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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

X is data, y is label
— Cat

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y
Examples: CIaSSification, A cat sitting on a suitcase on the floor
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

neuraltalk2
Image is_CCO Public domain
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y W,

=) f
Examples: Classification, DOG. DOG. CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, ,

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.
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Self-Supervised Learning

Data: (x, y)
X is data, y is a proxy label

Goal: Learn a function to map x ->y

Examples: Inpainting, colorization,
contrastive learning.

Ali Farhadi, Aditya Kusupati
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning ] o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, density
estimation, etc.

K-means clustering

This image is CCO public domain
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

component space

Data: x = X
Just data, no labels! ELiERET =
Goal: Learn some underlying
hidden structure of the data 2.
E.xamplles: Qlustering, | Principal Component Analysis
dimensionality reduction, density (Dimensionality reduction)

estimation, etc.

This image
CCO public domain
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

R ’/T\
Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering, RS
dimensionality reduction, density 2-d density estimation

estimation, etc. Modeling p(x) I

CCO public domain
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, density
captioning, etc. estimation, etc.
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Generative Modeling
Given training data, generate new samples from same distribution

| ——

Training data ~ p,,.(X)

Objectives:
1. Learnp__,,(X) that approximates p . (X)
2. Sampling new x fromp_ . (x)
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Generative Modeling
Given training data, generate new samples from same distribution

S s (s R »

| -
Training data ~ pdata(x)

model(x

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve forp_ . (x)
- Implicit density estimation: learn model that can sample from p_ . (x) without
explicitly defining it.
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Why Generatlve Models’?

- Reallstlc samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and
reinforcement learning applications)

- Many more ...

Alec Radford et al. 2016 Phillip Isola et al. 2017 BAIR Blog
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https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

Taxonomy of Generative Models

Generative models Model does not compute p(x)

Model can compute p(x) But can sample from p(x)

Explicit density Implicit density

p(x) measures the
likelihood of an image

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Model exactl
xacty Model approximates p(x)

calculates p(x)

Tractable density Approximate density

Fully Visible Belief Nets
- Autoregressive
- NADE

- MADE
- NICE / RealNVP

-  Glow
FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density

Fully Visible Belief Nets
- Autoregressive .
- NADE Variational

Markov Chain

- MADE . .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

GAN

Generative models

Explicit density Implicit density

Tractable density Approximate density Markov Chain

Fully Visible Belief Nets G.S N’.
_ " NADE Diffusion
- MADE Variational Markov Chain

- PixelRNN/CNN

Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Today: discuss 3 types of GAN
generative models today Generative models

Explicit density Implicit density

Markov Chain
GSN,

Tractable density
Fully Visible Belief Nets

Approximate density

- | Autoregressive - . Diffusion

. NADE Variational Markov Chain

- MADE T .

- NICE / RealNVP Variational Autoencoder Boltzmann Machine

-  Glow | | | | |

_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Autorgressive models

(PixelRNN and PixelCNN)
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Fully visible belief network (FVBN)

Explicit density model

p(SE) :p(wlaxZw"awn)

T T

Likelihood of Joint likelihood of each
image x pixel in the image
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Fully visible belief network (FVBN)

Explicit density model

Remember the probability chain rule:

p(/l?) - p(azn L1y L5« v v s xn—l)p(xla Ly oo :xn—l)
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = Hp(a:z-|9:1, oy Ti—1)
b=

Likelihood of Probability of i'th pixel value
image X given all previous pixels

Then maximize likelihood of training data

Lecture 15 - 25 Nov 28, 2023
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = Hp(a:z-|9:1, oy Ti—1)
b=

Likelihood of Probability of i'th pixel value
Image X given all previous pixels
Complex distribution over pixel
values => Express using a neural

Then maximize likelihood of training data L etwork!

Lecture 15 - 26 Nov 28, 2023
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Recurrent Neural Network
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PIX9| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

@ O
o O
© O
© O
© O
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PIX9| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner i*@ © O© O
Dependency on previous pixels modeled © 6 o0 ©
using an RNN (LSTM) O © 0 O O
© 0 0 0 O
© 06 0 0 O
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PIX9| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 O O
© 0 O O O
© 0 O O O

© O O
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PIX9| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow
in both training and inference!

o O&—

o O

© O O

© 0 O O
© 0 O O O
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P IX9|C N N [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now i1
modeled using a CNN over context region / / / /
(masked convolution) :

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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P IX9|C N N [van der Oord et al. 2016]

Softmax loss over pixel
values at every location

Still generate image pixels starting from i .‘
corner

0 255
f

. . AT~

Dependency on previous pixels now

modeled using a CNN over context region / /

(masked convolution) :

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation is still slow:

For a 32x32 image, we need to do forward passes of
the network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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Generation Samples

e BORIASEIL. SO
GEEEC RN K
glﬁimmﬁ@lm nEEG
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32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.
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PixelRNN and PixelCNN

Improving PixelCNN performance

Pros: - Gated convolutional layers
- Can explicitly compute likelihood - Short-cut connections
pP(X) - Discretized logistic loss
- Easy to optimize - Multi-scale
- Good samples - Training tricks
- Etc...
Con:
- Sequential generation => slow See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)
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Taxonomy of Generative Models

GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN

Tractable density Approximate density

Fully Visible Belief Nets
- Autoregressive e ]
- NADE Variational Markov Chain

- MADE T .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Variational
Autoencoders (VAE)
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

p@(x) = Hpo(a:da:l, - xz’—l)
1=1
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpe(a:dxl, ...,Q’Ji_l)
1=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpo(a:z-|x1, - xi—l)
1=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent z?
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Vit I
Autoencoders
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Z should extract useful
information (maybe object

= identities, properties, scene type,
L etc) that we can use for
downstream tasks
Decoder
Features z 0 K=t

Encoder

Input data J; .a‘ggg

u ~ 8 < el
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction?

Q: Why
dimensionality Decoder
reduction?

T
Features YA
€T

Encoder

Input data
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction?

Q: Why
dimensionality Decoder

q

reduction? I
Features YA

b

A: Want features
to capture
meaningful |nput data
factors of

variation in data

Encoder
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data
Learning objective: reconstruct

s 2
”x - x“z the image and use 12 loss.

How do we learn this z?

No labels are necessary!!

Train such that features
can be used to
reconstruct original data

T

I Decoder
“Autoencoding’ - Features A

T

encoding input itself
Encoder

IE‘QQW
a7l < 63
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Some background first: Autoencoders _Reconstructed data
e i = T3

Images reconstructed ., ﬁ.@

are blurry because mn!sqn

they don’t contain Reconstructed 2l <
pixel-perfect input data -EH* .E
information T Encoder: 4-layer conv
Decoder: 4-layer upconv
I Decoder
Input data
Features v uiﬁ_ e
T Encoder .;.u' ﬁ.
Input data T gﬁ/ zw
mliedl < [N
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Some background first: Autoencoders

Reconstructed 7
input data
I Decoder
Features YA \ After training,
throw away decoder
T Encoder
Input data T
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Some background first: Autoencoders

Transfer from large, unlabeled
dataset to small, labeled dataset. Loss function

(Softmax, etc) bird  plane

/ \ dog deer truck

Predicted Label

Train for final task

Fine-tune _ :
Encoder can be encoder (sometimes with
small data)

J)

T Classifier
used to initialize a Features A jointly with T

i

supervised model classifier
Encoder

ol R

Input data
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Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of
input data variation in training data.
I Decoder
But we can’t generate new
Features 2 images from an autoencoder
because we don’t know the
T Encoder space of z.
Input data b How do we make autoencoder a

generative model?
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}fll is generated from the distribution of unobserved (latent)
representation z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}_ is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional £T

po-(x | %)

Decoder

Sample from
true prior >

20 ~ P (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}_ is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from
P T generate x: attributes, orientation, etc.

true conditional
po- (x| 2V))

Sample from
true prior >

20 ~ P (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ali Farhadi, Aditya Kusupati Lecture 15 - 53 Nov 28, 2023



Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional £T

po-(x | %)

Sample from
true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Sample from
true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,

Sample from e.g. pose, how much smile.

true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

"'”""‘."‘."‘:":”"""hb We want to estimate the true parameters g*
I‘ ‘ ryryYyrYvyrrryYye of this generative model given training data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Decoder Choose prior p(z) to be simple, e.g.
network Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior >
()~ g . :
z Py (2) Conditional p(x|z) is complex (generates

/\ image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional £T

po-(x | %)

How to train the model?

Decoder
network
Sample from

true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr.o_m How to train the model?
true conditional X
po- (T | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
trge prior P = [ po(2)pe(z|2)dz
29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr.o_m How to train the model?
true conditional X
po- (T | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
trge prior > = [ po(2)pe(z|2)dz
29 ~ py (2)

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

t/ t/
Data likelihood: pe(z) = [ pe(z z)dz

f

Intractable to compute p(x|z) for every z!

log p(z) =~ log % S p(x]2®), where 2 ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

| _pox | 2)pg(2)
Another idea: po(x) = g %) Use Bayes rule

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

L po(x | z)py(2)
Another idea:  pg(¥) = pe(z | x) We know how to calculate these

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

po(x | 2)pe(2)
po(z | x) «— But how do you calculate this?

Solution: In addition to modeling p,(x|z), learn q¢(z|x) that approximates
the true posterior p(z|x).

Anotheridea: p,(x) =

Will see that the approximate posterior allows us to derive a lower bound
on the data likelihood that is tractable, which we can optimize.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)

po(z | 2)py(2)
po(z | (D)

=B, llog ] (Bayes’ Rule)
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Variational Autoencoders

log g (zV) = E. q,(zlz) {logpg(m(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | z®)

po(z® | 2)po(z) gg(z | V)
po(z | 2®)  gg(z | z®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | z®)

po(z™ | 2)pa(z) gg(z | V)
po(z |2®)  qy(z ] 2®)

gp(z | )
po(2)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

gs(2 | 21V)
po(z | 1)

— B, —logpg(x(i) | z)} —E, [log ] +E, llog ] (Logarithms)
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)po(2)
po(z | ™)

po(z® | 2)pa(z) gg(z | V)
po(z | 2®)  gg(z | z®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

= —0 2@ | 2)| = 0 M o) M ogarithms
E, :1 gpo(z™ | )} E, [1 — ]+Ez [1 gp@(zw(i))] (Logarithms)
= E. [log (2 | 2)] = Dicr(go(z | #9) l|po(2)) + Dicr (as(= | 29) | po(z | 2))
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)po(2)
po(z | ™)

po(z® | 2)pa(z) gg(z | V)
po(z | 2®)  gg(z | z®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

- . (4) (4)
=E. |logpg(z® | z)} —E, |log 9o(2| 2% + E, |log M (Logarithms)
_ po(2) po(z | z®)

=B, logpo(e | 2)] = Diciao(= | 29) 1po(2)) + Drcr (as(= | #7) | oz | )

*

Decoder network gives p,(x|z), can
compute estimate of this term through
sampling (need some trick to
differentiate through sampling).
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Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | x®)

po(z™ | 2)pa(z) gg(z | V)
po(z | 2®)  gg(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

r : (4) (2)
=E. |logpg(z | z)} —E, [log M] +E, llog M] (Logarithms)
_ po(z) po(z | z()
= E. [logpo(e | 2)| — Drcr(gs(= | 2®) || po(2)) + Dcr(g6(= | 2) || po(z | 7))
Decoder network gives pe(xlz), can This KL term (between
compute estimate of this term through Gaussians for encoder and z
sampling (need some trick to prior) has nice closed-form
differentiate through sampling). solution!
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Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)

=E, |log po(z™ | Z)pg(Z)] (Bayes’ Rule)

po(z | 2®)

po (x| 2)pe(2) go (2 | V)
po(z [2))  qy(z | =)

_ | (i
— E, |logpg(z® | Z)} _E, [1OgM

= E. |log ] (Multiply by constant)

(4)
] +E, llog M] (Logarithms)

po(2) po(z | (@)
— E. [logpo(e® | 2)] = Dics(go(= | 2) l|po(=) + Dicr(go(= | 2 | polz | 29)
Decoder network gives py(x|z), can This KL term (between pe(;|x) intrac,:table (saw _
compute estimate of this term through Gaussians for encoder and z  €arlier), can’t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL
differentiate through sampling). solution! divergence always >=0.
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

/

—E,
We want to
maximize the _E
data -z
likelihood

=E,

=E,

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

Ali Farhadi, Aditya Kusupati

_10 pe(fl?(i) | 2)pe(2)

] (Bayes’ Rule)

po(z | 2)
(4) (1)

log po(a™ | z)pg(z) 42| @ . )] (Multiply by constant)

po(z | @) gy(z | @)
— : (@) (z ]| ™)
lo D 2)| — E, [10 M] + E, [10 qu—] Logarithms
logpo(a | 2)] g 8 | (Logarithms)
log po (¢ | 2)] — Dcr(go(= | 2@) || po(2)) + Dcr(go(= | 2@) || po(z | 7))

i i ;

This KL term (between Pg(z[x) intractable (saw
Gaussians for encoder and z  €arlier), can’t compute this KL

prior) has nice closed-form term :( But we know KL
solution! divergence always >=0.

Lecture 15 - 78
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Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)
/ = E. |log po(z™ | Z)(];)g(Z)] (Bayes’ Rule)
We want to L po(z | 2) o
(rjna][xmlzet - E. |log po(a™ | z)pg(z) 42| @ . ) (Multiply by constant)
ata po(z | 2@)  qy(z | 2®)
likelihood . (2| (7;)) | i ))
= E, |logpe(z@ | z)} —E, [log M] +E, [log 4p(z | ) ] (Logarithms)
L po(2) po(z | ()
=|E. |log po(z'" | Z)} — Dicr(gg(2 | 29) |Ipo(2))|+ Dicr(ap(2 | 2 )Hpe(z | 2))

L(z9),6, ¢) >0
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

Ali Farhadi, Aditya Kusupati Lecture 15 - 79 Nov 28, 2023



Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (i) |
=E, |lo Po(z |Z)(P)"<Z)] (Bayes’ Rule) Encoder:
Decoder: pe(z | =) make approximate
' B po (D | 2)po(2) g (z | @) . posterior distribution
reconstruct E, |log oz [2)  qu(z | 20) (Multiply by constant) close to prior

the input data

g po(z'? | 2)} —1, [log M] i

—[E- [log20(a? | )] ~ Dicwlaole | e Tpa(e )|+ Diclastz | 99) (e | 29)

£(".0.9) ="
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

] (Logarithms)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 27) || po(2))

- -

£(z9,0,9)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z =) Hpe<z>2|

L(z?,0,9)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z =) Hpe<z>2|

L(z?,0,9)

/’I’ZI:B Ez |a;
Encoder network V\/
e (2|)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z =) Hpe<z>2|

L(z?,0,9)

Dkr, (N(/J‘zkca EZICC)HN(O?I))

Have analytical solution

Make approximate
posterior distribution

close to prior Hz|z Zz|:c
Encoder network V\/
94(2|7)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

Not part of the computation graph!

|

<

Sample z from z|x ~ j\/’(,qu|w, Zz|:c)

/

Hz|z

Encoder network
wil) SN

Zz|:c

Input Data

b

Lecture 15 - 85
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Va r atl on al AUtOe N COd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound sample € ~ N(0, I)

. | z = €T
E. [logpo(a® | 2)] | Dics(gol= | 29) I po(2)) Hzle T €02q

-

L(z?,0,9)

VA
Sample z from z|a7 ~ N(Mz|a;, Ez|:c)

/

Hz|x >, E
Encoder network V\/
q¢(z|z)
Input Data b
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Va r atl on al AUtOe N COd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
g g g Sample € ~ N(O, I

likelihood lower bound Input to
oy — the graph
£ [IngQ(x(@ | 2)] - Dicr(gs(2 | 29) [ po(2)) - 'u’zm
L(z,0,9) Part of computation graph

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

Hz|x >, E
Encoder network V\/
q¢(z|z)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

M|z

Decoder network

po(x|2)

2a:lz

<

Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

Encoder network

94(2|7)

Input Data

/

/’l’Zlili Zzlx

~_

b

Ali Farhadi, Aditya Kusupati
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Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

i
E. [logpa(a? | 2)| [+ Denlaolz | ) | p0(2) Kz Xiz)z

L(zD,0,¢) Decoder network \/
po(x|z)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

l‘l’ZI.’B Zz |a;
Encoder network V\/
e (2|)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound / \

E. |logpo(2 | 2)| = Dics(as(z | ) Il po(2) K|z Yzl
L(z®,0,¢) Decoder network \/
po(x|2)
For every minibatch of input 2
data: compute this forward Sample z from Z|iB ~ N(,u'z|a:7 Zz|:z:)
pass, and then backprop! /
/’l’Zlili Zzlx
Encoder network V\/
99 (2|z)
Input Data b
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Variational Autoencoders: Generating Data!

Our assumption about data generation
process

Sample from
true conditional £T

pe-(z | %)

Decoder
network
Sample from

true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation use decoder network & sample z from prior!

process
Sample from L/
true conditipnal b Sample x|z from :clz ~ N(ux|z, 2x|z)
po-(z | 29)
Decoder / \
network Hz|z Z:Izlz
tsampl? from Decoder network \/
rue prior >
, po(x|2)
20~ pg (2) <

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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ing Data!

Generat

| Autoencoders:

lona

t

Ia

Var

Use decoder network. Now sample z from prior!

QDAY NANNANANANNN N SNNNNS
QAN LELLLLLWN NN~
QAN LELLLVVYY YN~
QAUAVVDNININLN LGt BV VVY W~~~
QAOOVOHINININNHOEBPBDIYOVIY W - ——
QAQOQOMIMNMNMN N MDY IY D @ - ——
QOODOMHMMMMN M M®OO DD D — —
OODMMMN MMM NM®DD DD e e —
OODOMW MMM NN DD e e e —
QOMMM M0N0 0000 n e oo = —
QA48 0802 0P 000000 00 n & 0~ 0~ P~ o~
N N Ko N N Nl ol U
Gt~
Sl ogororrorrrrTaNN
Sdadadaddocrrrrr T TTIIIINN
SddddagororrrrrddTITITRIRINN
SAdddTTrrrrrrrrrFrT™2TR™IR™NN
% B g gl e e i<l el el ol ol ol O N NN N

Za:lz

N

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Decoder network
po(x|z)

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Nov 28, 2023
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ing Data!
Data manifold for 2-d z

Generati

| Autoencoders:

lona

t

Ia

Var

QDAY NANNANANANNN N SNNNNS
QAN LELLLLLWN NN~
QAN LELLLVVYY YN~
QAUAVVDNININLN LGt BV VVY W~~~
QO0DHINININMHEBVIVVV®w w—— 4
QAQOQOMIMNMNMN N MDY IY D @ - ——
QOODOMHMMMMN M M®OO DD D — —
OODMMMN MMM NM®DD DD e e —
OODOMW MMM NN DD e e e —
QOMMM M0N0 0000 n e oo = —
QA48 0802 0P 000000 00 n & 0~ 0~ P~ o~
N N Ko N N Nl ol U
&221111%“?9?999977774
Sl ogororrorrrrTaNN
Sdadadaddocrrrrr T TTIIIINN
SddddagororrrrrddTITITRIRINN
SAdddTTrrrrrrrrrFrT™2TR™IR™NN
% B g gl e e i<l el el ol ol ol O N NN N

< >

Vary z,

Za:lz

N

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Use decoder network. Now sample z from prior!
po(x|z)

Decoder network

Vary z,
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Variational Autoencoders: Generating Data!

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ali Farhadi, Aditya Kusupati

Degree of smile

N

Vary z,

'.JI.J.J..!.FQ..'..Q.. o

e e
3

A A . - B
JJJJJJ

- -
ﬁﬂ&ﬁ?‘ﬁaﬁ;
SEEEEEEBBE

- Vary z, > - Head pose
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Variational Autoencoders: Generating Data!

Diagonal prior on z
=> independent
latent variables

lovavaslaslanlantontonton s

SEEEEEEER
Degree of smile .‘q.‘d-‘-é ,

T #

Different \ &:% SN
dimensions of z Vary z, g ;q.:q. I
encode r 5 .
interpretable factors B‘E ''''

of variation

- — -

Also good feature representation that :P hoh b o .aaa

can be computed using q¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ali Farhadi, Aditya Kusupati

>
v

Head pose
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Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Ali Farhadi, Aditya Kusupati Lecture 15 - 97 Nov 28, 2023



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Comparing the two methods so far

Variational model

Maximize lower bound on p(data)
Generated images often blurry
Very fast to generate images
Learn rich latent codes

Autoregressive model
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes
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Taxonomy of Generative Models

GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN

Tractable density Approximate density

Fully Visible Belief Nets
- Autoregressive e ]
- NADE Variational Markov Chain

- MADE . .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Generative Adversarial
Networks (GANSs)
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpo(a:z-|a:1, - xz’—l)
1=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:
p@(x) = Hpo(a:z-|x1, - xi—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [ po(2Ipo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpe(a:dxl, ...,Q’Ji_l)
1=1

VAEs define intractable density function with latent z:

po(z) = [ po(2Ipo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: not modeling any explicit density function!
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Generative Adversarial Networks Advereariol Nets' NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.
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Generative Adversarial Networks Advereariol Nets' NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Output: Sample from

training distribution ‘

f

Generator
Network

f

Input: Random noise yA

|
-
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Generative Adversarial Networks Advereariol Nets' NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

But we don’t know which

sample z maps to which

training image -> can't

learn by reconstructing 4
Generator

Network

;

training images
Input: Random noise Z

Output: Sample from
training distribution
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Generative Adversarial Networks Advereariol Nets' NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

But we don’t know which

sample z maps to which

training image -> can't

learn by reconstructing 4
Generator

Network

;

training images
Input: Random noise Z

Output: Sample from
training distribution

Objective: generated
images should look “real”
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets’, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.
=_>

But we don’t know which
sample z maps to which

Output: Sample from Discriminator _, Real?

L ) training distribution Network Fake?
training image -> can't
learn by reconstructing 4 .
training images Generator gradient
Solution: Use a discriminator Network \/
network to tell whether the ?
generate image is within data  Input: Random noise y4

distribution (“real”) or not
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

Dlscrlmlnator Network

Fake Images Real Images
(from generator) | (from training set)

Generator Network

*

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake
\ Discriminator learning signal

Generator learning Slgnal Dlscrlmlnator Network

Fake Images Real Images
(from generator) | (from training set)

Generator Network

*

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Adversarial Nets”, NIPS 2014

Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

min max [Emrvpdm log Do, () + E,p(z) log(1 — Do, (G, (z)))]
g d

Genégtor o \ N
objective iscriminator
objective
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Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em,\,pdaw log Dg,(z) + E,~p(2) log(1 — De, (Go, (Z)))]
0y B4 L \ '

Discriminator output
for real data x

1

Discrimina'tor output for
generated fake data G(z)
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Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em,\,pdaw log Dg,(z) + E,~p(2) log(1 — De, (Go, (Z)))]
0y B4 L \ '

Discriminator output
for real data x

Discrimina'tor output for
generated fake data G(z)

1
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Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em,\,pdaw log Dg,(z) + E,~p(2) log(1 — De, (Go, (Z)))]
O, B4 L \ '

Discriminator output
for real data x

Discrimina'tor output for
generated fake data G(z)

1

Ali Farhadi, Aditya Kusupati

Lecture 15- 116 Nov 28, 2023



Training GANs: Two-player game hversaral NS NIPS 2015

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em,\,pdaw log Dg,(z) + E,~p(2) log(1 — De, (Go, (Z)))]
0y 0Oq L \ '

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to 0 (fake)

- Generator (Gg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Emm log Do, (z) + Bz log(1 — D, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

max []Emrvpdm log Dy, (z) + E,np(z) 10g(1 — Do, (Go, (z)))]
d

2. Gradient descent on generator
r%in E,rp(z)log(1l — Dy, (G, (2)))
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Exwpdm log Do, (z) + Bz log(1 — D, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

max []Emrvpdm log Dy, (z) + E,np(z) 10g(1 — Do, (Go, (z)))]
d

2. Gradient descent on generator

. When sample is likely
r%m ]EZNp(Z) log(1 — Dy, (Geg (2))) fake, want to learn from
g it to improve generator ,

In practice, optimizing this generator objective (m_ove to the right on X i
axis).
does not work well! |

— log(1-D(G(2))) |
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Exwpdm log Do, (z) + Bz log(1 — D, (Go, (z)))]

0, 6a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

meax [Emmpdam log Dy, (z) + E,p2) log(1 — DOd(Geg (z)))] dominated by region
d where sample is

2. Gradient descent on generator already 90\od

. When sample is likely
r%m ]EZNp(Z) log(1 — Dy, (Geg (2))) fake, want to learn from
g it to improve generator |

In practice, optimizing this generator objective (m_ove to the right on X ¥ |
axis). A

does not work well! ]
But gradient in this : : ‘ : ‘

region is relatively flat!
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Exwpdm log Do, (z) + Bz log(1 — D, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

max []Emrvpdm log Dy, (z) + E,np(z) 10g(1 — Do, (Go, (z)))]
d

2. Instead: Gradient ascent on generator, different objective
max E.~p(z) 108(Doy (G, (2))) /

Instead of minimizing likelihood of discriminator being correct, now High gradient signal

maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

Cow gradient signal
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(%),... , £(™} from data generating distribution

pda(a(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 10g Do,(29) + log(1 — Do, (G, (:)))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior Py(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 & ,
V6, 1y 2210800y (Go, (7))
=

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

for number of training iterations do

for[: siep Ho

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(%),... , £(™} from data generating distribution

pda(a(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 10g Do,(29) + log(1 — Do, (G, (:)))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior Py(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 & ,
V6, 1y 2210800y (Go, (7))
=

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Dlscrlmlnator Network

Fake Images Real Images
(from generator) | (from training set)

Generator Network
A After training, use generator network to

generate new images

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

g ¥
»

WP p—

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Interpolating ¢ ikh U*é Uﬁ' w
between W ~

;raaorllrclltzrrl]n laten P ﬁ w '“ ! P ’ ' _.7
o ﬂrWTTJ

P

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Samples
from the <
model
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

r >

Samples
from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

r >

Samples
from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Ractord otal,

L/

Woman with glasses
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Since then: Explosion of GANs

« ” See also: https://github.com/soumith/ganhacks for tips and tricks for
The GAN Zoo trainings GANs

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

AffGAN - Amortised MAP Inference for Image Super-resolution

DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

.

ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw

E-GAN.- B:GAN: Unifled Framaiorc of Generative Adversarial Nebioie GeneGAlTJ - GeneGAN: Lea‘rning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models
BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN - Adversarial Feature Learning

iGAN - Generative Visual Manipulation on the Natural Image Manifold

BS-GAN - Boundary-Seeking Generative Adversarial Networks

IcGAN - Invertible Conditional GANs for image editing

CGAN - Conditional Generative Adversarial Nets
* ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

. . . « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks % § L %

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

CoGAN - Coupled Generative Adversarial Networks
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https://github.com/soumith/ganhacks

2017 Explosion of GANs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,
Arjovsky 2017.
Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.
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2017 Explosion of GANs

Source->Target domain transfer

Input Output Input

Output

- winter Yosemite

CycleGAN. Zhu et al. 2017.

Ali Farhadi, Aditya Kusupati

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

g o |
Reed et al. 2017.
Many GAN applications

‘L o /)

y #

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/
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2019: BigGAN

)

e

Brock et al., 2019
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HYPE: Human eYe Perceptual Evaluations
hype.stanford.edu

10% 30% 50%

Lowest | 4 Highest

1 | L ==

38 10.0 40.3 50.7
WGAN-GP BEGAN ProGAN StyleGAN yync
Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurlPS 2019 Figures copyright 2019. Reproduced with permission.
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https://hype.stanford.edu/

Summary: GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications
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Diffusion Models

q(xt|xt-1)
B @Oz~ @
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Summary

Autoregressive models: Variational Autoencoders Generative Adversarial
PixelRNN, Pixel CNN Networks (GANs)

Lﬂ | & | Real or Fake
Sample x|z from |z ~ N (pig|z, Xg|2) *

255

Discriminator Network

/ \
. i ’ .u'a;|z H Ea:lz ‘ r‘i
N Decoder network
) ] =

sample zfrom z|x ~ N (fz)z, X2|z) Real Images
D i ™ Generator Network
Encoder network \—‘Iv ] *
a4 (2|2) =
Input Data [ xZr ‘
Van der Oord et al, “Conditional i o ) Goodfellow et al, “Generative
image generation with pixelCNN Kingma and WeII,l’ng, Auto-encoding Adversarial Nets”, NIPS 2014
decoders”, NIPS 2016 variational bayes , ICLR 2013
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Summary

GAN: Adversarial / Discriminator Generator ,
. X X Z x
training D(x) G(z)

VAE: maximize » Encoder 1 ‘@ y
variational lower bound q¢(z|x) po(x|2)
Flow-based models: % Flow B R |nlllerse A x!
Invertible transform of f(x) f(=z)

distributions
Diffusion models:. X0 N Xo — ”

Gradually add Gaussian S - - - R i S ”
noise and then reverse
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Next: Reinforcement Learning
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