
Sequential Decision Making



WARNING 1







Do not use this stuff because it’s cool, or it seems fancy or because 
you think it works better.

It doesn’t work better.

It’s worse.  It’s provably worse.

You use these methods when you don’t have any other options.



WARNING 2



We only have time to cover the high level intuition of these methods 
in one lecture, so a lot of this will be incomplete.

The goal is to give you a flavor for the kinds of things you need to 
pay attention to when using RL.
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Two High Level Categories

Imitation Learning (covered briefly last time)

- Learn from advice/instructions
- Learn from a knowledgeable teacher

Reinforcement Learning (today)

- Learn from a reward signal that tells us how well we did
- Learn by trial and error



Reinforcement Learning



Mnih et al. 2013 “Playing Atari with Deep Reinforcement Learning”

http://www.youtube.com/watch?v=rQIShnTz1kU


Silver et al. 2016 “Mastering the game of Go with deep neural networks and tree search”



OpenAI et al. 2019 “Solving Rubik's Cube with a Robot Hand”

http://www.youtube.com/watch?v=kVmp0uGtShk


Vinyals et al. 2019 “Grandmaster level in StarCraft II using multi-agent reinforcement learning”
Berner et al. 2019 “Dota 2 with large scale deep reinforcement learning”

http://www.youtube.com/watch?v=tfb6aEUMC04


Haarnoja et al. 2023 “Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning”

http://www.youtube.com/watch?v=KSvLcr5HtNc


What is Common About These Domains?



What is Common About These Domains?

1. Difficult to provide direct instruction



What is Common About These Domains?

1. Difficult to provide direct instruction
2. Search methods may not be tractable



What is Common About These Domains?

1. Difficult to provide direct instruction
2. Search methods may not be tractable
3. May not even know how good optimal performance can be (AlphaGo)



Policy Gradient
(REINFORCE aka Vanilla Policy Gradient)

(Ancestor of A2C, A3C, TRPO, PPO)
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loss function (something we want to 
maximize rather than minimize), can we 
just backprop through this chain of 
operations?

Unfortunately, we don’t know the 
reward function or state-transition 
probabilities, so we can’t backprop 
through the reward function.

Sampling is also
not differentiable* so 
we can’t backprop this 
step either.

*we may see a way around this in a later lecture
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decrease the probability of the sampled 
action based on how good the sum of 
future rewards is?

YES! This is the rough intuition behind 
policy gradients.
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One more thing to say about this though.  
We just saw what can happen if x2 is bad, 
but there’s another thing that can cause 
r3 to be bad and it’s us!
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If someone offers you $10 million to 
jump this ramp on a skateboard do you 
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If you are Tony Hawk:



NO!

If someone offers you $10 million to 
jump this ramp on a skateboard do you 

take it?

If you are Aaron Walsman with
grad student health insurance:



● States/Observations : x
● Policy : π
● Actions Space : u
● Transition Probabilities : p(x’|u,x)
● Reward Function : r(x,u)

State Transition
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The point is that r3 depends not only on 
the physical environment, but also the 
capability of our current model π!  This 
will come back to haunt us later!
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There is often a discount factor in 
here, but we will ignore it for now
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Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

So what we want is to maximize this thing, which is the expected sum of future rewards
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Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

And what we want is the gradient 
of this objective function…

…so we can adjust our network 
parameters in the direction that 

increases this objective.



What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

This is the “answer” that we highlighted earlier



What does it mean?

Policy Gradient

Here’s a blog post on it though, it’s actually not that bad:
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

What it says is that the 
gradient is the sum over all 

steps in a trajectory…

…of the log of the probability 
of taking whichever action 

was taken…

…times the empirical return 
(the sum of future rewards).
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How do we adjust the probability based on the sum of rewards?

Take the update you would make to the network if the action you took was “correct” 
according to a standard classification objective and scale it by the return

∇θ-log(px+) 1
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Policy Distribution Class Distribution



One Caveat:

What is the optimal policy for 
both of these environments?
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One Caveat:

The “ordering” of policies is 
invariant to linear 
transformations of reward!

But our learning rule is definitely 
sensitive to these 
transformations!
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The simplest fix:

Subtract the mean and divide by 
the standard deviation before 
using returns for training.

Encourages above average 
actions while discouraging 
below-average actions.

Policy Gradient
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Reward:

Crashing: -0.707

Making the first turn: +0.707

- mean
std(       )
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Second Caveat:

Some states are actually better 
than others.

Imagine our episode only lasts 
for a certain number of steps.

And you get reward for making 
progress along the way.

What happens?

Policy Gradient
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Any action we 

take here looks 
great…

…while any 
action here 
looks bad.



The simplest fix:

Train a second “baseline” 
network to estimate future 
returns of each state.

Subtract the baseline from 
returns.

Policy Gradient

+1 +1
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+1

+1

+1
Actions here are 
scored relative 

to a higher 
baseline…

…than 
actions 

here. 

- mean
std(                )- baseline(st)
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do we turn this into an entire algorithm?
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somehow keep data 
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we did with DAgger and 
keep training on that too?



In the basic policy 
gradient algorithm, these 
two parts only train on the 
most recent data, can we 
somehow keep data 
around from the past like 
we did with DAgger and 
keep training on that too?

1. Collect data by letting the agent drive in the 
environment

2. Compute returns from the rewards in the 
trajectories

3. Normalize the returns using the mean, and 
std

4. Update the baseline by training it to match 
the current returns at each of the states 
visited

5. Update the Policy using the policy gradient 
and the returns from step 3 offset by the 
baseline

6. Repeat

Policy Gradient

NO!
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Why not?

Let’s consider the trajectory that crashed.

And let’s assume that after training for a while, 
we would learn from our mistakes and perform 
better from these intermediate states.

But if we keep around the old data and keep 
training on it, the return values no longer reflect 
how well we would do if we take this action.

For this reason, we call these algorithms
“On Policy” because they only work when training 
from data generated by the CURRENT policy.

Policy Gradient
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What is good about this?

Policy Gradient



What is good about this?

- Doesn’t require expert advice!

Policy Gradient



What is good about this?

- Doesn’t require expert advice!
- Can potentially learn a model better than any performance level you’re aware of
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- Combining feedback from the future may be confusing (depends on horizon)
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What is bad about this?

- So slow!
- Only get feedback on one action at a time (scales with size of action space)
- Combining feedback from the future may be confusing (depends on horizon)
- Have to constantly throw away your data (reuse data 100x in other settings)

Policy Gradient



Off-Policy Methods
(DQN, DDPG, SAC)



We discovered that we cannot train on old data 
when using policy gradient.

If we have some data from the beginning of 
training…
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We discovered that we cannot train on old data 
when using policy gradient.

If we have some data from the beginning of 
training and then improve our performance, the 
return information that we collected when we 
gathered the data is no longer relevant.  The data 
is stale.

We said that this is called “On-Policy” because 
we can only train on data collected with the 
current policy.
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that’s very cheap to run, it’s not that bad.
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Why is this bad?

If your environment is a really fast simulator 
that’s very cheap to run, it’s not that bad.

But if your environment is an expensive robot that 
can break if you do something wrong, then it’s a 
huge burden.

Your main loop is:

1. Collect data on the robot (Manual labor!)
2. Train the robot using the data

It’s also very inconvenient if you have to keep 
switching back and forth frequently.

The Problem With On-Policy Methods

Latest Policy

Latest Data

Train Collect 
Data



It is common to measure the performance of RL 
algorithms using “Sample Complexity” or the 
amount of interactions you have need to have 
with an environment in order to reach a certain 
performance level.
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Complexity because you need to interact with the 
environment every time you want to improve your 
model.
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It is common to measure the performance of RL 
algorithms using “Sample Complexity” or the 
amount of interactions you have need to have 
with an environment in order to reach a certain 
performance level.

On-Policy methods usually have very high Sample 
Complexity because you need to interact with the 
environment every time you want to improve your 
model.

We can also measure how many training steps 
we need, but in almost all applications, training 
steps are much cheaper than interacting with the 
environment to collect data.

The Problem With On-Policy Methods

The x-axis is environment steps, not training steps!
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1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction 

with the environment
b. Add the data to a growing dataset 

(like DAgger)
c. for n steps:

i. Do one training step on a 
randomly sampled batch from 
the dataset
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Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction 

with the environment
b. Add the data to a growing dataset 

(like DAgger)
c. for n steps:

i. Do one training step on a 
randomly sampled batch from 
the dataset

What We Would Like

Dataset

Saving old data into a large dataset and 
sampling random batches has the additional 
advantage of providing data diversity in each 
batch.



Program Sketch:

1. initialize an empty dataset
2. for some number of rounds:

a. for m steps:
i. Do one step of interaction 

with the environment
b. Add the data to a growing dataset 

(like DAgger)
c. for n steps:

i. Do one training step on a 
randomly sampled batch from 
the dataset

What We Would Like

And just to reiterate, in Policy 
Gradient and other On-Policy 
methods, we can’t store a large 
dataset and have to train only 
on the most recent data.
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Let’s unpack our previous illustration:

We showed that the returns captured early on may not reflect the returns we will see after our 
policy has improved if we were to visit a similar state.
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Let’s unpack our previous illustration:

Let’s label the actions that we took originally as ai
old and the actions we would take in the future as 

ai
new.
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Let’s unpack our previous illustration:

Next note that the first step of this experience is actually still fine.  If I take action a1
old the reward 

that I originally got does not depend on the shift in policy distributions.
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Let’s unpack our previous illustration:

Next note that the first step of this experience is actually still fine.  If I take action a1
old the reward 

that I originally got does not depend on the shift in policy distributions.

It might be true that even the first step would be different under the new policy, BUT if I take the 
a1

old I can expect similar results to what I saw last time.  The problem is with the part that comes 
afterward.
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Training ProgressReturn: 0
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Still Fine

Stale
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Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training…
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Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training, but 4 later then we can train on r + γ estimate(si+1) and 
everything is fine.

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: 4



Let’s unpack our previous illustration:

But what if we replaced the empirical returns with an estimate of my value in this second state?

If that estimate is -1 early in training, but 4 later then we can train on r + γ estimate(si+1) and 
everything is fine.

So what we can do is keep the old data around, but use NEW estimates of future return.

+1+1a1
old

Training Progress

How do we get what we want?

Estimated Return: 4



We could use these estimated returns (r + γ estimate(si+1)) in a policy gradient framework, which 
would lead to something like the actor-critic framework we talked about last time.  We’re actually 
going to go a bit further, but to do so, we need some new tools.

How do we get what we want?



We could use these estimated returns (r + γ estimate(si+1)) in a policy gradient framework, which 
would lead to something like the actor-critic framework we talked about last time.  We’re actually 
going to go a bit further, but to do so, we need some new tools.

Also, I am so sorry guys, I really tried to avoid this, but I’m going to 
pass along some generational trauma in the form of grinding through 
some math over the next few slides.  This is how most people teach 
RL and I hate it, but it’s kind of necessary to get where we need to be.

How do we get what we want?



New Tool 1:

1. policy ( π ) : some agent capable of acting in the environment.  Often written as πθ when it is a network with parameters θ.
2. states/observations ( si or xi or occasionally oi ) : the states or observations used to make decisions at step i.
3. actions ( ai or ui ) : the actions an agent takes at step i
4. reward ( ri ) : the reward returned from the environment at step i
5. discount ( γ ) : a scalar constant describing how much we care about short term vs. long term reward
6. return ( gi = ∑t=i…T γ(t-i)rt ) : the discounted empirical sum of future rewards after taking an action
7. value ( vπ(si) = Eai…T~π gi ) : the expected return of being in state si and acting using the policy π until the end of an episode
8. action value ( qπ( si , ai ) = Eri~r(si,ai)ri + γ vπ(si+1) ): the expected value of taking action ai in state si then following π until the end

How do we get what we want?

qπ( si , ai ) = Eri~r(si,ai)ri + γ vπ
(si+1)
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How do we get what we want?

qπ( si , ai ) = Eri~r(si,ai)ri + γ vπ
(si+1)

a1
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a3

In our next algorithm 
DQN, we’re going to be 
learning this
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New Tool 2: Bellman Equation:

vπ(si) = Eai…T~π gi

vπ(si) = Eai…T~π ri + γ ri+1 + γ2 ri+2 …

vπ(si) = Eai…T~π ri + γ (ri+1 + γ ri+2 …)

vπ(si) = Eai…T~π ri + γ gi+1

vπ(si) = Eai~π ri + Eai+1…Tγ gi+1

vπ(si) = Eai~π ri + γEai+1…T gi+1

vπ(si) = Eai~π ri + γ vπ(si+1)

How do we get what we want?

vπ(si) = Eai~π ri + γ vπ(si+1)

The Bellman Equation



Let’s say we’re trying to play Mario, and we 
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)
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produces q values for all possible actions.
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(What should my policy be?)
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Let’s say we’re trying to play Mario, and we 
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act? 
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q, 
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Let’s say we’re trying to play Mario, and we 
already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act? 
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q, 
what is vπ(si+1) = Eai+1…T~π gi+1?
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already have a really good Q estimator.

qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

If I have this information, how should I act? 
(What should my policy be?)

π(si) = argmaxai(qπ(si, ai))

So if my policy is to take the maximum q, 
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Q Estimator

How do we get what we want?

vπ(si+1) = Eai+1~π ri+1 + γ vπ(si+2)

vπ(si+1) = ∑ai+1π(ai+1) Eri+1~r(si+1,ai+1)ri+1 + γ vπ
(si+2)

vπ(si+1) = ∑ai+1π(ai+1) qπ(si+1,ai+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

Bellman

Expand
Expectation

Deterministic

Sub q



qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

How do we get what we want?
From our definition

We just showed



qπ(si,ai) = Eri~r(si,ai)ri + γ vπ(si+1)

vπ(si+1) = maxai+1 qπ(si+1,ai+1)

qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.  
What if our Q function is bad and we want to 
improve it?

How do we get what we want?
From our definition

We just showed

Substitution



qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.  
What if our Q function is bad and we want to 
improve it?

How do we get what we want?



qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.  
What if our Q function is bad and we want to 
improve it?

We can act in the environment and collect 
(si,ai,ri,si+1) tuples for each step.

How do we get what we want?



qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)

Now we have a recursive definition of Q.  
What if our Q function is bad and we want to 
improve it?

We can act in the environment and collect 
(si,ai,ri,si+1) tuples for each step.

Then we update qπ(si,ai) in the direction of:

qπ(si,ai) := ri + γ maxai+1 qπ(si+1,ai+1)

How do we get what we want?

Our current best estimate 
of the future



Finally we got what we want!

DQN:
1. initialize an empty dataset

2. for some number of rounds:
a. for m steps:

i. Do one step of interaction with the 
environment using ε-greedy

b. Add (s,a,r,s’) to a growing dataset (like 
DAgger)

c. for n steps:
i. Do one training step on a randomly 

sampled batch from the dataset 
according to:

qπ(si,ai) := ri + γ maxai+1 qπ(si+1,ai+1)

ε-greedy:

- Sample a random number between 
0 and 1.

- If the number is less than ε take a 
random action

- Otherwise take the max q action



Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- Sample a random number between 0 and 1.
- If the number is less than ε take a random action

- Otherwise take the max q action



Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)
This is super biased!  If our q function starts wrong, it can really screw up our learning.  

Furthermore the max, makes this even worse
- Use “Double-Q” trick

- Also use slowly moving target network for the second part of the equation
qπ

target(si+1,ai+1) = α qπ
target(si+1,ai+1) + (1-α)qπ(si+1,ai+1)



Finally we got what we want!

Caveats!
- We need to explore, so when generating data we use ε-greedy:

- qπ(si,ai) = Eri~r(si,ai)ri + γ maxai+1 qπ(si+1,ai+1)
This is super biased!  If our q function starts wrong, it can really screw up our learning.  

Furthermore the max, makes this even worse
- The max means we can only do this for discrete action spaces!



Continuous Action Spaces

Idea:
- Before our network produced q estimates for all actions q(s)->[qs1, qs2, qs3, …]

- Now our q network will take a state and action and produce a single estimate q(s,a) -> qsa
- We will also add an “actor” network that produces an estimate of the current best action

- We train our q network using the actor: q(s,a) = r + q(s, actor(s’))
- We train our actor using a gradient that tries to increase the q values.  Compute:

q(s, actor(s)) -> qs,actor(s) and use -qs,actor(s) as a loss.
- DDPG/SAC
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Imitation Learning:

- Online data helps!
- DAgger will perform better than Behavior Cloning if you can afford it

Reinforcement Learning:

- Learning from rewards can be very powerful
- But is hard to get right
- On-Policy methods are not very data efficient
- Off-Policy methods are better but can have a lot of moving parts and require care to get right

Last Thoughts


