Incentives in Computer Science

One-sided matching
IT CA
Kidney exchange

## PARTICIPATION

- Please do it!!!!!!!
- Use the chat feature to either write a question or in the chat box, type "hand" and I will call on you soon thereafter or just shout out!
- Also, l'd love it if you kept your video on so I can see you....


## Today and especially Monday

- Covers some of the major results that resulted in the awarding of the 2012 Nobel Prize in economics to Lloyd Shapley and Al Roth
- "The Prize concerns a central economic problem: how to match different agents as well as possible. For example, students have to be matched with schools, and donors of human organs with patients in need of a transplant. How can such matching be accomplished as efficiently as possible? What methods are beneficial to what groups? The prize rewards two scholars who answered these questions on a journey from abstract theory on stable allocations to practical design of market institutions."


## A basic definition

## MECHANISM

An algorithm whose inputs come from agents with a strategic interest in the output. Each agent's input is their own private information.
Takes as input the reported preferences/data for a set of agents and produces as output an outcome, decision or action.

```
Examples:
    anctons
    voting
    schod choice
```

TODAY: MECHANISMS WITHOUT MONEY

One-sided matuning preblews

## Office Allocation

- n people, n offices; each person has private preference order over all offices.
- Mechanism for allocating offices to people?


## Algorithm 1

- People report preferences to algorithm.
- Algorithm visit students in alphabetical order and matches them to their first choice if it's available.
- Then, for all unmatched students, the algorithm visits them in alphabetical order and matches them to their second choice if available.
- And so on until everyone matched.



## Pareto Optimality

- An outcome is Pareto optimal if you cannot make anyone better off without also making someone else worse off.

Lemma: Algorithm 1 is Pareto optimal
Proof
People report preferences to algorithm. Algorithm visit students in alphabetical order and matches them to their first choice if it's available. For all unmatched students, the algorithm visits
them in alphabetical order and matches them them in alphabetical order and $m$
their second choice if available. And so on until everyone matched.
$i$ : lowest index sit.
some person $p \in S$ is strictly happier in $M^{\prime}$
$P$ is matched to office allocated to, say $P^{\prime}$, in $M$, in round $S_{l} 1 \leqslant l \leqslant i-1$ orvisted lenleis $p^{\prime}$ is worse off. in round:

## Is it truthful?

- That is, is it in each agents to report their preferences truthfully? Not turtigut.



## Truthful mechanisms

- A mechanism is truthful or strategyproof or dominant strategy incentive-compatilde(DSIC) if honesty is always the best policy.
- That is, no matter what other agents do, lying about your preferences cannot make you better off.


## Algorithm 2: Serial dictatorship

- Pick an arbitrary ordering of the students. alphabebcal.
- Visit the students in this order and let them pick their favorite available office that has not yet been picked.

- Pareto optimal?
- Truthful?

Lemma: Serial Dictatorship is Pareto optimal
Pf let $M$ ' be
Pick an arbitrary ordering of the students. any other allocation. their favorite available office that has not yet been picked.

Consider dust prison who gte different oles in $M^{\prime}$ tran in $M^{\prime}$

M

Lemma: Serial Dictatorship is truthful

Pick peron $P$
Fix raparls of
leverove else.
$p$ has no incentre to lie

Why should we care about truthfulness?

- difficult to mason abontorteres.
- easier on agents.

Office allocation

- n people (agents), each starts with an office
- Each person has a total order over all the offices.
- How should we reallocate them to get to a better allocation?

Top Trading Cycle Algantim
while ages remain (initially all) each remaining agent to pout to s this $\delta$ formate office

Claim: I always cycle in resulting directed graph.
reallocate according to that cycle remove all these agents repeat fill tho agents remain


Theorem: TTCA is a truthful mechanism
Pf Fix reports geveryase but $i$
Suppose that if i tritige

$$
c_{1}, c_{2}, \ldots, c_{k}
$$

and $i$ is allocated in cycle $C_{j}$
Claim: all the people in $C_{1} \ldots, C_{j-1}$ prefer then allocation to any office in $C_{j} \ldots, C_{k}$
This nears the at can rot be any cylethat contains i \& any agent in $c_{1}, S_{j-1}$
$\therefore$ can only got soneare in $C_{8} \ldots C_{1}$ \& getting his favonte by spurting

Theorem: The allocation produced by ole do at lust
dict the the is stable

- The allocation is stable if no subset of agents could have done betterby not participating, but rather just reallocating amongst themselves.

Proof: by $\rightarrow \leftarrow$

- Suppose there is a subset A of ages that purger to go of \& reallocate annoy thanselies
- Lat $A^{\prime} \subseteq A$ be agents in $A$ that get adiffent alloy from what they ward havegititen
- Let $G_{j}$ be first ugle in TTA contango $a \in A^{\prime}$
- $C_{1} \ldots C_{J-1}$ get the exact save alboch. so a has to be dongs strictly wace


## Pareto Optimality

- An outcome is Pareto optimal if in any other outcome at least one agent is worse off.
- Is the outcome produced by TTCA Pareto optimal?


## Kidney Exchange



Next set of slides created by Jason Hartline and Nicole Immorlica

## Kidney failure

## Dehydration

## Diabetes

Sepsis

## Without a transplant, they will die.

Hypovolemia
High blood pressure
Rhabdomyolysis

## Kidney supply



1. Cadavers

## Kidney supply


2. Live donors

## In 2008,

## 10,526 patients

 received cadaver kidneys.
## 4,857 patients

received live donor kidneys.

## Kidney demand

There are currently

## 93,000 people

waiting for a kidney transplant in the US. http://optn.transplant.hrsa.gov

## In 2014,

## Over 8,000 patients died

 waiting or became too sick for a transplant.
## Making supply meet demand

The economic approach 101: Buying kidneys.


## Repugnance

Often x + \$ is repugnant, even when $x$ alone is not.

Interest on loans
Prostitution
Organ donation

"We didn't have time to pick up a bottle of wine, but this is what we would have spent."

## Legality

Section 301 of the National Organ Transplant Act, "Prohibition of organ purchases" imposes criminal penalties on any person who
"knowingly acquire[s], receive[s], or otherwise transfer[s] any human organ for valuable consideration for use in human transplantation"

## Making supply meet demand

Take two:
Kidney exchange.

## Compatibility



Tissue
(crossmatch test)

## Kidney exchange

Sick, blood type A

$\rightarrow$ Sick, blood type B


Hace bunch of palient-dover pairs $P \rightarrow D, P_{r}-D_{0} \ldots P_{n}-D_{n}$
Idea护 Ux TTCA

total ordung on offics

Torun TTCA
can sxtend TTCA
to deal patierts wo/donen. donas wol patient


I ssuen*1


4 sunguies
issur y dong sequatially.
$D_{1} \rightarrow P$ first $D_{2}$ can now reverg.
cont legally coence Dz to follow time.
$\Rightarrow$ alway dove simultareany
$\Rightarrow$ dont waut to de long cyles

Issue \#2 moded is orentell.

- Q: is ot mgly lekely to work or ret.
- input to publew:
- objective:

max candilatiy matoning
Inpat ruported to Natonal Kidney exchog pateats/doctor.
want to be sue incentivied to evoort all edog

Essentral requicment: olg has to ensue that no patiant con switch firm matuled to unmatched when they report oddutoral edoys


Mathing Fix arden ancres on pahculs

