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Administrative

2

● A3 is due 11/29
● Quiz 3 on 11/30



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 2023

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

GRASS, CAT, 
TREE, SKY
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Supervised vs Unsupervised Learning
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Self-Supervised Learning

Data: (x, y)
x is data, y is a proxy label

Goal: Learn a function to map x -> y

Examples: Inpainting, colorization, 
contrastive learning.

?
θ
=
?

attract
repel
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 202312

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images left and right 
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Modeling p(x)

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

13

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Generative Modeling

14

Training data ~ pdata(x)

Objectives:
1. Learn pmodel(x) that approximates pdata(x) 
2. Sampling new x from pmodel(x)

Given training data, generate new samples from same distribution

learning
pmodel(x

)

sampling
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Generative Modeling

15

Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning
pmodel(x

)

sampling

Formulate as density estimation problems: 
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) without 

explicitly defining it. 
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Why Generative Models?
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- Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful features for downstream tasks such as classification.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and 

reinforcement learning applications)
- Many more ...

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog. 

https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/
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Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Model can compute p(x)
Model does not compute p(x)
But can sample from p(x)

p(x) measures the 
likelihood of an image
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Taxonomy of Generative Models
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Generative models

Explicit density

Tractable density Approximate density

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord

Implicit density
Model approximates p(x)

Model exactly 
calculates p(x)
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Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Tractable density Approximate density

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN, 
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord
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Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN, 
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 3 types of 
generative models today

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Autorgressive models
(PixelRNN and PixelCNN)
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Fully visible belief network (FVBN)

Likelihood of 
image x

Explicit density model

Joint likelihood of each 
pixel in the image
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Remember the probability chain rule:

24

Fully visible belief network (FVBN)
Explicit density model
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Fully visible belief network (FVBN)

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data
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Then maximize likelihood of training data

26

Fully visible belief network (FVBN)

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Complex distribution over pixel 
values => Express using a neural 
network!
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Recurrent Neural Network

x1

RNN

x2

x2

RNN

x3

x3

RNN

x4

...

xn-

1

RNN

xn

h1 h2 h3
h0
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PixelRNN

28

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN

29

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN

30

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN

31

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

Drawback: sequential generation is slow 
in both training and inference!
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PixelCNN

32

[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 2023

PixelCNN

33

[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of 
the network 1024 times for a single image

Softmax loss over pixel 
values at every location
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Generation Samples

34

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet
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PixelRNN and PixelCNN
Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute likelihood 

p(x)
- Easy to optimize
- Good samples

Con:
- Sequential generation => slow
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Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Variational 
Autoencoders (VAE)



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 202338

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

So far...



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 2023

So far...
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PixelCNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!
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So far...

40

PixelCNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!

Why latent z?



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 202341

Variational 
Autoencoders
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Some background first: Autoencoders

42

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

Input data

Features

Decoder

Z should extract useful 
information (maybe object 
identities, properties, scene type, 
etc) that we can use for 
downstream tasks
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Some background first: Autoencoders

43

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why 
dimensionality 
reduction?

Decoder

Encoder
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Some background first: Autoencoders

44

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Decoder

Encoder

Q: Why 
dimensionality 
reduction?

A: Want features 
to capture 
meaningful 
factors of 
variation in data
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Some background first: Autoencoders

45

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

Input data

Features

Decoder

Learning objective: reconstruct 
the image and use l2 loss.

No labels are necessary!!

How do we learn this z?

Train such that features 
can be used to 
reconstruct original data
“Autoencoding” - 
encoding input itself
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Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data

Images reconstructed 
are blurry because 
they don’t contain 
pixel-perfect 
information
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Some background first: Autoencoders

47

Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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Some background first: Autoencoders
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Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Transfer from large, unlabeled 
dataset to small, labeled dataset.
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Some background first: Autoencoders

49

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. 

But we can’t generate new 
images from an autoencoder 
because we don’t know the 
space of z.

How do we make autoencoder a  
generative model?
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Decoder
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

 

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training dataDecoder 

network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training data

Q: What is the problem with this?
Intractable!

Decoder 
network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

��✔ ✔

Monte Carlo estimation is too high variance
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
��✔ ✔

Another idea: Use Bayes rule



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 202367

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
��✔ ✔

Another idea: We know how to calculate these
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Solution: In addition to modeling pθ(x|z), learn qɸ(z|x) that approximates 
the true posterior pθ(z|x). 

Will see that the approximate posterior allows us to derive a lower bound 
on the data likelihood that is tractable, which we can optimize.

68

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Another idea: But how do you calculate this?
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Variational Autoencoders
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Variational Autoencoders

Taking expectation wrt. z 
(using encoder network) will 
come in handy later
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders

The expectation wrt. z (using 
encoder network) let us write 
nice KL terms
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Variational Autoencoders

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling). 
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Variational Autoencoders

We want to 
maximize the 
data 
likelihood

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. 
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

We want to 
maximize the 
data 
likelihood
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the KL 
divergence between the estimated 
posterior and the prior given some data
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Have analytical solution
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Not part of the computation graph!
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 

Part of computation graph

Input to 
the graph



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 202388

Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Maximize likelihood of original 
input being reconstructed
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

For every minibatch of input 
data: compute this forward 
pass, and then backprop!
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE: 
use decoder network & sample z from prior!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 
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Variational Autoencoders

98

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Variational model
- Maximize lower bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Comparing the two methods so far

Autoregressive model
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

99
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Taxonomy of Generative Models

100

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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1

Generative Adversarial 
Networks (GANs)
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So far...

102

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

103

What if we give up on explicitly modeling density, and just want ability to sample?
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

104

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: not modeling any explicit density function!
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Generative Adversarial Networks

105

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.  
Learn transformation to training distribution.
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.  
Learn transformation to training distribution.

   

Generative Adversarial Networks

106

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.  
Learn transformation to training distribution.

   

Generative Adversarial Networks

107

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

But we don’t know which 
sample z maps to which 
training image -> can’t 
learn by reconstructing 
training images
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.  
Learn transformation to training distribution.

   

Generative Adversarial Networks

108

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

But we don’t know which 
sample z maps to which 
training image -> can’t 
learn by reconstructing 
training images

  

Objective: generated 
images should look “real”
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.  
Learn transformation to training distribution.

   

Generative Adversarial Networks

109

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

But we don’t know which 
sample z maps to which 
training image -> can’t 
learn by reconstructing 
training images

  

Discriminator 
Network

Real?
Fake?

Solution: Use a discriminator 
network to tell whether the 
generate image is within data 
distribution (“real”) or not

gradient
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Training GANs: Two-player game

110

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

111

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 2023

Training GANs: Two-player game

112

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Generator learning signal

Discriminator learning signal

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images
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Training GANs: Two-player game

113

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images

Generator 
objective Discriminator 

objective
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Training GANs: Two-player game

114

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images
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Training GANs: Two-player game

115

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images
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Training GANs: Two-player game

116

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images
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Training GANs: Two-player game

117

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images 
Generator network: try to fool the discriminator by generating real-looking images
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Training GANs: Two-player game

118

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

119

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn from 
it to improve generator 
(move to the right on X 
axis).
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Training GANs: Two-player game

120

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn from 
it to improve generator 
(move to the right on X 
axis).

But gradient in this 
region is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good
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Training GANs: Two-player game

121

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 
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Training GANs: Two-player game

122

Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

123

Putting it together: GAN training algorithm

Some find k=1 
more stable, 
others use k > 1, 
no best rule.

Followup work 
(e.g. Wasserstein 
GAN, BEGAN) 
alleviates this 
problem, better 
stability!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Arjovsky et al. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017)
Berthelot, et al. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017)
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Training GANs: Two-player game

124

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Ali Farhadi, Aditya Kusupati Lecture 15 - Nov 28, 2023

Generative Adversarial Nets

125

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets

126

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

127

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network
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Radford et al,
 ICLR 2016

Samples 
from the 
model look 
much 
better!

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,
 ICLR 2016

Interpolating 
between 
random 
points in latent 
space

Generative Adversarial Nets: Convolutional Architectures
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Generative Adversarial Nets: Interpretable Vector Math

130

Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Radford et al, ICLR 2016
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Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Smiling woman Neutral woman Neutral man

Smiling ManSamples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al, 
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips and tricks for 
trainings GANs

Since then: Explosion of GANs
“The GAN Zoo”

https://github.com/soumith/ganhacks
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Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN, 
Arjovsky 2017. 
Improved Wasserstein 
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

2017: Explosion of GANs
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2017: Explosion of GANs

136

CycleGAN. Zhu et al. 2017.

Source->Target domain transfer

Many GAN applications

Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Text -> Image Synthesis 
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2019: BigGAN

137

Brock et al., 2019
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HYPE: Human eYe Perceptual Evaluations
hype.stanford.edu

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurIPS 2019

138
Figures copyright 2019. Reproduced with permission.

https://hype.stanford.edu/
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Summary: GANs

139

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
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Diffusion Models

140
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Summary

141

Autoregressive models:
PixelRNN, PixelCNN

Van der Oord et al, “Conditional 
image generation with pixelCNN 
decoders”, NIPS 2016

Variational Autoencoders

Kingma and Welling, “Auto-encoding 
variational bayes”, ICLR 2013

Generative Adversarial 
Networks (GANs)

Goodfellow et al, “Generative 
Adversarial Nets”, NIPS 2014
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Summary
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Next: Reinforcement Learning

143


