Game Theory Basics

- Game theory is designed to model
- How rational (payoff-maximizing) "agents" will behave
- When individual outcomes are determined by collective behavior.
- Rules of a game specify agent payoffs as a function of actions taken by different agents.

$$
\sum_{u}(\text { paydh to youngom match to } u) \cdot \operatorname{Pr}\left(\begin{array}{c}
\text { (s) } \\
\text { yo get matched } \\
\text { to } n
\end{array}\right)
$$

- Solve parts (a) \& (b) first
- what to do f only get to apply to 1 school.
- is your strategy an approx best uaponse to everyone elbe using the strategy?
- what might you wart to do f As panticulaly high or partinulay law?
- if everybody weed yon strategy, how many students on arg wold apply to each university?
$\frac{\operatorname{Prob} \text { Fact : }}{\operatorname{Pr}(X+Y \leq a)}=\left\{\begin{array}{ll}\frac{a^{2}}{2 A B} & 0 \leq a \leq A[0, A]\end{array} \quad Y \sim U[0, B]\right.$

$$
\begin{aligned}
& N, S, T_{100}, w, A_{100}, \mathbb{Q}_{\substack{\hat{\uparrow} \\
\text { ques } \\
\text { dole }}}^{Q_{u}},\left\{S_{s, u}\right\}_{u \in U} \\
& \text { You ares } \\
& A_{\widetilde{s}} \sim U[0, s] \quad \forall \widetilde{s} \\
& S_{5, u} \sim U[0, w] \\
& Q_{u} \sim U[0, T]
\end{aligned}
$$

Let's play the median game

- In a private message to Aditya Saraf, write down
- An integer between 0 and 100 (inclusive).
- Later in the lecture, the person (or people) whose selected number is closest to $2 / 3$ of the median of all the numbers (rounded down) wins the game!
- E.g., if the numbers are 3, 4, 5, 38, 60, 70, 70, 90, 100

Prisovers Dilemna
normd form gave.

Definition 2.2. A strategy s^{*} for player i is a best response to the strategies $\underbrace{}_{-i j}$ of others if it maximize i 's utility/payoff. That is

$$
u_{i}\left(\underline{s}_{-}^{*}, \vec{s}_{-i}\right) \geq u_{i}\left(s, \overrightarrow{s_{-i}}\right)
$$

for all $s \in S_{i}$.

Definition 2.3. Strategy s_{i} (strictly dominates strategy s_{i}^{\prime} if no matter what other players are doing, i 's payoff playing s_{i} is at least as good (strictly better) than i 's payoff playing s_{i}^{\prime}.

$$
u_{i}\left(s_{i}, \overrightarrow{s_{-i}}\right) \geq u_{i}\left(\vec{s}_{i}^{\prime}, \vec{s}_{-i}\right) \quad \forall \vec{s}_{-i} \forall s_{i}^{\prime} \in S_{i} \backslash s_{i}
$$

If strategy s_{i} (strictly) dominates all strategies in S_{i}, then it is a (strictly) dominant strategy.

$u_{i}\left(\overrightarrow{s_{i}}\right)$

Definition 2.4. A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a dominant strategy equilibrium if for each player i, s_{i} is a dominant strategy.

short.	long	
	stay silent	confess/betray
stay silent	$(-1,-1)$	$(-10,0)$
confess/betray	$(0,-10)$	$(-8,-8)$

ISP routing
cost has to do w/ how mucthof thin one network's capacity is being used.

P2P netrerks. files stored between peens, isshes: free niding.
users who domluad fles frow othens
File transter game but dovit upload fites

lach $\mathrm{F} A \& B$ possesses a fle desived by otren
simultaneasly decide wivetuen or ret to uplad file.
bereftet of reciing file 3

- treseit's costog uplading 1
dorit reflect reabty.
dominant strategy for both not to upload.

Pollutor game
n countries
ewh foces choice passing legislath to erencise pellution conirol or not
lah country that pallwes odds 1 to cot of all cautries.
pollution control costs 3.
Suppose $\underset{n-k-1}{k}$ of otron, courtries polluting.

if nove paluted
3
\Rightarrow allinuir $\cos t g n$.
\Rightarrow

Eliminating dominated strategies.
Startup Game
Q: whither or not to enter a certain new maker.
Startup.

Startup.					
Miss				Enter	Stay out
:---	:---:	:---:			
Enter	$(2,-2)$	$(4,0)$			
Stay out	$(0,4)$	$(0,0)$			

Stayng ant is dominated

$$
\begin{aligned}
& \text { Stang ont is } \\
& \text { (Enter, Slay Out) }
\end{aligned}
$$

Definition 2.8. A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a Nash equilibrium if for every i, s_{i} is a best response to \vec{s}_{-i}.

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_{i}$ such that $a \in S_{i}$ weakly dominates strategy b. Delete strategy b from S_{i}.
- Update definition of what's dominated (assuming b will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining strategy, we say that the game is solvable by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.

$$
\begin{aligned}
& \forall s_{-i} \\
& u_{i}\left(a, s_{-i}\right) \geqslant u_{i}\left(b, s_{-i}\right) \\
& \text { and } \mathcal{s} s_{-i} \\
& u_{i}\left(a, s_{-i}\right)>u_{i}\left(b, s_{-i}\right] \\
& {[\text { strict dominates }} \\
& \text { strictness }
\end{aligned}
$$

response.
outcome may, depend on order
fere.

Back to the median game

- Submit
- An integer between 0 and 100 (inclusive).
- After we collect all the submissions, the person (or people) whose selected number is closest to $2 / 3$ of the median of all the numbers (rounded down) win the game.

$$
23
$$

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_{i}$ such that $a \in S_{i}$ weakly dominates strategy b. Delete strategy b from S_{i}.
- Update definition of what's dominated (assuming b will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining stategy, we say that the game is solvable by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.
repave 100

$$
\operatorname{med} \leq 100
$$

$$
\left[\frac{2}{3} \text { med }\right] \leq 66
$$

$$
\text { new median } \leq 66
$$

$$
\left[\frac{2}{3} n d\right] \leq 44
$$

$$
\operatorname{elm} 45 \ldots 66
$$

O best repave to every suonttry 0 .

Corrdinana Game．

B

A

	party	stay home
party	2,2	$\zeta_{0,0}^{-1,0}$
stay home	$0,-1$	$0_{0,0}$

No dominant strategus （Pan，哖）

Definition 2．2．A strategy s^{*} for player i is a best response to the strategies s_{-i} of others if it maxi－ mazes i＇s utility／payoff．That is

$$
u_{i}\left(s^{*}, s_{-i}\right) \geq u_{i}\left(s, s_{-i}\right)
$$

for all $s \in S_{i}$ ．

Definition 2．8．A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a Nash equilibrium if for every i, s_{i} is a best response to s_{-i} ．
（SH，SH）bath NE．

Network coordinate game
used to model odeston of new tech social netrakg app. spread I paphemty $\begin{gathered}\text { product? }\end{gathered}$

Nash eq: nobody west.
used to stride tow ides \& products cargo viral. How to "seed" apreduct.

Parting gaines.

When do I-prefen te inspect?

$$
p<\frac{4}{5}
$$

$$
p>\frac{4}{5}
$$

Illegal is better repose

$$
\begin{aligned}
10 q-90(1-q) & >0 \\
100 q & >90 \\
q & >\frac{9}{10}
\end{aligned}
$$

mixed Nash equilibrium

Definition 4.1. A mixed strategy is a probability distribution over pure strategies.

Definition 4.2. A strategy profile $\left(x_{1}, \ldots, x_{n}\right)$ where each x_{i} is possibly a mixed strategy $x_{i}: S_{i} \rightarrow$ probability distribution and $\sum_{s \in S_{i}} x_{i}(s)=1$ is a (mixed) Nash equilibrium if for each i,

$$
\frac{\sum_{s \in S_{i}, s_{-i} \in S_{-i}} x_{i}(s) \operatorname{Prob}\left(s_{-i}\right) u_{i}\left(s, s_{-i}\right)}{\sum_{s_{-i} \in S_{-i}} \operatorname{Prob}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)}
$$

$$
\begin{aligned}
& x_{i}(s)=\text { Prob plages : } \\
& \text { plays state } s \\
& \sum_{s \in s i} x_{i}(s)=1 \quad x_{i}(s) \geqslant 0
\end{aligned}
$$

