-greedy

b. Add (s,a,r,s’) to a growing dataset (like
DAgger)

c. for n steps:
i. Do one training step on a randomly

sampled batch from the dataset
according to:

qπ(si,ai) := ri + γ maxai+1 qπ(si+1,ai+1)

ε-greedy:

- Sample a random number between
0 and 1.

- If the number is less than ε take a
random action

- Otherwise take the max q action

Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- Sample a random number between 0 and 1.
- If the number is less than ε take a random action

- Otherwise take the max q action

Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)
This is super biased! If our q function starts wrong, it can really screw up our learning.

Furthermore the max, makes this even worse
- Use “Double-Q” trick

- Also use slowly moving target network for the second part of the equation
qπ

target(si+1,ai+1) = α qπ
target(si+1,ai+1) + (1-α)qπ(si+1,ai+1)

Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)
This is super biased! If our q function starts wrong, it can really screw up our learning.

Furthermore the max, makes this even worse
- The max means we can only do this for discrete action spaces!

Continuous Action Spaces

Idea:
- Before our network produced q estimates for all actions q(s)->[qs1, qs2, qs3, …]

- Now our q network will take a state and action and produce a single estimate q(s,a) -> qsa
- We will also add an “actor” network that produces an estimate of the current best action

- We train our q network using the actor: q(s,a) = r + q(s, actor(s’))
- We train our actor using a gradient that tries to increase the q values. Compute:

q(s, actor(s)) -> qs,actor(s) and use -qs,actor(s) as a loss.
- DDPG/SAC

DQN:
Playing Atari with Deep Reinforcement Learning [Mnih et al. ‘13]

DPG:
Deterministic Policy Gradient Algorithms [Sliver et al. ‘14]

DDPG:
Continuous control with deep reinforcement learning [Lillicrap et al. ‘15]

SAC:
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor [Haarnoja et al. ‘18]

References

Imitation Learning:

- Online data helps!
- DAgger will perform better than Behavior Cloning if you can afford it

Reinforcement Learning:

- Learning from rewards can be very powerful
- But is hard to get right
- On-Policy methods are not very data efficient
- Off-Policy methods are better but can have a lot of moving parts and require care to get right

Last Thoughts

