Fair Division

Fair Division

- What is a fair way for 2 people to split a heterogenous, divisible good?
- Why not $50 / 50$?
- I Cut, You Choose Protocol
- Player I told to split the good into two pieces A and B such that $v(A)=v(B)=\frac{1}{2} v(A \cup B) . \longleftarrow$
- Player II picks his favorite of A and $B . \leftarrow$
- Player I takes the other piece. \leftarrow

$$
v_{1}(\cdot) \neq v_{2}(\cdot)
$$

Formal model:
Goord is the unitinterval $[0,1]$

- $V_{i}(S)$ value playeni a ssigno to subset S of the interval.
- Assumplienors about valuarin fus:
- $v_{i}[0,1]=1$
- v_{i} is addilive on disjont subsects
- Valuatana ar "divisible";

$$
\forall 0 \leq c \leq 1,3 Y
$$

$$
\text { s.t. } \quad V_{i}([0, y])=c
$$

Arethe playens incentivized to follow the rubs?
An allocatron $A=\left(A_{1}, A_{n}\right)$
is Pouto phinal y^{\exists} ro allocat

$$
B=\left(B_{1}, B_{n}\right)
$$

luyger io at leat as hoppy \& at leat one strictly happier.
Is $\frac{T}{C u t}$ You Choose PO? (assung ployn Ifollens
No.

Defn
An allocitr is proprtional of $\forall i \quad V_{i}\left(A_{i}\right) \geqslant \frac{1}{n}$ $A_{1} . A_{n}$

v_{1}	$\frac{1}{3}$	$\frac{2}{3}$	0
	0	$\frac{1}{3}$	$\frac{2}{3}$
v_{2}			
v_{3}	$\frac{2}{3}$	0	$\frac{1}{3}$

If an allocth is $E F$, treerits also proportmal

$$
\begin{gathered}
\sum_{j=1}^{n} v_{i}\left(A_{i}\right) \geqslant \sum_{j=1}^{n} v_{i}\left(A_{j}\right) \\
n v_{i}\left(A_{i}\right) \geqslant 1 \\
v_{i}\left(A_{i}\right) \geqslant \frac{1}{n}
\end{gathered}
$$

Moving-knife Algorithm for fair division of a cake among n people

- Move a knife continuously over the cake from left to right until some player yells "Stop!"
- Give that player the piece of cake to the left of the knife.
- Iterate with the other $n-1$ players and the remaining cake.

Claim: when these ore k planes bet oven, The leftaren cable is worth \geqslant

