Incentives in Computer Science

Stable matching
HW:

"since telling the truth is a dominant strategy"

≡ "since the mechanism is truthful"

If a mechanism is [truthful], it is never beneficial to lie, no matter what others do.

Is every truthful mechanism Pareto-optimal?

No, ignore preferences
Today – stable matching

• “The Prize concerns a central economic problem: how to match different agents as well as possible. For example, students have to be matched with schools, and donors of human organs with patients in need of a transplant. How can such matching be accomplished as efficiently as possible? What methods are beneficial to what groups? The prize rewards two scholars who answered these questions on a journey from abstract theory on stable allocations to practical design of market institutions.”
Matching Residents to Hospitals

• Given n hospitals (each with 1 open slot for a resident) and n applicants for a residency, find a "suitable" matching.
 – Each hospital ranks applicants in order of preference from best to worst.
 – Each applicant/resident ranks hospitals in order of preference from best to worst.

```
  hosp  residents
  1:2 A                      1:2 B
     B
```

2-sided matching
Matching Residents to Hospitals

• **Goal.** Given a set of preferences among hospitals and residents looking for a residency, design a good admissions/matching process.

• **Unstable pair:** resident x and hospital y are unstable if:
 - x prefers y to its assigned hospital.
 - y prefers x to one of its admitted students.

• **Stable assignment.** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.
Stable Matching Problem

- **Unstable pair:** resident/applicant x and hospital y are unstable if:
 - x prefers y to its assigned hospital.
 - y prefers x to one of its admitted students.

- **Stable assignment.** Assignment with no unstable pairs.

Hospital’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1^{st}</th>
<th>2^{nd}</th>
<th>3^{rd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Resident’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1^{st}</th>
<th>2^{nd}</th>
<th>3^{rd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

x prefers A to B, y prefers Y to Z, Z prefers C to X.
Stable Matching Problem

- **Perfect matching**: 1-1 matching; everyone matched.
 - Each hospital gets exactly one resident.
 - Each resident is assigned to exactly one hospital.

- **Stability**: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair h-r is unstable if hospital h and applicant r each prefer each other to current matches.
 - Unstable pair h-r could each improve by making a side deal.

- **Stable matching**: perfect matching with no unstable pairs.

- **Stable matching problem**: Given the preference lists of n hospitals and n applicants, find a stable matching if one exists.
Apologies in advance

• Note: I might interchangeably use the terms residents or applicants. In both cases, I mean medical school graduates seeking a residency.

• I may accidentally say “men” for hospitals and “women” for applicants.

• This is because, for many years, when presenting this material, people spoke of “stable marriage” and used men and women as the two sets.

• In that context, you can think of the problem as studying 1950’s dating.
Stable Roommate Problem

- Q. Do stable matchings always exist?
- A. Not obvious a priori.

- Stable roommate problem.
 - 2n people; each person ranks others from 1 to 2n-1.
 - Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Doofus</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Doofus</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

8
DA Deferred Acceptance Algorithm
GS Gale-Shapley Algorithm [1962]

Initialize all hospitals and residents to be unmatched

while (some hospital unmatched and hasn’t made an offer to every resident)
{
 Choose such a hospital h
 r = 1st applicant on h's list to whom h has not made an offer
 if (r is unmatched)
 tentatively match h and r. (h “proposes” to r.)
 else if (r prefers h to her tentative match h’)
 tentatively match h and r, and set h' to be unmatched
 else
 r rejects h (and h remains unmatched)
}
Initialize all hospitals and residents to be unmatched

while (some hospital unmatched and hasn’t made an offer to every resident) {
 Choose such a hospital h
 $r = 1^{st}$ applicant on h's list to whom h has not made an offer
 if (r is unmatched)
 tentatively match h and r. (h “proposes” to r.)
 else if (r prefers h to her tentative match h')
 tentatively match h and r, and set h' to be unmatched
 else
 r rejects h (and h remains unmatched)
}
Observations:

- Hospitals make offers to residents in order by preference.
- Once a resident is matched, she stays until termination of alg & her successive matches are better & better from her perspective.
- Alg terminates after at most n^2 iterations thru while loop.
All hospitals/residents are matched in end (perfect matching)

Pf

Say \(h \) unmatched at end.
Then \(h \) proposed to all residents.
if \(h \) unmatched at end, then
that is unmatched at end.
\[\rightarrow \leftarrow \]
Thm: The final matching is stable.

Pf:

by \Rightarrow

Suppose end up with unstable pair \((h, r')\).

Case 1: \(h\) never proposed to \(r'\). \(\Rightarrow\) \(h\) prefers \(r\) to \(r'\) because \(r\) proposes \(h\) in order of preference.

Case 2: \(h\) did propose to \(r'\). \(\Rightarrow\) \(r'\) prefers \(h'\) to \(h\) because \(h'\) got \(h\) for better matches & better hospital.
Summary

• Stable matching problem. Given n hospitals and n residents, and their preferences, find a stable matching if one exists.

• Gale-Shapley (GS) algorithm (also called “Deferred Acceptance” (DA) algorithm). Guaranteed to find a stable matching for any problem instance.

• Algorithm underspecified. Q. If there are multiple stable matchings, which one does GS find?
• Algorithm is under-specified.
• Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
Understanding the Solution

• Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

• Def. Hospital h is an attainable match of resident r if there exists some stable matching in which they are matched.
Understanding the Solution

• Def. Hospital h is an **attainable match** of resident r if there exists some stable matching in which they are matched.

• **Hospital-optimal assignment.** Each hospital receives **best attainable match**.

• **Claim.** All executions of GS yield hospital-optimal assignment, which is a stable matching!
 – No reason a priori to believe that hospital-optimal assignment is perfect, let alone stable.
 – Simultaneously best for each and every hospital.
Hospital Optimality

• Claim. GS matching is hospital-optimal.

• Pf. (by contradiction)
 In execution of GS, consider first time some hospital h is rejected by its best attainable match r.

 First rejection by best attainable h rejects h for h'.

 h' prefers h to h.

 Claim: h' prefers r to r'.

 h' has not yet been rejected by best attainable best attainable is r or below r and r' is attainable $\Rightarrow h'$ prefers r to r'.
Stable Matching Summary

• **Stable matching problem.** Given preference profiles of n hospitals and n residents, find a stable matching.

 - no unmatched hospital and resident prefer to be matched to each other

• **Gale-Shapley algorithm.** Finds a stable matching in $O(n^2)$ time.

• **Hospital-optimality.** In version of GS where hospitals make offers, each hospital receives best attainable match.

 - a is an attainable match of h if there exist some stable matching where they are matched

• Q. What about the residents/applicants?
Resident Pessimality

- Resident-pessimal assignment. Each resident receives worst attainable match.

Proof:
- Output of GS & h is not r's worst attainable
- h' is r's worst attainable
- There exists a matching M" in which h' & r" are matched.
- h' & r" are matched by hospital optimally.
- h likes r more than r" and r likes h more than h' because h' is r's worst attainable match.
Honesty

• Are the participants in a stable matching algorithm motivated to report their preferences truthfully?
Honesty for residents in hospital-proposing version

<table>
<thead>
<tr>
<th>Hospitals preferences</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residents preferences</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
</tbody>
</table>

C will end up with a better match from perspective of true preferences.

not truthful for non-proposing side if C reports YZX

if C reports YZX
Thm: The GS alg is truthful for proposing side.

Lemma: Suppose \(\mu \) is hosp-opt stable matching.

Let \(\nu \) be any other matching.

Let \(S \) be hospitals that prefer their match in \(\nu \) to their match in \(\mu \).

\[f(h, r) \] that are unstable in \(\nu \) s.t. \(h \not \in S \).

Proof:

Case 1: \(\mu(S) \neq \nu(S) \)

Claim: \((h, r)\) is unstable for \(\nu \).

- Since \(h \not \in S \), \(h \) doesn't like \(r' \) as much as \(r \).
- \(r \) prefers \(h \) to \(h' \).
- \(h' \) proposed to \(r \) before \(h' \) proposed to \(\mu(h') \).
- \(\& \) was rejected by \(r \).
Case 2: \(M(S) = V(S) = R_o \)

During GS execution, each \(r \in R_o \) received \& rejected a proposal from her match in \(V \).
Let \(r \) be last one in \(R_o \) to receive a proposal during GS (from some hospital, say \(h' \)).

Claim: at that pt, \(r \) was tentatively matched to \(h \) who she rejected for \(h' \).
\(h \) must be outside \(S \).

\((h, r)\) is unstable for \(V \)
\(h \) likes \(r \) at least as much as \(\mu(h) = r' \) likes \(r' \) at least as much as \(V(r) \)
\(r \) likes \(h \) at least as much as \(V(r) \).

because \(V(r) \) proposed to \(r \) before \(h \) did which was before \(h' \) did. \(\square \)