Incentives in Computer Science

Stable matching

Today – stable matching

 "The Prize concerns a central economic problem: how to match different agents as well as possible. For example, students have to be matched with schools, and donors of human organs with patients in need of a transplant. How can such matching be accomplished as efficiently as possible? What methods are beneficial to what groups? The prize rewards two scholars who answered these questions on a journey from abstract theory on stable allocations to practical design of market institutions."

Matching Residents to Hospitals

- Given n hospitals (each with 1 open slot for a resident) and n applicants for a residency, find a "suitable" matching.
 - Each hospital ranks applicants in order of preference from best to worst.
 - Each applicant/resident ranks hospitals in order of preference from best to worst.
 2-sided matching

Matching Residents to Hospitals

- Goal. Given a set of preferences among hospitals and residents looking for a residency, design a good admissions/matching process.
- Unstable pair: resident x and hospital y are unstable if:
 - x prefers y to its assigned hospital.
 - y prefers x to one of its admitted students.
- Stable assignment. Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

- Unstable pair: resident/applicant x and hospital y are unstable if:
 - x prefers y to its assigned hospital.
 - y prefers x to one of its admitted students.
- Stable assignment. Assignment with no unstable pairs.

Stable Matching Problem

- Perfect matching: 1-1 matching; everyone matched.
 - Each hospital gets exactly one resident.
 - Each resident is assigned to exactly one hospital
- Stability: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair h-r is unstable if hospital h and applicant r each prefer each other to current matches.
 - Unstable pair h-r could each improve by making a side deal.
- **Stable matching**: perfect matching with no unstable pairs.
- Stable matching problem. Given the preference lists of n hospitals and n applicants, find a stable matching if one exists.

Apologies in advance

- Note: I might interchangeably use the terms residents or applicants. In both cases, I mean medical school graduates seeking a residency.
- I may accidentally say "men" for hospitals and "women" for applicants.
- This is because, for many years, when presenting this material, people spoke of "stable marriage" and used men and women as the two sets.
- In that context, you can think of the problem as studying 1950's dating.

Stable Roommate Problem

"nonbipatrie groph" vension f stable matchi

- Q. Do stable matchings always exist?
- A. Not obvious a priori.
- Stable roommate problem.
 - 2n people; each person ranks others from 1 to 2n-1.
 - Assign roommate pairs so that no unstable pairs.

DA Deferred Acceptance AlgorithmGale-Shapley Algorithm [1962]

Initialize all hospitals and residents to be unmatched

while (some hospital unmatched and hasn't made an offer to every resident)

```
Choose such a hospital h
```

 $r = 1^{st}$ applicant on h's list to whom h has not made an

```
offer
```

```
if (r is unmatched)
    tentatively match h and r. (h "proposes" to r.)
else if (r prefers h to her tentative match h')
    tentatively match h and r, and set h' to be unmatched
else
    r rejects h (and h remains unmatched)
```


Observations;

· hospitals make gjers to residents in l order by preference once a resident is matched, she
 stays until termination of alg
 be her successive matches are better & better from her perspective. · Alg terminates after at most na iterations three while loop

All nospitals (residents are matched in end (perfect natching) Say h unnatched at end h proposed to all residents if h unmatched at end, t - that is unnetched at end.

is stable. hm The final matching end up 6 Suppose unstable pair (with preposed never (ase order Pro Dasen De camp preference propose <u>6 De</u> 10 sus De CQ

- Stable matching problem. Given n hospitals and n residents, and their preferences, find a stable matching if one exists.
- Gale-Shapley (GS) algorithm (also called "Deferred Acceptance" (DA) algorithm). Guaranteed to find a stable matching for any problem instance.

• Algorithm underspecified. Q. If there are multiple stable matchings, which one does GS find?

Understanding the Solution

- Algorithm is under-specified.
- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Hospital h is an attainable match of resident r if there exists some stable matching in which they are matched.

Understanding the Solution

 Def. Hospital h is an attainable match of resident r if there exists some stable matching in which they are matched.

 Hospital-optimal assignment. Each hospital receives best attainable match.

- Claim. All executions of GS yield hospital-optimal assignment, which is a stable matching!
 - No reason a priori to believe that hospital-optimal assignment is perfect, let alone stable.

Simultaneously best for each and every hospital.

Hospital Optimality

- Claim. GS matching is hospital-optimal.
- Pf. (by contradiction) \bullet consider first time Tr (~ execution is rejected (ts nosout best attainable match matching are metched 2 OV $\mathbf{\Omega}$ ۲' h prelas Claim. bestationab e cted

Stable Matching Summary

• Stable matching problem. Given preference profiles of n hospitals and n residents, find a stable matching.

no unmatched hospital and resident prefer to be matched to each other

- Gale-Shapley algorithm. Finds a stable matching in O(n²) time.
- Hospital-optimality. In version of GS where hospitals make offers, each hospital receives best attainable match.

a is an attainable match of h if there exist some stable matching where they are matched

• Q. What about the residents/applicants?

Resident Pessimality

Resident-pessimal assignment. Each resident \bigcirc receives worst attainable match.

Honesty

 Are the participants in a stable matching algorithm motivated to report their preferences truthfully?

Honesty for residents in hospital-proposing version

	1 st	2 nd	3 rd
х	С	А	В
Y	А	С	В
Z	С	А	В

	1 st	2 nd	3 rd
А	Х	Y	Z
В	Х	Y	Z
С	Y	х	Z

Hospitals preferences

Residents preferences

not truthful XZ i\$ C reports 10 C will end up with a reposing ron-o better match from perspective of the preferences.

pripesing is truthe me Thm: 6-5 alg m is hosp-opt STADIE Lemma: any other matching be matchin D then nat prejer hospitals 3 10 in \mathcal{V} e.t. h \notin S. motor unstab G-S (hosp opt.) pink is ontrone 100 **v(s)** M(S) 7 Lase res. (h,r) is unstable for Claim: ellow r(s) doeont liker' as m(h') - Since h Æ toh - before h h' proposed 10 was rejected by

(<u>use 2</u>: M(S)= V(S)=Ro res. hosp During GS execution, each rERo recouved & rejected a proposal R. har match in D. from Let r be last one in Ro 0000 to receive a proposal during GS (tran, some hospital, say h') Claim: at that pt, r was tentatively matched to h who she rejected for h'. Vyellow. h must be ontside S (hir) is unstable for) h lines r at least as much as m(h)=r likes r' at least as muchas) (h) h at least as much as D(r). likes because N(r) proposed to r before herd which was bylne "h' did