Game Theory Basics

- Game theory is designed to model
 - How rational (payoff-maximizing) ``agents" will behave

٦

- When individual outcomes are determined by collective behavior.
- Rules of a game specify agent payoffs as a function of actions taken by different agents.

Let's play the median game

- In a **private** message to Aditya Saraf, write down
 - An integer between 0 and 100 (inclusive).
- Later in the lecture, the person (or people) whose selected number is closest to 2/3 of the median of all the numbers (rounded down) wins the game!
- E.g., if the numbers are 3, 4, 5, 38, 60, 70, 70, 90, 100

		stay silent	confess/betray
5	stay silent	(-1,-1)	(-10,0)
	confess/betray	(0,-10)	(-8, -8)
			TT

Definition 2.2. A strategy s^* for player *i* is a **best** response to the strategies \overline{s}_{-i} of others if it maximizes *i*'s utility/payoff. That is

$$u_i(\underline{s}^*, \overline{s}_{-i}) \ge u_i(\underline{s}, \overline{s}_{-i})$$

for all $s \in S_i$.

Definition 2.3. Strategy s_i (strictly dominates strategy s'_i if no matter what other players are doing, *i*'s payoff playing s_i is at least as good (strictly better) than *i*'s payoff playing s'_i .

$$u_i(s_i,s_{-i}) \ge u_i(s_i',s_{-i}) \quad orall s_{-i} orall s_i' \in S_i \smallsetminus s_i.$$

If strategy s_i (strictly) dominates all strategies in S_i , then it is a (strictly) dominant strategy.

S: shakey set for i u; (5

Betraying shictly dominated staying silent

Definition 2.4. A strategy profile (s_1, \ldots, s_n) is a **dominant strategy equilibrium** if for each player i, s_i is a dominant strategy.

	short.	long
	stay silent	confess/betray
stay silent	(-1, -1)	(-10, 0)
confess/betray	(0, -10)	(-8,-8)

ISP routing cost has to do w/ how much of their onen network's capacity is being used.

dominated strategies. Eliminating

Startup Game

G: whatles or not to enter a certain neumaket.

Storyng out is dominated

		Startup.		
H.		Enter	Stay out	
O LOSOY	Enter	(2, -2)	(4, 0)	
lalio -	Stay out	(0,4)	(0, 0)	

(Enter Stay Out)

Definition 2.8. A strategy profile (s_1, \ldots, s_n) is a Nash equilibrium if for every i, s_i is a best response to \vec{s}_{-i} .

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_i$ such that $a \in S_i$ weakly dominates strategy b. Delete strategy b from S_i .
- Update definition of what's dominated (assuming *b* will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining strategy, we say that the game is *solvable* by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.

a weakly don ¥s_i $u_i(a_i, s_i) \ge u_i(b_i, s_i)$ $u_i(a_i, s_i) \ge u_i(b_i, s_i)$ $u_i(a_i, s_i) \ge u_i(b_i, s_i)$ dominary _

outcone may depend on orden of deleter.

Back to the median game

- Submit
 - An integer between 0 and 100 (inclusive).
- After we collect all the submissions, the person (or people) whose selected number is closest to 2/3 of the median of all the numbers (rounded down) win the game.

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_i$ such that $a \in S_i$ weakly dominates strategy b. Delete strategy b from S_i .
- Update definition of what's dominated (assuming *b* will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining strategy, we say that the game is *solvable* by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.

Coordination Game.

Definition 2.2. A strategy s^* for player *i* is a **best** response to the strategies s_{-i} of others if it maximizes *i*'s utility/payoff. That is

$$u_i(s^*, s_{-i}) \ge u_i(s, s_{-i})$$

for all $s \in S_i$.

Definition 2.8. A strategy profile (s_1, \ldots, s_n) is a Nash equilibrium if for every i, s_i is a best response to s_{-i} .

both NE. (5#,S#)

mixed strategies

Parking gaine.

