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1 Introduction

The standard mechanism design paradigm assumes that the auctioneer has full com-

mitment. She binds herself to follow the rules, and cannot deviate after observing the

bids, even when it is profitable ex post to renege (McAfee and McMillan, 1987). This

contrasts starkly with the way we model participants; incentive compatibility “requires

that no one should find it profitable to “cheat,” where cheating is defined as behavior

that can be made to look “legal” by a misrepresentation of a participant’s preferences or

endowment”(Hurwicz, 1972).

In this paper, we study incentive compatibility for the auctioneer. We require that

the auctioneer, having promised in advance to abide by certain rules, should not find

it profitable to “cheat”, where cheating is defined as behavior that can be made to look

“legal” to each participant by misrepresenting the preferences of the other participants. For

instance, in a second-price auction, the auctioneer can profit by exaggerating the second-

highest bid. Thus, as Vickrey (1961) observes, the first-price auction is “automatically

self-policing”, while the second-price auction requires special arrangements that tie the

auctioneer’s hands.

To proceed, we must choose a communication structure for the bigger game played by

the bidders and the auctioneer. Clearly, if the bidders simultaneously and publicly an-

nounce their bids, then the problem is trivial, and reduces to the case of full commitment.

However, simultaneous public announcements are uncommon in real-world auctions. Most

bidders at high-stakes auction houses do not place bids audibly, and instead use secret

signals that other bidders cannot detect. These signals “may be in the form of a wink, a

nod, scratching an ear, lifting a pencil, tugging the coat of the auctioneer, or even staring

into the auctioneer’s eyes – all of them perfectly legal” (Cassady, 1967). Recently, many

bidders have ceased to be present in the auction room at all, preferring to communi-

cate privately from a distance. The Wall Street Journal reports, “Many auction rooms

are sparsely attended these days despite widespread interest in the items being sold, with

most bids coming in online or, even more commonly, by phone”.1 Christie’s and Sotheby’s

are legally permitted to call out fake (‘chandelier’) bids to give the impression of higher

demand; the New York Times reports that, because of this practice, “bidders have no

way of knowing which offers are real”.2

There are several reasons why real-world auctioneers accommodate private communi-

cation. First, bidders frequently desire privacy for reasons both intrinsic and strategic. A

mobile operator may be unwilling to publicize its value for a band of spectrum, because its

rivals will take advantage of this information.3 Second, auctioneers want to prevent col-

1Why auction rooms seem empty these days, The Wall Street Journal, June 15 2014.
2Genteel auction houses turning aggressive, The New York Times, April 24 2000.
3Dworczak (2017) studies how post-auction strategic interactions affect what information auctioneers

should publicly release. A participant in a spectrum auction in India reported, “Those in the war room
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lusion. Thus, in some auctions, bidders are forbidden from conferring - they must submit

their bids only to the auctioneer. For instance, the 2017 US wireless spectrum auction’s

rules state that bidders “are prohibited from communicating directly or indirectly any

incentive auction applicant’s bids or bidding strategies”.4 In auctions for art or wine, the

auctioneer typically does not reveal the identity of the winner, since keeping this private

gives bidders incentives to defect from collusive arrangements (Ashenfelter, 1989). Third,

in auctions that take place over the Internet, bidders are anonymous to each other, which

prevents them from sharing information. An industry newsletter5 for online advertising

auctions reports:

In a second-price auction, raising the price floors after the bids come in al-

lows [online auctioneers] to make extra cash off unsuspecting buyers [. . . ] This

practice persists because neither the publisher nor the ad buyer has complete

access to all the data involved in the transaction, so unless they get together

and compare their data, publishers and buyers won’t know for sure who their

vendor is ripping off.

The second-price auction is incentive-compatible for the auctioneer only under strong

assumptions about the communication structure, such as simultaneous public communi-

cation. In this paper, we instead assume that the auctioneer engages in sequential private

communication with the bidders. This enables us to represent auction rules using the

tractable and familiar machinery of extensive game forms.

Consider any protocol ; a pair consisting of an extensive-form mechanism and a strategy

profile for the agents. The auctioneer runs the mechanism as follows: Starting from the

initial history, she picks up the telephone and conveys a message to the agent who is

called to play (an information set), along with a set of acceptable replies (actions). The

agent chooses a reply. The auctioneer keeps making telephone calls, sending messages

and receiving replies, until she reaches a terminal history, whereupon she chooses the

corresponding outcome and the game ends.

Suppose some utility function for the auctioneer. For instance, assume that the auc-

tioneer wants revenue. Suppose that each agent intrinsically observes certain features of

the outcome. For instance, each agent observes whether or not he wins the object, and

how much he pays, but not how much other agents pay.

By participating in the protocol, each agent observes a sequence of communication be-

tween himself and the auctioneer and some features of the outcome. Even if the auctioneer

had to sign non-disclosure agreements to ensure we wouldn’t talk about auction strategy and discussions
to any one, during or after the auction.” (Auction action: How telcos fought the bruising battle for
spectrum, The Economic Times, March 30 2015.)

4Section 1.2205(b)
5How SSPs use deceptive price floors to squeeze ad buyers, Digiday, Sep 13 2017
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deviates from her assigned strategy, agent i’s observation could still have an innocent ex-

planation. That is, when the auctioneer plays by the rules, there exist types for the other

agents that result in that same observation for i.

Given a protocol, some deviations may be safe, in the sense that for every type profile,

each agent’s observation has an innocent explanation. That is, every observation that an

agent might have (under the deviation) is also an observation he might have when the

auctioneer is running the mechanism. For instance, when a bidder bids $100 in a second-

price auction, receives the object, and is charged $99, that observation has an innocent

explanation - it could be that the second-highest value was $99. Thus, in a second-price

auction, the auctioneer can safely deviate by exaggerating the second-highest bid.6

Instead of just choosing a different outcome, the auctioneer may also alter the way

she communicates with agents. For example, consider a protocol in which the auctioneer

acts as a middleman between one seller and one buyer. The seller chooses a price for the

object, which the auctioneer tells to the buyer. The object is sold to the buyer at that

price if and only if the buyer accepts, and the auctioneer takes a 10% commission. The

auctioneer has a safe deviation - she can quote a higher price to the buyer, and pocket

the difference if the buyer accepts.

A protocol is credible if running the mechanism is incentive-compatible for the auc-

tioneer; that is, if the auctioneer prefers playing by the book to any safe deviation. This

is a way to think about partial commitment power for any extensive-form mechanism.

Having defined the framework, we now turn to our main application. Most real-

world auctions are variations on just a few canonical formats - the first-price auction, the

ascending auction, and (more recently) the second-price auction (Cassady, 1967; McAfee

and McMillan, 1987).7 The first-price auction is static (“sealed-bid”) – each agent is called

to play exactly once, and has no information about the history of play when selecting his

action. This yields a substantial advantage: Sealed-bid auctions can be conducted rapidly

and asynchronously, thus saving logistical costs.8 The ascending auction is strategy-

proof. Thus, it demands less strategic sophistication from bidders, and does not depend

sensitively on bidders’ beliefs (Wilson, 1987; Bergemann and Morris, 2005; Chung and

Ely, 2007). The second-price auction is static and strategy-proof; it combines the virtues

of the first-price auction and the ascending auction (Vickrey, 1961). However, many real-

world auctioneers persist in running first-price auctions and ascending auctions, despite

6An auctioneer running second-price auctions in Connecticut admitted, “After some time in the busi-
ness, I ran an auction with some high mail bids from an elderly gentleman who’d been a good customer
of ours and obviously trusted us. My wife Melissa, who ran the business with me, stormed into my office
the day after the sale, upset that I’d used his full bid on every lot, even when it was considerably higher
than the second-highest bid.” (Lucking-Reiley, 2000)

7The Dutch (descending) auction, in which the price falls until one bidder claims the object, is less
prevalent (Krishna, 2010, p.2).

8Using data from U.S. Forest Service timber auctions, Athey et al. (2011) find that “sealed bid
auctions attract more small bidders, shift the allocation toward these bidders, and can also generate
higher revenue”.
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the invention of this (apparently) superior format (Rothkopf et al., 1990). Why is this

so?

We study the implications of credibility in the independent private values (IPV) model

(Myerson, 1981). For now, we assume that the value distributions are regular and sym-

metric, and restrict attention to auctions in which only winning bidders make (or receive)

transfers. Thus, the second-price auction (with reserve) is the unique strategy-proof

static optimal auction, by the Green-Laffont-Holmström theorem (Green and Laffont,

1977; Holmström, 1979).

The results that follow require us to bridge the discrete world of extensive game forms

and the continuous world of optimal auctions. We suppress these technicalities in the

introduction, but the reader should be aware that the first result holds ‘in the limit’, as

a finite grid type space becomes arbitrarily fine.

Our first result is as follows: The first-price auction (with reserve) is the unique

credible static optimal auction. This implies that, in the class of static mechanisms, we

must choose between incentive-compatibility for the auctioneer and dominant strategies

for the agents.

Static mechanisms include the direct revelation mechanisms, in which each agent sim-

ply reports his type. Thus, when designing credible protocols, restricting attention to

revelation mechanisms loses generality. The problem is that revelation mechanisms reveal

too much, too soon. For a bidder to have a dominant strategy, his payment must de-

pend on the other bidders’ types. If the auctioneer knows the entire type profile, and the

winning bidder’s payment depends on the other bidders’ types, then the auctioneer can

safely deviate to raise revenue. This makes it impossible to run a credible strategy-proof

optimal auction. What happens when we look outside the class of revelation mechanisms

- when we use the full richness of extensive forms to regulate who knows what, and when?

Our second result is as follows: The ascending auction (with an optimal reserve) is

credible. Moreover, it is the unique credible strategy-proof optimal auction. No other

extensive forms satisfy these criteria.

Notably, this result does not use open outcry bidding to ensure good behavior by the

auctioneer. Given an ascending auction with an optimal reserve, the auctioneer prefers to

follow the rules even though she communicates with each bidder individually by telephone.

If the auctioneer places chandelier bids, then she runs the risk that bidders will quit. In

equilibrium, this deters her from placing chandelier bids at any price above the reserve.

These results imply an auction trilemma. Static, strategy-proof, or credible: An

optimal auction can have any two of these properties, but not all three at once. Moreover,

picking two out of three characterizes each of the standard auction formats (first-price,

second-price, and ascending). Figure 1 illustrates.

Next, we generalize these results by relaxing the assumption that only winners make

transfers. The credible static auctions are now twin-bid auctions. This is a larger class
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Figure 1: An auction trilemma: In the class of optimal auctions in which only the winner
makes transfers, no auction is static, strategy-proof, and credible. Picking two out of
three properties uniquely characterizes each standard format.

that includes all-pay auctions and first-price auctions with entry fees. In a twin-bid

auction, each bid that an agent can place is associated with a weakly lower bid to be paid

if that agent loses. Each agent pays his bid if he wins, and pays its lower ‘twin’ if he loses.

If an agent wins the auction, then the difference between his bid and its twin is at least

as large as the difference for any other agent. Under mild assumptions, twin-bid auctions

are not strategy-proof.

We also relax the assumption that value distributions are symmetric. Under asym-

metry, the static strategy-proof optimal auctions are virtual second-price auctions: each

bid is scored as its corresponding virtual value, and the winner pays the least bid he

could have reported while still having the highest score. Correspondingly, the credible

strategy-proof optimal auctions are virtual ascending auctions: bids are scored according

to their virtual values, so one bidder’s price may rise faster than another’s. Thus, general

extensive forms enable the auctioneer to credibly reject higher bids in favor of lower bids,

when it is optimal to do so.

For practical purposes, should an auction be static, strategy-proof, or credible? It

depends. Some Internet advertising auctions must be conducted in milliseconds, so latency

precludes the use of multi-round protocols. Strategy-proofness matters when bidders

are inexperienced or have opportunities for rent-seeking espionage. Credibility matters

especially when bidders are anonymous to each other or require that their bids be kept

private. These real-world concerns are outside the model. Our purpose is not to elevate

some criterion as essential, but to investigate which combinations are possible.
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1.1 Related work

We are far from the first to conceive of games of imperfect information as being conducted

by a central mediator under private communication. Von Neumann and Morgenstern

exposit such games as being run by “an umpire who supervises the course of play”,

conveying to each player only such information as is required by the rules (Von Neumann

and Morgenstern, 1953, p. 69-84). Similarly, Myerson (1986) considers multi-stage games

in which “all players communicate confidentially with the mediator, so that no player

directly observes the reports or recommendations of the other players.”

The papers closest to ours are Dequiedt and Martimort (2015) and Li (2017). In De-

quiedt and Martimort (2015), two agents simultaneously and privately report their types

to the principal, who can misrepresent each agent’s report to the other agent. If we re-

strict attention to revelation mechanisms, then our definition of credibility is equivalent

to their requirement that the principal report truthfully. However, this restriction loses

some generality, so our model instead permits the auctioneer to communicate sequentially

with bidders by adopting extensive-form mechanisms. Li (2017) proposes a definition of

bilateral commitment power, and also introduces the messaging game that we use here.

The definition in Li (2017) is restricted to dominant-strategy mechanisms, whereas cred-

ibility allows for Bayes-Nash mechanisms. Also, Li (2017) does not model the incentives

faced by the auctioneer, which is the entire subject of the present study.

Our paper is related to the literature on mechanisms with imperfect commitment,

in which some parts of the outcome are chosen freely by the designer after observing

the agents’ reports (Baliga et al., 1997; Bester and Strausz, 2000, 2001). Our paper also

relates to the literature that studies multi-period auction design with limited commitment

(Milgrom, 1987; McAfee and Vincent, 1997; Skreta, 2006; Liu et al., 2014; Skreta, 2015).

In this paradigm, the auctioneer chooses a mechanism in each period, but cannot commit

today to the mechanisms that she will choose in future. In particular, if the object remains

unsold, then the auctioneer may attempt to sell the object again. Essentially, these papers

have a post-auction game, and require that the auctioneer is sequentially rational. Our

machinery instead permits the auctioneer to misrepresent bidders’ preferences during the

auction.

Some papers model auctions as bargaining games in which the auctioneer cannot

commit to close a sale (McAdams and Schwarz, 2007a; Vartiainen, 2013). These papers

fix a particular stage game, in which players can solicit, make, or accept offers, and study

equilibria of the repeated game. The auctioneer does not promise to obey any rules – she

is constrained only by the structure of the repeated game. In our model, the auctioneer

instead promises in advance to abide by certain rules, and can only deviate from those

rules in ways that have innocent explanations. Thus, if the auctioneer promises to run

a first-price auction, then she must conclude the auction after collecting the bids. By
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contrast, McAdams and Schwarz (2007a) and Vartiainen (2013) permit the auctioneer to

restart play in the next period, exploiting the new information that she has learned.

Several papers study auctioneer cheating in specific auction formats, such as shill-

bidding in second-price auctions (McAdams and Schwarz, 2007b; Rothkopf and Harstad,

1995; Porter and Shoham, 2005) and in ascending auctions with common values (Chakraborty

and Kosmopoulou, 2004; Lamy, 2009). Loertscher and Marx (2017) allow the auctioneer

to choose when to stop the clocks in a two-sided clock auction. We contribute to this

literature by providing a definition of auctioneer incentive-compatibility that is not tied

to a particular format, and can thus be used as a design criterion.

Our paper contributes to the line of research that studies standard auction formats by

relaxing various assumptions of the benchmark model (Milgrom and Weber, 1982; Maskin

and Riley, 1984; Bulow et al., 1999; Fang and Morris, 2006; Hafalir and Krishna, 2008;

Bergemann et al., 2017, 2018). While the usual approach is to compare the standard

formats in terms of expected revenue, we instead characterize the standard formats with

a few simple desiderata. Of course, the desiderata of Figure 1 do not exhaust the con-

siderations of real-world auctioneers; factors such as interdependent values, risk aversion,

and informational robustness importantly affect the choice of format.

2 Model

2.1 Definitions

The environment consists of:

1. A finite set of agents, N .

2. A set of outcomes, X.

3. A finite type space, ΘN = ×i∈NΘi.

4. A joint probability distribution D : ΘN → [0, 1].

5. Agent utilities ui : X ×ΘN → R

6. A partition Ωi of X for each i ∈ N . (ωi denotes a cell of Ωi.)

The partition Ωi represents what agent i directly observes about the outcome. Con-

ceptually, these partitions represent physical facts about the world, which are not objects

of design. They capture the bare minimum that each agent observes about the outcome,

regardless of the choice of mechanism.9

9In the application that follows, we will assume that each bidder in an auction knows how much he
paid and whether he receives the object. In effect, this rules out the possibility that the auctioneer could
hire pickpockets to raise revenue, or sell the object to multiple bidders by producing counterfeit copies.
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We represent the rules of the mechanism as an extensive game form with imperfect

information. This specifies the information that will be provided to each agent, the choices

each agent will make, and the outcomes that will result, assuming that the auctioneer

follows the rules. Crucially, we are not yet modeling the ways that the auctioneer can

deviate.

Formally, a mechanism is an extensive game form with consequences in X. This is

an extensive game form for which each terminal history is associated with some outcome.

Formally, a mechanism G is a tuple (H,≺, P, A,A, (Ii)i∈N , g), where each part of the

tuple is as specified in Table 1. The full definition of extensive forms is familiar to most

readers, so we relegate further detail to Appendix A. Let G denote the set of all extensive

game forms with consequences in X with finitely many histories and perfect recall.

Table 1: Notation for Extensive Game Forms

Name Notation Representative element
histories H h
precedence relation over histories ≺
reflexive precedence relation �
initial history h∅
terminal histories Z z
player called to play at h P (h)
actions A a
most recent action at h A(h)
information sets for agent i Ii Ii
outcome resulting from z g(z)
immediate successors of h σ(h)
actions available at Ii A(Ii)

Si denotes a (pure) strategy: For each information set where agent i is called to play

and each type of i , Si chooses an action Si(Ii, θi) ∈ A(Ii). (Si)i∈N ≡ SN denotes a

strategy profile for the agents, for some G ∈ G.

By convention, many papers make statements about mechanisms that implicitly refer

to a particular equilibrium of the mechanism, such as the claim “second-price auctions

are efficient”. To reduce ambiguity, we will state our results explicitly for pairs (G,SN)

consisting of a mechanism and a strategy profile, which we refer to as a protocol.

Let xG(SN , θN) denote the outcome in G, when agents play according to SN and the

type profile is θN . Let uGi (SN , θN) ≡ ui(x
G(SN , θN), θN).

Definition 1. (G,SN) is Bayesian incentive-compatible (BIC) if, for all i ∈ N ,

Si ∈ argmax
S′i

EθN [uGi (S ′i, S−i, θN)] (1)
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2.2 Pruning

At first glance, when constructing extensive-form mechanisms, it may seem important to

keep track of off-path beliefs. However, if certain histories occur with zero probability

under a BIC protocol (G,SN), then we can delete those histories from G without altering

the mechanism’s incentive properties. Similarly, if an agent is called to play, but reveals no

outcome-relevant information about his type, we can skip that step without undermining

incentives. Thus, we restrict attention to the class of pruned protocols.10 This technique

allows us to remove redundant parts of the game tree, and implies cleaner definitions for

the theorems that follow. In words, a pruned protocol has three properties.

1. For every history h, there exists some type profile such that h is on the path of play.

2. At every information set, there are at least two actions available (equivalently, every

non-terminal history has at least two immediate successors).

3. If agent i is called to play at history h, then there are two types of i compatible

with his actions so far, that could lead to different eventual outcomes.

Let z(SN , θN) denote the terminal history that results from (SN , θN). Formally:

Definition 2. (G,SN) is pruned if, for any history h:

1. There exists θN such that h � z(SN , θN)

2. If h /∈ Z, then |σ(h)| ≥ 2.

3. If h /∈ Z, then for i = P (h), there exist θi, θ
′
i, θ−i such that

(a) h ≺ z(SN , (θi, θ−i))

(b) h ≺ z(SN , (θ
′
i, θ−i))

(c) xG(SN , (θi, θ−i)) 6= xG(SN , (θ
′
i, θ−i))

By the next proposition, when our concern is to construct a BIC protocol, it is without

loss of generality to consider only pruned protocols.

Proposition 1. If (G,SN) is BIC, then there exists (G′, S ′N) such that (G′, S ′N) is pruned

and BIC and for all θN , xG
′
(S ′N , θN) = xG(SN , θN).

Hence, from this point onwards we restrict attention to pruned (G,SN). Since every

information set is reached with positive probability, any Bayes-Nash equilibrium in a

pruned protocol survives equilibrium refinements that restrict off-path beliefs.

10This is stronger than the notion of pruning used in Li (2017), which includes only the first requirement.
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2.3 A messaging game

We now explicitly model the auctioneer11 as a player (denoted 0) . The auctioneer has

utility u0 : X ×ΘN → R.

Our goal is to study surreptitious deviations by the auctioneer. To do so, we must

first take a stand on what each player knows at each point in the mechanism. Consider

the messaging game, defined thus:

1. The auctioneer chooses to:

(a) Either: Select x ∈ X and end the game.

(b) Or: Go to step 2.

2. The auctioneer chooses some agent i ∈ N and sends a message along with a set of

acceptable replies (m,R).

3. Agent i privately observes (m,R) and chooses r ∈ R.

4. The auctioneer privately observes r.

5. Go to step 1.

Assume the auctioneer has an arbitrarily rich message space M , from which she sends

messages m ∈ M and allows replies R ∈ 2M \ ∅. At any prior round k, the auctioneer

messaged ik ∈ N with (mk, Rk), and received reply rk ∈ Rk.

Let S0 denote the set of auctioneer pure strategies. A strategy for the auction-

eer specifies what to do next, as a function of the entire history of communications:

S0((ik,mk, Rk, rk)tk=1) ∈ (N ×M × (2M \ {∅})) ∪ X. We restrict these to send finitely

many messages and (for each message) to allow finitely many replies.

A strategy for agent i specifies what reply to give at each point in the messaging

game. Let mk
i denote the kth message that the auctioneer sent to agent i, and similarly

for Rk
i and rki . Upon receiving a query, i chooses a reply, which depends on the past

communication between i and the auctioneer (mτ
i , R

τ
i , r

τ
i )k−1
τ=1, the current query (mk

i , R
k
i ),

and i’s type; that is, Si((m
τ
i , R

τ
i , r

τ
i )k−1
τ=1,m

k
i , R

k
i , θi) ∈ Rk

i .
12

Let Ti denote the total number of messages sent to i at the end of the messaging

game. For any S0 ∈ S0 and any SN , (S0, SN) results in some sequence of communication

between the auctioneer and agent i, oci ≡ (mk
i , R

k
i , r

k
i )
Ti
k=1 and some outcome x. Let oxi

denote ωi ∈ Ωi | x ∈ ωi; this is what i directly observes about the outcome that the

11We use the term ‘auctioneer’ to refer to the mediator, but this could be any mediator who runs a
mechanism, such as a school choice authority or the National Resident Matching Program.

12Note the lack of calendar time: The agent observes the sequence of past communications between
himself and the auctioneer, not a sequence of periods in which he either sees some communication or
none.
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auctioneer selected, as implied by the partition Ωi. oi = (oci , o
x
i ) denotes an observation

for agent i. oi(S0, SN , θN) denotes the unique observation resulting from (S0, SN), when

the type profile is θN .

Given some extensive-form mechanism G, the auctioneer can ‘carry out’ G in the

messaging game. That is, she can, starting from the initial history in h∅ ∈ H, contact the

agent who is called to play P (h∅), and send a message that corresponds to that information

set, and allow replies that correspond to the actions. Upon receiving a reply, she can then

contact the next agent, sending messages (information sets) and allowing replies (actions)

as specified by G. Eventually, she will reach a terminal history h ∈ Z ⊆ H, whereupon

she can choose the corresponding outcome and end the messaging game. We say that this

‘rule-following’ strategy runs G.

To define this formally, we use a one-to-one function λ, that takes as an input an

information set in G or an action in G, and outputs an element of the message space M .

Definition 3. Take any G = 〈H,≺, P, A,A, (Ii)i∈N , g〉. S0 runs G if there exists a one-

to-one function λ : (∪i∈NIi)∪A→M such that S0 is described by the following algorithm,

where we initialize h := h∅.

1. If h ∈ Z, terminate and select x = g(h).

2. Else:

(a) Choose agent P (h) and send (m,R) = (λ(Ii), λ(A(Ii))) for Ii such that h ∈ Ii.

(b) Upon receiving r ∈ R, choose h′ such that A(h′) = λ−1(r) and h′ ∈ σ(h). Set

h := h′ and go to step 1.

We use SG0 to denote an auctioneer strategy that runs G.

Given SG0 , for any Si, we can define an equivalent strategy S̃i for agent i in the

messaging game. Given (m,R) and θi, S̃i selects reply λ(Si(λ
−1(m), θi))).

13 We abuse

notation and use Si to denote both a strategy for agent i in G, and the equivalent strategy

for agent i in the messaging game.

2.4 Credible mechanisms

In formulating the idea of incentive compatibility, Hurwicz (1972) writes:

In effect, our concept of incentive compatibility merely requires that no one

should find it profitable to “cheat,” where cheating is defined as behavior that

can be made to look “legal” by a misrepresentation of a participant’s prefer-

ences or endowment, with the proviso that the fictitious preferences should be

within certain “plausible” limits.

13We specify S̃i arbitrarily for communication sequences that are never observed under SG0 .
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Figure 2: A mechanism and a deviation. If agent 1 cannot distinguish outcomes a and b,
then the deviation is safe.

Here we modify Hurwicz’s seminal idea to include incentive compatibility for the auction-

eer. First, we say that some observation oi has an “innocent explanation” (with respect

to SG0 ) if there exist some types of other agents such that if they had those types and the

auctioneer played SG0 , oi would be the observation of agent i.

Definition 4. Suppose the auctioneer promises to play SG0 , the agents play SN , and i’s

type is θi. Observation o′i has an innocent explanation if there exists θ′−i such that

oi(S
G
0 , SN , (θi, θ

′
−i)) = o′i.

Definition 5. Suppose the auctioneer promises to play SG0 and the agents play SN . Then,

an auctioneer strategy S ′0 ∈ S0 is safe if for all agents i ∈ N and all type profiles θN ∈ ΘN ,

oi(S
′
0, SN , θN) has an innocent explanation.

Let S∗0 (SG0 , SN) ≡ {S ′0 | S ′0 is safe given promise SG0 and agent strategies SN}. The

function S∗0 (·, ·) takes a strategy for the auctioneer and a strategy profile for the agents

as inputs and outputs the set of all strategies that the auctioneer can deviate to without

being detected by a single agent.

Let u0(S0, SN , θN) denote the auctioneer’s utility in the messaging game, when the

strategy profile is (S0, SN) and the type profile is θN . A protocol is credible if playing ‘by

the book’ maximizes the auctioneer’s expected utility.

Definition 6. (G,SN) is credible if:

SG0 ∈ argmax
S0∈S∗0 (SG0 ,SN )

EθN [u0(S0, SN , θN)] (2)

Definition 6 permits the auctioneer to misrepresent agents’ actions to each other mid-

way through the mechanism. The following example illustrates.

Example 1. Consider the mechanism on the left side of Figure 2. Each agent has one

information set, two moves (left and right), and two types (li and ri) that play the corre-
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sponding moves. Agent 1 is assumed to observe whether the outcome is in the set {a, b}
or in {c}. Agents 2 and 3 perfectly observe the outcome.

The right side of Figure 2 illustrates a safe deviation: If agent 1 plays left, then the

auctioneer plays ‘by the book’. If agent 1 plays right, then instead of querying agent 2, the

auctioneer queries agent 3. If agent 3 then plays left, the auctioneer chooses outcome a.

If agent 3 plays right, only then does the auctioneer query agent 2, choosing c if 2 plays

left and b if 2 plays right.

For every type profile, each agent’s observation has an innocent explanation. The most

interesting case is when the type profile is (r1, l2, l3). In this case, playing by the book results

in outcome b, but the deviation results in outcome a. Agent 1 cannot distinguish between

a and b, so (l2, l3) is an innocent explanation for 1. (l1, l3) is an innocent explanation for

2, and (l1, l2) is an innocent explanation for 3. Thus, if the auctioneer prefers outcome a

to any other outcome, then the mechanism is not credible.

Notably, this deviation involves not just choosing different outcomes, but communi-

cating differently even before a terminal history is reached. Indeed, when the type profile

is (r1, l2, l3), the auctioneer can only get outcome a by deviating midway. If she waited

until the end and then deviated to choose a, then agent 2’s observation would not have an

innocent explanation. Once agent 2 is called to play, he knows that outcome a should not

occur.

Definition 6 takes the expectation of θN with respect to the ex ante distribution D, but

it implicitly requires the auctioneer to best-respond to her updated beliefs in the course

of running G. Recall that a strategy for the auctioneer is a complete contingent plan.

Suppose that in the course of running G, the auctioneer discovers new information about

agents’ types, such that she can profitably change her continuation strategy. There exists

a deviating strategy that adopts this new course of action contingent on the auctioneer

discovering this information, and plays by the book otherwise. Thus, if S0 is an ex ante

best response, then its corresponding continuation strategies are also best responses along

the equilibrium path-of-play.

When our concern is to construct a credible protocol, it is also without loss of generality

to consider only pruned protocols.

Proposition 2. If (G,SN) is credible and BIC, then there exists (G′, S ′N) such that

(G′, S ′N) is pruned, credible, and BIC, and for all θN , xG
′
(S ′N , θN) = xG(SN , θN).

Observation 1. (G,SN) is credible and BIC if and only if (SG0 , SN) is a Bayes-Nash

equilibrium of the messaging game in which the auctioneer is constrained to play strategies

in S∗0 (SG0 , SN).

Credibility restricts attention to ‘promise-keeping’ equilibria of the messaging game.

However, any equilibrium can be turned into a promise-keeping equilibrium by altering

the promise.

14



Observation 2. If S ′0 ∈ S∗0 (S0, SN), then S∗0 (S ′0, SN) ⊆ S∗0 (S0, SN). Thus, if (S ′0, SN)

is a Bayes-Nash equilibrium given promise S0, then (S ′0, SN) is a Bayes-Nash equilibrium

given promise S ′0.

Definition 6 is stated for pure strategies, but can be generalized to allow the auctioneer

to mix. To do so, we simply extend the definition of extensive game forms so that G

includes chance moves, and specify that o′i has an innocent explanation to θi if there

exists θ′−i such that o′i occurs with positive probability when the auctioneer plays SG0 , the

agents play SN , and the type profile is (θi, θ
′
−i).

Here we restrict attention to protocols in which the auctioneer does not randomize. If

some randomized protocol (G,SN) is credible, then the deterministic protocol (G′, SN) in

which we simply fix a particular realization of the randomization is also credible. Since

(G,SN) is credible, the auctioneer is indifferent between SG0 and SG
′

0 . Switching from G

to G′ shrinks the set of innocent explanations, and therefore the set of safe deviations.

The auctioneer preferred SG0 to any safe deviation in the larger set, and therefore prefers

SG
′

0 to any safe deviation in the smaller set, so (G′, SN) is credible.

3 Credible Optimal Auctions

We now study credible auctions in the independent private values (IPV) model (Myerson,

1981). We make this choice for two reasons: Firstly, this is a benchmark model in auction

theory, so using it shows that the results are driven by credibility, and not by some hidden

feature of an unusual model.14 Secondly, in the IPV model, revenue equivalence implies

that the standard auctions start on an equal footing – the value distribution does not tip

the scales in favor of a particular format, unlike the model with affiliated signals (Milgrom

and Weber, 1982) or the model with risk aversion (Maskin and Riley, 1984).

Assume there are at least two bidders. An outcome x = (y, tN) consists of a winner y ∈
N∪{0} and a profile of payments (one for each bidder) tN ∈ R|N |, so X = (N∪{0})×R|N |.

We assume that type spaces are discrete Θi = {θ1
i , . . . , θ

Ki
i }. This allows us to bypass

the known paradoxes of extensive game forms with continuous time or infinite actions

(Simon and Stinchcombe, 1989; Myerson and Reny, 2016). Each type is associated with

a real number v(θki ). Assume v(θ1
i ) ≤ 0 < v(θKii ) and that v(θk+1

i ) − v(θki ) > 0. We will

abuse notation slightly, and use θki to refer both to i’s kth type, and to the real number

associated with that type.

Types are independently distributed, with probability mass function fi : Θi → (0, 1]

and corresponding Fi(θ
k
i ) =

∑k
l=1 fi(θ

l
i).

14As Brooks and Du (2018) observe, “The IPV model has been broadly accepted as a useful benchmark
when values are private, but there is no comparably canonical model when values are common.”

15



Agents have private values, that is:

ui((y, tN), θN) = 1i=y(θi)− ti (3)

Ωi is as follows: Each bidder observes whether he wins the object and observes his

own payment. That is, (y, tN), (y′, t′N) ∈ ωi if and only if:

1. Either: y 6= i, y′ 6= i, and ti = t′i

2. Or: y = y′ = i and ti = t′i.

The auctioneer desires revenue15:

u0((y, tN), θN) =
∑
i∈N

ti (4)

Let π(G,SN) denote the expected revenue of (G,SN).

The virtual values machinery in Myerson (1981) applies mutatis mutandis to the dis-

crete setting. Suppose we choose (G,SN) to maximize expected revenue subject to incen-

tive compatibility and voluntary participation.

Definition 7. (G,SN) is optimal if it maximizes π(G,SN) subject to the constraints:

1. Incentive compatibility: (G,SN) is BIC.

2. Voluntary participation: For all i, there exists S ′i that ensures that i does not win

and has a zero net transfer, regardless of S ′−i.
16

(G,SN) is ε-optimal if it satisfies the constraints and the difference between π(G,SN)

and the optimal expected revenue is no more than ε.

Definition 8. The virtual value of θki is:17

ηi(θ
k
i ) ≡ θi −

1− Fi(θi)
fi(θi)

(θk+1
i − θki ) (5)

FN = (Fi)i∈N is regular if, for all i, ηi(θi) is strictly increasing.

As is well-known, optimal auctions have a characterization in terms of virtual values

when certain constraints bind. ǔG,SNi (k, k′) denotes the expected utility of agent i when

15The results that follow would require only small modifications if the auctioneer’s payoff was a weighted
average of revenue and social welfare.

16There are several standard ways of defining participation constraints, not entirely equivalent for our
purposes. This definition appears in Maskin and Riley (1984). The existence of this non-participating
strategy is used in the proof of Proposition 14.

17Since 1−Fi(θi) is equal to 0 at the upper bound, we can define θKi+1
i arbitrarily for the purposes of

Equation 11.
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his type is θki and he plays as though his type is θk
′
i . yG,SN (θN) denotes the allocation at

type profile θN . yG,SNi (θN) is an indicator variable equal to 1 if i wins the object at θN

and 0 otherwise. tG,SNi (θN) is i’s transfer at θN .

Proposition 3. (Elkind, 2007) Assume FN is regular and (G,SN) satisfies the constraints

in Definition 7. (G,SN) is optimal if and only if:

1. Participation constraints bind for the lowest types. ∀i : ǔG,SNi (1, 1) = 0

2. Incentive constraints bind locally downward. ∀i : ∀k ≥ 2 : ǔG,SNi (k, k) = ǔG,SNi (k, k−
1)

3. The allocation maximizes virtual value. ∀θN :

(a) If maxi ηi(θi) > 0, then yG,SN (θN) ∈ argmaxi ηi(θi).

(b) If ηi(θi) < 0, then i 6= yG,SN (θN).

Even when the local incentive constraints are slack, the expected revenue is close to

the expected virtual value of the winning bidder, provided that adjacent types are not far

apart.

Proposition 4. If (G,SN) is BIC, then:

0 ≤ EθN

[∑
i∈N

yG,SNi (θN)ηi(θi)

]
︸ ︷︷ ︸

expected virtual value

−π(G,SN)−
∑
i∈N

ǔG,SNi (1, 1)︸ ︷︷ ︸
slack in lowest

participation constraints

≤ max
i

max
2≤k≤Ki

θki − θk−1
i

(6)

Definition 9. FN is symmetric if ∀i, j : ∀k : Ki = Kj = K, θki = θkj , and fi(θ
k
i ) =

fj(θ
k
j )

Definition 10. (G,SN) is winner-paying if tG,SNi (θN) 6= 0 only if yG,SNi (θN) = 1.

We start by studying the regular symmetric case. We also restrict attention to pro-

tocols which are winner-paying. These protocols respect reciprocity, in the sense that no

party pays money unless he gets the object in return. We will later relax these restrictions.

For ease of exposition, we sometimes assume that the protocol breaks ties determinis-

tically according to a fixed priority order.

Definition 11. Consider a strict total order B on N . This generates a strict total order

on all agent types, as follows: θiB θj if and only if θi ≥ θj and either θi > θj or iB j.

We also include a reserve ρ in this total order: θiB ρ if and only if θi ≥ ρ. We use
B

min

to denote the minimum of a set with respect to this B, and
B

max similarly.

(G,SN) is orderly if, for some strict total order B on N and some reserve price ρ, i

wins the object if and only if θiB
B

max
j 6=i

θj and θiB ρ.
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3.1 Credible and static ε-optimal auctions

We now study credible and static ε-optimal auctions. We focus on ε-optimality because

the Revenue Equivalence Theorem breaks slightly for finite type spaces. By Proposition

3, two auctions that result in the same allocation might have different expected revenue

when the local incentive constraints are slack. However, by Proposition 4, this does not

matter much when the type space is fine.

Definition 12. (G,SN) is static if every agent has exactly one information set and for

every terminal history z, there exists h ≺ z such that P (h) = i.

Consider the following mild generalization of first-price auctions: At most one agent

can buy the object at a posted price. Each agent submits bids from some feasible set.

If the special agent bids the posted price, then he wins for sure. Otherwise, the highest

bidder wins and pays his bid.

Definition 13. (G,SN) is a quasi-first-price auction if (G,SN) is static, and there

exists for each agent a bid function bi : A(Ii) → R and at most one special agent i∗ with

posted price p∗, such that:

1. Each agent pays his bid if he wins and pays nothing if he loses.

2. If some agent places a positive bid, then some agent wins the object.

3. If i∗ bids the posted price p∗ = maxa∈A(Ii∗ ) bi∗(a), then i∗ wins the object. Otherwise,

if i wins the object then i’s bid is non-negative and at least as high as any other

agent’s bid.

We represent a reserve price by restricting the feasible bids bi(A(Ii)) for each agent. If

i never wins after playing action a, then we set bi(a) to be negative; such actions effectively

decline to bid.

Theorem 1. Assume (G,SN) is BIC and winner-paying. (G,SN) is credible and static

if and only if (G,SN) is a quasi-first-price auction.

Proof. Suppose (G,SN) is a quasi-first-price auction. (G,SN) is static by definition. If

i∗ has bid the posted price, then the auctioneer has no discretion; every safe deviation

sells the object to i∗ at his bid. Otherwise, no safe deviation can sell to a bidder with a

negative bid, and every safe deviation that sells the object involves charging some bidder

his bid, so it is optimal to sell the object to the highest bidder (breaking ties arbitrarily).

Thus, (G,SN) is credible.

Suppose (G,SN) is credible and static. Recall that (G,SN) is pruned. If after some

action a by bidder i, there are two prices that i might pay upon winning, the auctioneer

can safely deviate to charge the higher price. Thus, for each action, if i might win after
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playing that action, then there is a unique price that i might pay; this is bi(a). If i never

wins after playing some action, then we set bi(a) < 0.

At most one agent can have bids that win the object for sure; that agent is i∗. Since

(G,SN) is BIC and pruned, those actions are the set argmaxa∈A(Ii∗ ) bi∗(a) and we define

p∗ = maxa∈A(Ii∗ ) bi∗(a).

Consider any bid not placed i∗ or not equal to maxa∈A(Ii∗ ) bi∗(a); let j be the identity

of the agent who placed that bid. If that bid is positive, then the auctioneer does not

keep the object; otherwise she could safely deviate to sell the object to j. There is an

an innocent explanation if j loses. Thus, if j wins then j’s bid is non-negative, since the

auctioneer can safely deviate to keep the object. Moreover, if j wins then j’s bid is at

least as high as any other bid, or the auctioneer can safely deviate to sell the object to the

highest bidder for strictly more revenue. Thus, (G,SN) is a quasi-first-price auction.

Clause 3 of Definition 13 is needed because posted prices are not ruled out by the

requirement that the auction is credible and static. If the rules require that i∗ wins for

sure when he bids p∗, then the auctioneer cannot safely deviate to sell to a higher bidder.

Of course, at most one bidder can face such a price, because at most one bidder can have

actions that win for sure.

When FN is regular and symmetric and the type space is fine, there exist quasi-first-

price auctions that are almost optimal. Moreover, if the auction maximizes virtual value,

then the posted price is no less than the equilibrium bid of any agent whose type is two

steps below the highest possible type. Thus, the posted-price ‘discount’ vanishes as the

type space gets fine. The next proposition states this formally:

Proposition 5. Assume FN is regular and symmetric. There exists a quasi-first-price

auction that is orderly and ε-optimal, for ε = max2≤k≤K θ
k
i − θk−1

i . If a quasi-first-price

auction is BIC and maximizes virtual value, then the posted price (if it exists) is at least

maxi∈N bi(Si(Ii, θ
K−2
i )).

Proof. We now construct feasible bids that result in an ε-optimal first-price auction.

Set a reserve ρ∗ = mink θ
k
i | ηi(θki ) > 0. Consider a second-price auction with reserve

ρ∗. We break ties between agents according to the order B. It is always a best-response

for type θi to bid θi. Let b̃i(θi) be θi’s expected payment conditional on winning under this

protocol, and set b̃i(θi) = −1 if θi never wins. Observe that if θi > θj, then b̃i(θi) ≥ b̃j(θj).

Similarly, if θi = θj and iB j, then b̃i(θi) ≥ b̃j(θj).

Now consider a quasi-first-price auction in which bi(Si(Ii, θi)) = b̃i(θi) and we al-

locate the object in the same way. This new protocol is BIC and the participation

constraints of the lowest types bind.18 Since FN is regular and symmetric, the result-

18Recall our assumption that θ1i ≤ 0, which implies that ηi(θ
1
i ) < 0. These agents never receive the

object and always have zero transfers.
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ing allocation maximizes virtual value. Thus, by Proposition 4, (G,SN) is ε-optimal for

ε = max2≤k≤Ki θ
k
i − θk−1

i .

Take any quasi-first-price price auction (G,SN) that is BIC and maximizes virtual

value. By construction, θKi∗ always wins and, since (G,SN) maximizes virtual value, θK−1
i∗

sometimes loses. Thus, the posted price is strictly greater than the bid placed by θK−1
i∗ ,

by BIC. That bid, in turn, must be at least maxi∈N bi(Si(Ii, θ
K−2
i )), since θK−1

i∗ only wins

when there is no strictly higher bid.

3.2 Credible and strategy-proof optimal auctions

We now characterize credible and strategy-proof optimal auctions.

Definition 14. (G,SN) is strategy-proof if, for all i ∈ N , for all S ′−i:

Si ∈ argmax
S′i

EθN [uGi (S ′i, S
′
−i, θN)] (7)

Definition 15. (G,SN) is an ascending auction (with reserve price ρ) if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. The high bidder is the active bidder with the highest bid that is weakly above ρ

(breaking ties according to B).

3. At each non-terminal history, some active bidder i (other than the high bidder) is

called to play, and he chooses between actions that place a bid in Θi and actions

that quit.

(a) Each bid is no less than the last bid that i placed.

(b) Each bid is no more than is necessary for i to become the high bidder.

(c) If i quits, then he is no longer active.

(d) At each information set, there is a unique action that places a bid, with one

exception: If the reserve has not yet been met, and there is exactly one active

bidder left, there may be multiple actions that place bids.19

4. i’s strategy specifies:

(a) If i’s type is strictly below a bid, he does not place that bid.

(b) If i’s type is weakly above ρ and there is no high bidder, he places a bid.

19This exception is here because we will shortly state a characterization theorem. If there is exactly
one bidder left and the reserve has not been met, then it is as though that bidder simply faces a posted
price equal to the reserve. Provided that bidder knows that he wins for sure if he bids the reserve, distinct
types above the reserve can take distinct actions without allowing the auctioneer to profitably deviate.
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(c) If i’s type is above the current high bid (breaking ties with B), he places a bid.20

5. The auction ends if one of three conditions obtains:

(a) If there are no active bidders. In that case, the object is not sold.

(b) If only the high bidder is active. In that case, the object is sold to the high

bidder at his last bid.

(c) If the high bidder has bid θKi , and no active bidder has higher tie-breaking

priority. In that case, the object is sold to the high bidder at his last bid.

We pause to note a mild indeterminacy: When an active bidder is called to play, it

could be that the available bid is not yet enough to become the high bidder. For instance,

bidder i might choose whether to place a bid of 50 or quit, even though the current high

bid is 100. In that case, types of i between 50 and 100 could place the bid or could quit.

However, Si is measurable with respect to i’s information sets, so it must be that bidder

i never quits when he might still win.

Observation 3. If FN is regular and symmetric, then there exists an optimal ascending

auction. In any ascending auction, participation constraints bind for the lowest types and

incentive constraints bind locally downward. Given an optimal reserve ρ∗ = mink θ
k
i |

ηi(θ
k
i ) > 0, the ascending auction maximizes the virtual value of the winning bidder. By

Proposition 3, such an auction is optimal.

The definition of extensive-form mechanisms permits the auctioneer to communicate

with agents in any order, to convey any information (or no information) to the agent

called to play, and to ask that agent to report any partition of his type space. Thus,

there are many optimal auctions. However, the optimal auctions that are credible and

strategy-proof are exactly the ascending auctions. To be precise:

Theorem 2. Assume FN is regular and symmetric and (G,SN) is orderly and optimal.

(G,SN) is credible and strategy-proof if and only if (G,SN) is an ascending auction.

Proof overview. Suppose (G,SN) is credible and strategy-proof. To prove that (G,SN) is

an ascending auction, we must show that for any extensive form that is not an ascending

auction, there exists a profitable safe deviation for the auctioneer. A key feature of

ascending auctions is that, at each history, the types of i that might win pool on the

same action, unless every other agent has quit. This is stated precisely in Proposition 19,

and is closely related to unconditional winner privacy as defined by Milgrom and Segal

(2017). If at some history winning types do not pool, then the auctioneer can exploit one

type by deviating to charge him a higher price. In the case of a second-price auction, the

20Notice that, since i’s strategy must be measurable with respect to i’s information sets, this implies
that if i’s type is above the least possible high bid associated with that information set, he places a bid.
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auctioneer simply exaggerates the value of the second-highest bid. In general, however,

the deviation must be more subtle in order to be safe - instead of just choosing a different

outcome, the auctioneer may systematically misrepresent agents’ actions midway through

the extensive form. We construct an algorithm that produces a profitable safe deviation

for any such extensive form.

Suppose (G,SN) is an ascending auction. By inspection, it is strategy-proof. What

remains is to show that it is credible. Suppose that the auctioneer has a profitable safe

deviation. For every agent i, Si remains a best response to any safe deviation by the

auctioneer. Thus, since the auctioneer has a profitable safe deviation, she can openly

commit to that deviation without altering the agents’ incentives - we can define a new

protocol (G′, S ′N) that is BIC and yields strictly more expected revenue than (G,SN).

But (G,SN) is optimal, a contradiction. (The full proof is in the Appendix.)

By Theorem 1, restricting attention to revelation mechanisms forces a sharp choice

between incentives for the auctioneer and strategy-proofness for the agents. Theorem 2

shows that allowing other extensive forms relaxes this trade-off.

Unlike Theorem 1, the characterization in Theorem 2 assumes optimality. This is

not just a feature of our proof technique: the ascending auction is credible because it

is optimal. If the type distributions are asymmetric, then the auctioneer may profitably

deviate by enforcing bidder-specific reserve prices.21 We characterize the asymmetric case

in Theorem 4.

While first-price auctions and ascending auctions seem to be disparate formats, they

share a common feature. In both formats, if an agent might win the auction without

being called to play again, then that agent knows exactly how much he will pay for the

object. Thus, we can regard each agent as placing bids in the course of the auction,

with the assurance that if he wins without further intervention, he will pay his bid. This

‘pay-as-bid’ feature is shared by all credible auctions:

Proposition 6 (Pay-as-bid). Assume (G,SN) is credible. Suppose i is called to play at

information set Ii, takes some action a, and might win without being called to play again.

Then there is a unique price ti(Ii, a) that i will pay if he wins without being called to play

again.

Proof. Suppose i might win without being called to play again, and there are two distinct

prices ti < t′i that i might pay in that circumstance. The auctioneer has a profitable

safe deviation: when i is meant to pay ti, she can deviate to charge t′i, so (G,SN) is not

credible.

21Symmetric beliefs may seem like a knife-edge case. However, in some real-world auctions, strong
bidders can mask their identities and bid through proxies so as to avoid discriminatory pricing. When
faced with anonymous bidders, it is quite reasonable for auctioneers to hold symmetric beliefs.
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Proposition 6 provides a consideration in favor of multi-stage auctions. Suppose we

wish to have bidder i’s payment depend on bidder j’s private information. In order for

the auction to be credible, bidder i must place a bid that incorporates that information,

which requires i to learn that information during the auction. The converse of Proposition

6 is not true. For a counterexample, consider a ‘pay-as-bid’ static auction that allocates

the object to the bidder who placed the second-highest bid.

3.3 Corollaries

Clearly, the quasi-first-price auction is not strategy-proof, except in the degenerate case

that each agent has exactly one feasible bid. Thus, we have the following corollary.

Corollary 1 (Auction Trilemma). Assume FN is regular and symmetric and (G,SN) is

BIC and winner-paying. If there exist θN and θ′N such that tG,SNi (θN) > tG,SNi (θ′N) > 0,

then (G,SN) is not static, strategy-proof, and credible. However, there exist ε-optimal

(G,SN), for ε = maxi max2≤k≤K θ
k
i − θk−1

i , that are:

1. static and strategy-proof (the second-price auction),

2. static and credible (the first-price auction),

3. strategy-proof and credible (the ascending auction).

Consider the messaging game restricted to safe deviations S∗0 (SG0 , SN). Under a quasi-

first-price auction, the auctioneer’s strategy SG0 is a best-response to any agent strategy

profile S ′N . Under an ascending auction, each agent’s strategy is a best-response to any

opponent strategies S ′N\i and any safe auctioneer strategy S ′0. Theorem 2 implies that no

protocol can provide dominant-strategy incentives to both sides at once.22

Corollary 2 (Strategy-proofness for one side only). Assume FN is regular and symmetric

and (G,SN) is orderly and optimal. Assume that for any optimal reserve ρ∗ < θK−2
i . In

the messaging game restricted to S∗0 (SG0 , SN), either there exists S ′N such that SG0 is not

a best-response to S ′N , or there exists i ∈ N and S ′N\i such that Si is not a best-response

to (SG0 , S
′
N\i).

Proof. If (G,SN) is not credible, then SG0 is not a best-response to SN . If (G,SN) is not

strategy-proof, then there exists i ∈ N and S ′N\i such that Si is not a best-response to

(SG0 , S
′
N\i). If (G,SN) is credible and strategy-proof, then (G,SN) is an ascending auction

by Theorem 2. In that case, consider S ′N such that i bids until the price hits θKii , and

every other bidder quits before the reserve is met. SG0 is not a best-response to S ′N .

22We thank Sylvain Chassang for this insight.
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3.4 A note on the Dutch auction

The Dutch (descending) auction is neither strategy-proof nor static, but it is credible. In

a Dutch auction, the price falls until one bidder claims the object. Thus, each bidder in

sees a sequence of descending prices (p1
i , p

2
i , p

3
i , . . .); once he claims the object, he wins

at that price. Consequently, once one bidder makes a claim, it is not safe to deviate -

the auctioneer must sell to that bidder at his current price. Fixing SN , each bidder has

a claim-price pi(θi) at which he will agree. For a given θN , the rule-following auctioneer

strategy yields revenue maxi∈N pi(θi). No safe deviation results in bidder i paying more

than pi(θi), so the revenue from following the rules first-order stochastically dominates

the revenue from any safe deviation.

4 Extensions

4.1 Transfers from losing bidders

In stating Theorem 1, we restricted attention to winner-paying protocols. We now relax

that assumption: the quasi-first-price auctions of Theorem 1 generalize to a larger class

that permits the auctioneer to extract transfers from losing bidders, though each losing

bidder’s transfer must depend only on his own bid. Whether this class is of more than

technical interest will vary from case to case. Most economically important auctions,

such as those for art, for mineral rights, for spectrum, or for online advertising, do not

extract payments from losing bidders. It could be that real-world auctions must respect

ex post individual rationality, since otherwise one party will try to annul the contract

afterwards. The resulting transaction costs may constrain the auctioneer to use winner-

paying protocols.

We now state a definition that generalizes quasi-first-price auctions.

Definition 16. (G,SN) is a twin-bid auction if (G,SN) is static, and there exist for

each agent two bid functions, bWi : A(Ii)→ R and bLi : A(Ii)→ R, such that:

1. After playing ai, i pays bWi (ai) if he wins and bLi (ai) if he loses.

2. If some agent plays an action ai with bWi (ai)− bLi (ai) > 0, then some agent wins the

object.

3. If i wins the object after action profile (aj)j∈N , then bWi (ai)−bLi (ai) ≥ max{0,maxj 6=i b
W
j (aj)−

bLj (aj)}.

Theorem 3. (G,SN) is credible and static if and only if (G,SN) is a twin-bid auction.

Proof. Suppose (G,SN) is a twin-bid auction. After action profile (ai)i∈N , every safe

deviation charges bWi (ai) if agent i wins and bLi (ai) if he loses, so the auctioneer prefers

SG0 to any safe deviation. Thus, (G,SN) is credible.
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Suppose (G,SN) is credible and static. The same argument as in the proof of Theorem

1 pins down the uniqueness of bWi (ai) if i might win after playing ai, and the uniqueness of

bLi (ai) if i might lose. We set bWi (ai) to be strictly less than bLi (ai) if i never wins after ai.

At most one agent has actions that guarantee he wins the object; for such an action we set

bLi (ai) to be arbitrarily low, so that bWi (ai)− bLi (ai) > max{0,maxj 6=i,aj b
W
j (aj)− bLj (aj)}.

Consider some agent i who plays ai, where ai does not guarantee that i wins. The

auctioneer does not keep the object when bWi (ai) − bLi (ai) > 0, since she could safely

deviate to allocate the object to i. There is an innocent explanation if i loses; thus if

i wins then bWi (ai) − bLi (ai) ≥ 0, since the auctioneer could safely deviate to keep the

object. Finally, if i wins then bWi (ai) − bLi (ai) ≥ maxj 6=i b
W
j (aj) − bLj (aj), otherwise she

could safely deviate to sell the object to argmaxj 6=i b
W
j (aj) − bLj (aj). Thus, (G,SN) is a

twin-bid auction.

Twin-bid auctions include first-price auctions and all-pay auctions, though the cred-

ibility of all-pay auctions is sensitive to the assumption that the object is costless to

provide. (More generally, bWi (ai) − bLi (ai) must be no less than the auctioneer’s cost of

provision, which rules out standard all-pay auctions.23) Twin-bid auctions also encompass

first-price auctions with entry fees (∀ai, a′i : bLi (ai) = bLi (a′i) > 0), and first-price auctions

in which losing bidders are paid fixed compensation (∀ai, a′i : bLi (ai) = bLi (a′i) < 0). Bid-

ders who place higher bids may also receive more compensation if they lose; under the

assumptions of Maskin and Riley (1984), this is the form of the optimal auction for bidders

with constant absolute risk aversion.24

Twin-bid auctions are not strategy-proof, except in degenerate cases.

Proposition 7. Assume there exist θi < θ′i < θ′′i < θ′′′i , θ−i, and θ′−i such that yG,SN (θi, θ−i) 6=
i = yG,SN (θ′i, θ−i) and yG,SN (θ′′i , θ

′
−i) 6= i = yG,SN (θ′′′i , θ

′
−i). If (G,SN) is a twin-bid auction,

then (G,SN) is not strategy-proof.

4.2 Asymmetric distributions

Theorem 2 assumed that the distribution was symmetric; we now state a version that

allows asymmetry. To proceed, we define a technical condition on the distribution. Clause

1 and 2 of the following definition require that the distribution is generic, which removes

distractions from tie-breaking. Clause 3 states that for any ηi(θ
′
i) in the interior of the

convex hull of ηj(Θj), we can find θj with virtual value ‘just below’ ηi(θ
′
i). This is implied

by continuum type spaces and continuous densities, but must be assumed separately for

finite type spaces.

23The case when bWi (ai) − bLi (ai) is exactly equal to the cost of provision is studied in Dequiedt and
Martimort (2006), an early draft of Dequiedt and Martimort (2015).

24Theorem 14 (Maskin and Riley, 1984, p. 1506-1507). This claim follows from their Equations 75 and
77, since µ is non-decreasing.
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Definition 17. FN is interleaved if, ∀i 6= j :

1. ∀θi, θj : ηi(θi) 6= ηj(θj)

2. ∀θi : ηi(θi) 6= 0

3. ∀θi, θ′i : if ηi(θi) < ηi(θ
′
i) and ηj(θ

1
j ) < ηi(θ

′
i) < ηj(θ

Kj
j ), then ∃θj : ηi(θi) < ηj(θj) <

ηi(θ
′
i).

Under asymmetry, we can construct an optimal auction by modifying the ascending

auction to score bids according to their corresponding virtual values, and to sell only when

the high bidder’s virtual value is positive.

Definition 18. (G,SN) is a virtual ascending auction if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. If maxi ηi(bi) > 0, the high bidder is argmaxi ηi(bi). Otherwise there is no high

bidder.

3. At each non-terminal history, some active bidder i (other than the high bidder) is

called to play, and he chooses between actions that place a bid bi ∈ Θi and actions

that quit.

(a) Each bid is no less than the last bid that i placed.

(b) Each bid is no more than is necessary for i to become the high bidder.

(c) If i quits, then he is no longer active.

(d) At each information set, there is a unique action that places a bid, with one

exception: If maxi ηi(bi) < 0 and there is exactly one active bidder left, there

may be multiple actions that place bids.

4. i’s strategy specifies:

(a) If i’s type is strictly below a bid, he does not place that bid.

(b) If ηi(θi) > max{0,maxj 6=i ηj(bj)}, he places a bid.

5. The auction ends if one of three conditions obtains:

(a) If there are no active bidders. In that case, the object is not sold.

(b) If only the high bidder is active. In that case, the object is sold to the high

bidder at his last bid.

(c) If no active bidder can beat the current high bid bi, that is, for every active

bidder j 6= i, ηj(θ
Kj
j ) < ηi(bi). In that case, the object is sold to the high bidder

at his last bid.
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Theorem 4. Assume FN is regular and interleaved and (G,SN) is optimal. (G,SN) is

credible and strategy-proof if and only if (G,SN) is a virtual ascending auction.

Virtual ascending auctions score bids asymmetrically: Bidder i may be asked to bid

$100 in order to beat j’s bid of $50, and then to bid $101 to beat j’s bid of $51. Since

the auctioneer is communicating privately, she could safely deviate to equalize the prices

that bidders face (provided Θi and Θj overlap enough). Nonetheless, it is incentive-

compatible for the auctioneer to follow the rules. For each bidder, truthful bidding is a

best-response to any safe deviation. Thus, if the auctioneer has a profitable safe deviation,

then she could openly promise to deviate without undermining bidders’ incentives. In that

case, the original protocol was not optimal, a contradiction. It may seem intuitive that

the auctioneer cannot credibly reject higher bids in favor of lower bids, but multi-round

communication permits her to do so.

The virtual ascending auction can be modified to deal with irregular distributions: we

simply alter Definition 18 to use ironed virtual values instead of virtual values, following

the construction in Elkind (2007). In effect, if we iron virtual values in the interval θki to

θk
′
i , the auctioneer promises ahead of time to jump i’s price directly from θki to θk

′+1
i . The

proof that this is credible is the same as in the regular case.

Finally, the virtual ascending auction can be used to construct a static credible optimal

auction. Consider a modified all-pay auction; each type θi makes a bid equal to the

expected payment of θi in the virtual ascending auction, to be paid regardless of whether

he wins. The winner is the bidder with the highest virtual value. This twin-bid auction

is BIC and optimal, but neither strategy-proof nor ex post individually rational.25

4.3 Affiliated values

As is well-known, relaxing the independence assumption even slightly results in auctions

that extract all bidder surplus (Cremer and McLean, 1988). The standard (static) mech-

anisms for full surplus extraction are not credible. Even using extensive forms does not

generally permit credible full surplus extraction.

Definition 19. (G,SN) extracts full surplus if it is BIC, has voluntary participation,

and π(G,SN) = EθN [max{0,maxi∈N θi}].

Proposition 8. The Cremer and McLean (1988) conditions are not sufficient for the

existence of a credible protocol that extracts full surplus.

Optimal auctions with correlation are better-behaved if we additionally require ex post

25This format is closely related to the ‘all-pay’ procurement auctions studied in Dequiedt and Martimort
(2015).
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incentive compatibility and ex post individual rationality.26 The virtual values machinery

generalizes, and a modified ascending auction is optimal under some standard assumptions

(Roughgarden and Talgam-Cohen, 2013). That modified ascending auction is credible.

We now make the claim precisely.

Consider some probability mass function fN : ΘN → [0, 1]. We assume symmetric

type spaces, Ki = Kj = K and θki = θkj for all i, j, k, as well as affiliated types (Milgrom

and Weber, 1982).

Definition 20. fN is symmetric if its value is equal under any permutation of its

arguments. fN is affiliated if for all θN , θ
′
N :

fN(θN ∨ θ′N)fN(θN ∧ θ′N) ≥ fN(θN)fN(θ′N) (8)

where ∨ is the component-wise maximum and ∧ the component-wise minimum.

Definition 21. (G,SN) is optimal among ex post auctions if it maximizes π(G,SN)

subject to the constraints:

1. Ex post incentive compatibility. For all i, θi, θ
′
i, θ−i:

θiy
G,SN
i (θi, θ−i)− tG,SNi (θi, θ−i) ≥ θiy

G,SN
i (θ′i, θ−i)− t

G,SN
i (θ′i, θ−i) (9)

2. Ex post individual rationality. For all i, θi, θ−i:

θiy
G,SN
i (θi, θ−i)− tG,SNi (θi, θ−i) ≥ 0 (10)

Definition 22. The conditional virtual value of θki given θ−i is:

ηi(θ
k
i |θ−i) ≡ θki −

1− Fi(θki |θ−i)
fi(θki |θ−i)

(θk+1
i − θki ) (11)

where fi(·|θ−i) is the conditional distribution of θi given θ−i and Fi(·|θ−i) is the conditional

cumulative distribution. fN is regular if, for all i and θ−i, ηi(θi|θ−i) is strictly increasing

in θi.

We now define a modified ascending auction. When there is only one bidder left, the

auctioneer sets a reserve so that she only sells to types with a positive conditional virtual

value.27 That reserve depends on the final bids from the bidders who quit.

26Ex post incentive compatibility and ex post individual rationality are implied by strategy-proofness
and voluntary participation (Definition 7). For extensive forms, ex post incentive compatibility and
strategy-proofness are not equivalent. An opponent strategy profile S−i consists of complete contingent
plans of action. Ex post incentive compatibility in effect considers only plans ‘consistent with’ some
opponent type profile θ−i.

27This definition is due to Roughgarden and Talgam-Cohen (2013), and differs only in that our con-
struction is for finite type spaces to allow the use of extensive game forms.
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Definition 23. (G,SN) is a quirky ascending auction if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. Whenever there is more than one active bidder, some active bidder i is called to

play, where bi ≤ maxj 6=i bj.

(a) i chooses between two actions; he can either raise bi by one increment28 or quit.

(b) If i quits then he is no longer active.

3. When there is exactly one active bidder i, if ηi(bi|b−i) ≤ 0, i chooses to either raise

his bid to min b′i | ηi(b′i|b−i) > 0 or quit. Otherwise i wins and pays bi.

4. Inactive bidders do not win the object, and have zero transfers.

5. Si specifies that i bids bi if and only if θi ≥ bi.

Proposition 9. Assume fN is symmetric, affiliated, and regular. If (G,SN) is a quirky

ascending auction, then it is optimal among ex post auctions and is credible.

5 A ‘Prior-free’ Definition

The definition of credibility depends on the joint distribution of agent types (Definition

6). It may be useful to have a definition that is ‘prior-free’, for settings such as matching

or maxmin mechanism design.

Definition 24. Given (G,SN), S0 ∈ S∗0 (SG0 , SN) is always-profitable if, for all θN :

u0(S0, SN , θN) ≥ u0(SG0 , SN , θN) (12)

with strict inequality for some θN .

(G,SN) is prior-free credible if no safe deviation is always-profitable.

For comparison, (G,SN) is credible if no safe deviation is profitable in expectation.

Prior-free credibility allows one to dispense with strong assumptions about the auction-

eer’s beliefs.

What happens if we replace “credible” with “prior-free credible” in the statement of

Theorems 1 and 2? Quasi-first-price auctions and ascending auctions are credible, so they

are prior-free credible. However, the other direction of implication now starts from weaker

premises. Prior-free credibility still suffices for the characterizations.

Proposition 10. Theorems 1, 2, 3, and 4 remain true when “credible” is replaced by

“prior-free credible”.

28i.e. from θki to θk+1
i , where we set θK+1

i > θKi .
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Proof. Since credible protocols are prior-free credible, each “if” direction is immediate.

In the proof of Theorem 1, we show that if (G,SN) is static but not a quasi-first-price

auction, then there exists a safe deviation that is always-profitable, so (G,SN) is not

prior-free credible. In the proof of Theorem 2, we show that if (G,SN) is strategy-proof

but not an ascending auction, then there exists a safe deviation that is always-profitable,

so (G,SN) is not prior-free credible. So too for Theorems 3 and 4.

6 Other Applications

6.1 Auctions with matroid constraints

So far we have assumed that in each feasible allocation there is at most one winner.

Suppose instead that multiple bidders can be satisfied at once; that is, the feasible sets of

winners are a family F ⊆ 2N . Each bidder’s type is independently distributed according

to fi : Θi → (0, 1], where i’s utility at allocation Y ∈ F is θi1i∈Y − ti. Each bidder

observes whether or not he is in the allocation, and his own transfer.

Definition 25. F is a matroid if:

1. ∅ ∈ F

2. If Y ′ ⊂ Y and Y ∈ F , then Y ′ ∈ F .

3. For any Y, Y ′ ∈ F , if |Y | > |Y ′|, then there exists i ∈ Y \Y ′ such that Y ′∪{i} ∈ F .

Here are some examples of matroids:

1. The auctioneer can sell at most k items; that is, Y ∈ F if and only if |Y | ≤ k.

2. There are incumbent bidders and new entrants. The auctioneer sells k licenses, and

at most l licenses can be sold to incumbents.

3. The auctioneer is selling the edges of a graph. Each edge is demanded by exactly

one bidder, and the auctioneer can sell any set of edges that is acyclic.

4. There are bands of spectrum {1, . . . , K}, and each band k is acceptable to a subset

of bidders Nk. Each bidder is indifferent between bands that he finds acceptable.

At most one bidder can be assigned to each band.

Proposition 11. If F is a matroid, then there exists a credible strategy-proof optimal

protocol.

We describe this protocol informally, since the fine details parallel Definition 18, and

our construction draws heavily on Bikhchandani et al. (2011) and Milgrom and Segal
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(2017). Each bidder’s starting bid is equal to his lowest possible type. We score bids

according to their ironed virtual values, and keep track of a set of active bidders N̂ .

Bidder i is essential at N̂ if, for all Y ⊆ N̂ , if Y ∈ F , then Y ∪ {i} ∈ F . At each

step, we choose an active bidder i whose score is minimal in N̂ . If i’s score is positive

and i is essential at N̂ , then we guarantee that i is in the allocation and charge him his

current bid, removing him from N̂ . Otherwise, i chooses to either raise his bid until his

score is positive and no longer minimal, or quit (in which case he is also removed from

N̂). The auction ends when N̂ = ∅.
The above protocol outputs the same allocation as a greedy algorithm that starts with

the empty set and at each step adds a bidder with the highest ironed virtual value among

those that can be feasibly added, until no bidders with positive ironed virtual values

can be added (we prove this in the Appendix). By a standard result in combinatorial

optimization (Hartline, 2016, p.134), this greedy algorithm maximizes the ironed virtual

value when F is a matroid. Given that the relevant participation constraints and incentive

constraints bind, maximizing ironed virtual values implies that the protocol is optimal

(Elkind, 2007).

The auction we described is credible, for the same reasons as before: Since truthful

bidding is best response to any safe deviation, if the auctioneer could improve revenue by a

safe deviation, she could have committed from the beginning to an alternative mechanism

and increased revenue. Since the original protocol was optimal, we have a contradiction.

6.2 Public goods provision

A social planner chooses whether to provide a public good with integer cost c > 0. An

outcome consists of an allocation y ∈ {0, 1} and transfers from each agent (ti)i∈N . Agent

i’s utility is θiy − ti, where Θi = {0, 1, 2, . . . , K}. The efficient allocation is:

y∗(θN) =

1 if
∑

i θi − c ≥ 0

0 otherwise
(13)

The planner wants to choose the efficient allocation, but also receives a small benefit

from having higher transfers. Formally, for γ ∈ (0, 1
|N |K ):

u0(y, tN , θN) = 1y=y∗(θN ) + γ
∑
i

ti (14)

Each agent observes whether the public good is provided, as well as his own transfer.

Under mild conditions, if a protocol is static, strategy-proof and efficient, then it is not

prior-free credible. The key intuition is that, for a static protocol to be prior-free credible,

i’s transfers must be measurable with respect to the allocation rule, which prevents the
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use of threshold prices.

Proposition 12. Assume there exist θi < θ′i < θ′′i < θ′′′i , θN\i, and θ′N\i such that:

1. θi +
∑

j 6=i θj < c < θ′i +
∑

j 6=i θj

2. θ′′i +
∑

j 6=i θ
′
j < c < θ′′′i +

∑
j 6=i θ

′
j

There does not exist (G,SN) that is static, strategy-proof, efficient, and prior-free credible.

If we allow non-static mechanisms, then there exist prior-free credible efficient proto-

cols when |N | = 2. Our construction treats agents asymmetrically; i declares whether he

is willing to buy the public good at a given price, and at each step the price rises. The

public good is withheld if i quits. j declares whether he is willing to forgo the public good

in return for payment, and at each step the payment offered to j falls. The public good

is provided if j quits. We coordinate the price faced by i and the payment offered to j so

that the public good is provided if and only if their values exceed the cost of provision.

Formally, initialize bi := 0, bj := K.

1. If bi + bj < c, ask i to raise his bid to c− bj or quit.

(a) i raises his bid if and only if θi ≥ c− bj
(b) If i quits, then the public good is not provided, ti = 0 and tj = −bj.

2. If bi + bj ≥ c, ask j to lower his bid to c− bi − 1 or quit.

(a) j lowers his bid if and only if θj ≤ c− bi − 1

(b) If j quits, then the public good is provided, ti = bi and tj = 0.

3. Go to step 1.

Proposition 13. The above protocol for two agents is efficient, strategy-proof, and prior-

free credible.

Proof. Efficiency and strategy-proofness follow by inspection. Holding fixed the param-

eters c and K, at any point in the messaging game, for each agent there is at most one

query that can be safely sent to him. Observe that, for any safe deviation, at any point in

the messaging game, the planner knows only a lower bound for i’s type θi and an upper

bound for j’s type θj. If θi + θj < c, and the planner queries j, then j quits if his type is

θj, causing the public good to be inefficiently provided when the type profile is (θi, θj). If

θi+θj ≥ c, and the planner queries i, then i quits if his type is θi, causing the public good

to be inefficiently withheld when the type profile is (θi, θj). Any safe deviation can change

revenue by no more than 2K so, since γ is small, the protocol is prior-free credible.

Since this protocol treats agents asymmetrically, there is no easy extension to three or

more agents. For that case, it is an open question whether strategy-proofness, efficiency,

and prior-free credibility are compatible.

32



7 Discussion

It is worth considering why real-world auctioneers might lack full commitment power.

Vickrey (1961) suggests that the seller could delegate the task of running the auction

to a third-party who has no stake in the outcome. However, auction houses such as

Sotheby’s, Christie’s, and eBay charge commissions that are piecewise-linear functions

of the sale price.29 Running an auction takes effort, and many dimensions of effort are

not contractible. Robust contracts reward the auctioneer linearly with revenue (Carroll,

2015), so it is difficult to employ a third-party who is both neutral and well-motivated.30

When an auctioneer makes repeated sales, reputation could help enforce the full-

commitment outcome. However, the force of reputation depends on the discount rate

and the detection rate of deviations. Safe deviations are precisely those that a bidder

could not detect immediately. Online advertising auctions are repeated frequently, so

it is plausible that bidders could examine the statistics to detect foul play.31 However,

some economically important auctions are infrequent or not repeated at all - for instance,

auctions for wireless spectrum or for the privatization of state-owned industries. Even

established auction houses such as Christie’s and Sotheby’s have faced regulatory scrutiny,

based in part on concerns that certain deviations are difficult for individual bidders to

detect.

Modern auctioneers could use cryptography to prove that the rules of the auction

have been followed, without disclosing additional information to bidders. Cryptographic

verification relies on digital infrastructure: Participants typically need access to a pub-

lic bulletin board, a sound method of creating and sharing public keys, and a time-lapse

encryption service that provides public keys and commits to release the corresponding de-

cryption keys only at pre-defined times (Parkes et al., 2015).32 It can be costly to construct

this infrastructure, and to persuade bidders that it works as the auctioneer claims. By

using credible mechanisms, auctioneers may increase the resources and attention available

for substantive purposes.

29http://www.sothebys.com/en/news-video/blogs/all-blogs/sotheby-s-at-large/2016/10/

important-update-regarding-sothebys-buyers-premium.html, http://www.christies.com/

buying-services/buying-guide/financial-information/, http://pages.ebay.com/help/sell/

fees.html, accessed 11/5/2017.
30As Myerson (2009) observes, “The problems of motivating hidden actions can explain why efficient

institutions give individuals property rights, as owners of property are better motivated to maintain it.
But property rights give people different vested interests, which can make it more difficult to motivate
them to share their private information with each other.”

31However, bidders in online advertising auctions have expressed concerns that supply-side plat-
forms (SSPs) are deviating from the rules of the second-price auction. The industry news web-
site Digiday alleged, “Rather than setting price floors as a flat fee upfront, some SSPs are set-
ting high price floors after their bids come in as a way to squeeze out more money from ad buy-
ers who believe they are bidding into a second-price auction”. https://digiday.com/marketing/

ssps-use-deceptive-price-floors-squeeze-ad-buyers/, accessed 11/30/2017.
32Bidders may even need special training or software assistance to play their part in a cryptographic

protocol.
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Not all auctioneers have full commitment power, just as not all firms are Stackelberg

leaders. When the auctioneer lacks full commitment, it can be hazardous for bidders to

reveal all their information at once. In a first-price auction, a bidder ‘reveals’ his value

in return for a guarantee that his report completely determines the price he might pay.33

In an ascending auction, a bidder reports whether his value is above b only when the

auctioneer (correctly) asserts that bids below b are not enough to win. Credibility is a

shared foundation for these seemingly disparate designs. How this principle extends to

other environments is an open question.
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A Definition of Extensive Game Forms with Conse-

quences in X

An extensive game form with consequences in X is a tuple (H,≺, P, A,A, (Ii)i∈N , g),

where:

1. H is a set of histories, along with a binary relation ≺ on H that represents prece-

dence.

(a) ≺ is a partial order, and (H,≺) form an arborescence34.

(b) We use h � h′ if h = h′ or h ≺ h′.

(c) h∅ denotes h ∈ H : ¬∃h′ : h′ ≺ h.

(d) Z ≡ {h ∈ H : ¬∃h′ : h ≺ h′}

(e) σ(h) denotes the set of immediate successors of h.

2. P is a player function. P : H \ Z → N .

3. A is a set of actions.

4. A : H \h∅ → A labels each non-initial history with the last action taken to reach it.

(a) For all h, A is one-to-one on σ(h).

(b) A(h) denotes the actions available at h.

A(h) ≡
⋃

h′∈σ(h)

A(h′) (15)

5. Ii is a partition of {h : P (h) = i} such that:

(a) A(h) = A(h′) whenever h and h′ are in the same cell of the partition.

(b) For any Ii ∈ Ii, we denote: P (Ii) ≡ P (h) for any h ∈ Ii. A(Ii) ≡ A(h) for any

h ∈ Ii.
34That is, a directed rooted tree such that every edge points away from the root.
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(c) Each action is available at only one information set: If a ∈ A(Ii), a
′ ∈ A(I ′j),

Ii 6= I ′j then a 6= a′.

6. g is an outcome function. It associates each terminal history with an outcome.

g : Z → X

B Proofs omitted from the main text

B.1 Proposition 1

For each of the three clauses in Definition 2, we show that if (G,SN) does not satisfy this

clause, we can transform (G,SN) to have strictly fewer histories, such that the transformed

protocol is BIC and results in the same outcomes for each type profile. Since the set of

histories in (G,SN) is finite, it follows that there exists a BIC (G′, S ′N) that cannot be

reduced further, but results in the same outcomes as (G,SN).

Clause 1: Suppose there exists h such that there is no θN such that h � z(SN , θN).

Since the game tree is finite, we can locate an earliest possible h; that is, an h such that

no predecessor satisfies this property. Consider h′ that immediately precedes h, and the

information set I ′i such that h ∈ I ′i. There is some action a′ at I ′i that is not played by

any type of i that reaches I ′i. We can delete all histories that follow i playing a′ at I ′i (and

define (≺′,A′, P ′, (I ′i)i∈N , g′) and S ′N so that they are as in G, but restricted to the new

smaller set of histories H ′). Since these histories were off the path of play, their deletion

does not affect the incentives of agents in N \ i. Since i preferred his original Si to any

strategy that played a′ at I ′i, his new strategy S ′i remains incentive-compatible. Thus, the

transformed (G′, S ′N) is BIC.

Clause 2: Suppose there exists h /∈ Z such that |σ(h)| = 1. We simply rewrite

the transformed game (G′, S ′N) that deletes h (and all the other histories in that same

information set) and ‘automates’ i’s singleton action at h. That is, for all h′ ∈ Ii for Ii

such that h ∈ Ii, we remove h′ from the set of histories, and define (≺′,A′, P ′, (I ′i)i∈N , g′)
and S ′N so that they are as in G, but restricted to H \ Ii. (G′, S ′N) is BIC.

Clause 3: The above arguments prove that, starting from an arbitrary (G,SN), we

can produce an outcome-equivalent (G,SN) that satisfies Clauses 1 and 2. We now take

(G,SN) that satisfies Clauses 1 and 2, and show that if it does not satisfy Clause 3, then

we can reduce the protocol further.

Informally, our argument proceeds as follows: Suppose there is some h at which Clause

3 is not satisfied, where we denote i = P (h). Upon reaching h, i’s continuation strategy no

longer affects the outcome. Consider a modified protocol (G′, S ′N): Play proceeds exactly

as in (G,SN), except after history h is reached. Whenever, under (G,SN), i would be

called to play at h′ where h � h′, we instead skip i’s turn and continue play as though i
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played the action that would be selected by some type θi. This modified protocol contains

strictly fewer histories.

Formally, suppose Clause 1 and 2 hold for (G,SN), but there exists h /∈ Z, such that

for i = P (h), there does not exist θi, θ
′
i, θ−i such that

1. h ≺ z(SN , (θi, θ−i))

2. h ≺ z(SN , (θ
′
i, θ−i))

3. xG(SN , (θi, θ−i)) 6= xG(SN , (θ
′
i, θ−i))

Since Clause 1 holds, there exists (θi, θ−i) such that h ≺ z(SN , (θi, θ−i)). Upon reaching

h, we can henceforth ‘automate’ play as though i had type θi. First, we delete any history

h′ such that h � h′ and P (h′) = i; this ensures that i is no longer called to play after

h. Next, we delete any history h′ such that h � h′ and there does not exist θ′′−i such

that h′ ≺ z(SN , (θi, θ
′′
−i)); this has the effect of ‘automating’ play as though i has type θi.

Given the new smaller set of histories H ′, we again define (≺′,A′, P ′, (I ′i)i∈N , g′) and S ′N
so that they are as in G, but restricted to H ′.

By construction, for all θ′i, if i is playing as though his type is θ′i and we would have

reached history h under (G,SN), then the outcome is the same under (G′, S ′N) as when i

is playing as though his type is θi under (G,SN) (which by hypothesis is the same as when

i is playing as though his type is θ′i under (G,SN)). Plainly, if we would not have reached

history h under (G,SN), then the outcomes under (G,SN) and (G′, S ′N) are identical.

Thus, (G′, S ′N) is BIC.

This completes the proof of Proposition 1.

B.2 Proposition 2

To prove Proposition 2, we show that each of the three transformations we used in the

proof of Proposition 1 also preserve credibility. That is, for each (G′, S ′N) that is produced

from (G,SN) by one of the three transformations, if the auctioneer has a profitable safe

deviation from SG
′

0 , then she also has a profitable safe deviation from SG0 .

Consider the first transformation (deleting all histories that follow action a at Ii,

when a is never chosen on the path of play). Suppose the auctioneer had a profitable safe

deviation S ′0 from SG
′

0 . The auctioneer could make that same deviation, but additionally

offer the response λ(a) whenever sending the message λ(Ii). By hypothesis, agent i never

selects λ(a) as a reply, so for any θN and any j, j’s resulting observation has an innocent

explanation. Thus, the auctioneer also has a profitable safe deviation from SG0 .

Consider the second transformation (deleting all histories in some information set

with a singleton action set). Suppose the auctioneer had a profitable safe deviation S ′0

from SG
′

0 . The auctioneer could make that same deviation from SG0 , except that for the
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deleted information set Ii, the auctioneer delays sending λ(Ii, A(Ii)) until the last possible

moment. That is consider S0 that is the same as S ′0, except that, if the auctioneer has

not yet sent λ(Ii, A(Ii)) to agent i, then:

1. If S ′0 specifies that the auctioneer sends λ(I ′i, A(I ′i)) for I ′i � Ii, then S0 specifies

that she first sends λ(Ii, A(Ii)) and then (immediately thereafter) sends λ(I ′i, A(I ′i))

2. If S ′0 specifies that the auctioneer chooses an outcome such that the resulting obser-

vation for i does not have an innocent explanation under SG0 , then S0 specifies that

she first sends λ(Ii, A(Ii)) before choosing that outcome.

S0 is a profitable safe deviation from SG0 .

Consider the third transformation (deleting histories where i is called to play, following

some history h such that, for any two types of i that reach h, both types of i result in the

same outcome). Suppose S ′0 was a profitable safe deviation from SG
′

0 .

If the observation for i that results from S ′0 does not have an innocent explanation

under SG0 , it must be that (given on all the communication i has seen so far), the outcome

S ′0 is about to select can only occur under G at terminal histories that follow h. But by

hypothesis, for any θi and θ′i that are consistent with reaching h, and any θ−i consistent

with reaching h, the resulting outcome is the same. Thus, let S0 be exactly as in S ′0,

except that if S ′0 specifies that the auctioneer chooses an outcome such that the resulting

observation for i does not have an innocent explanation under SG0 , then S0 specifies that

the auctioneer communicates with i as though play started from h and the opponent type

profiles were θ−i, for some θ−i consistent with reaching h.

Formally, if S ′0 would choose an outcome such that i’s observation has no innocent

explanation, then fix some θN such that h ≺ z(SN , θN). Initialize ĥ := h.

1. If ĥ ∈ Z, then terminate and choose x = g(ĥ).

2. Else if P (ĥ) 6= i, then for IP (ĥ) such that ĥ ∈ IP (ĥ):

(a) ĥ := h′ | h′ ∈ σ(ĥ) and SP (ĥ)(IP (ĥ), θP (ĥ)) = A(h′).

(b) Go to step 1.

3. Else:

(a) Send (m,R) = λ(Ii, A(Ii)) for Ii such that ĥ ∈ Ii.

(b) Upon receiving r ∈ R, choose ĥ := h′ | A(h′) = λ−1(r) and h′ ∈ σ(ĥ).

(c) Go to step 1.

Since, under Si, i’s play in this final stage makes no difference to the outcome, delaying

communication with i until the outcome is about to be selected results in a safe deviation.

This completes the proof of Proposition 2..
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B.3 Proposition 4

To derive the lower bound, we use the downward incentive constraints. Since (G,SN) is

BIC, type θki should not wish to imitate type θk−1
i , i.e.:

∀i : ∀k ≥ 2 : ǔG,SNi (k, k) ≥ ǔG,SNi (k, k − 1) (16)

Thus,

ǔG,SNi (k, k)− ǔG,SNi (1, 1) =
k∑
l=2

ǔG,SNi (l, l)− ǔG,SNi (l − 1, l − 1)

≥
k∑
l=2

ǔG,SNi (l, l − 1)− ǔG,SNi (l − 1, l − 1) = Eθ−i [
k∑
l=2

(θli − θl−1
i )yG,SNi (θl−1

i , θ−i)]

(17)

Thus, i’s expected utility is at least:

Eθ−i

[
Ki∑
k=2

fi(θ
k
i )

k∑
l=1

(θli − θl−1
i )yG,SNi (θl−1

i , θ−i)

]
+ ǔG,SNi (1, 1)

= Eθ−i

[
Ki∑
k=1

(1− Fi(θk))(θk+1
i − θki )y

G,SN
i (θki , θ−i)

]
+ ǔG,SNi (1, 1)

= Eθ−i

[
Ki∑
k=1

(θk+1
i − θki )fi(θk)

1− Fi(θk)
fi(θk)

yG,SNi (θki , θ−i)

]
+ ǔG,SNi (1, 1) (18)

Summing across agents yields the lower bound:

0 ≤ EθN

[∑
i∈N

yG,SNi (θN)ηi(θi)

]
− π(G,SN)−

∑
i∈N

ǔG,SNi (1, 1) (19)

To derive the upper bound, we use the upward incentive constraints. Since (G,SN) is

BIC, θk−1
i should not wish to imitate type θki , i.e.:

∀i : ∀k ≥ 2 : ǔG,SNi (k − 1, k − 1) ≥ ǔG,SNi (k − 1, k) (20)

ǔG,SNi (k, k)− ǔG,SNi (1, 1) =
k∑
l=2

ǔG,SNi (l, l)− ǔG,SNi (l − 1, l − 1)

≤
k∑
l=2

ǔG,SNi (l, l)− ǔG,SNi (l − 1, l) =
k∑
l=2

(θli − θl−1
i )Eθ−i [y

G,SN
i (θli, θ−i)]

(21)
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Let ε = maxj max2≤k≤Kj θ
k
j − θk−1

j .

(
Ki∑
k=1

fi(θ
k
i )ǔ

G,SN
i (k, k)

)
− ǔG,SNi (1, 1)

≤ Eθ−i

[
Ki∑
k=1

fi(θ
k
i )

k∑
l=2

(θli − θl−1
i )yG,SNi (θli, θ−i)

]

≤ Eθ−i

[
Ki∑
k=1

(1− Fi(θk))(θk+1
i − θki )y

G,SN
i (θki , θ−i)

]

+ εEθ−i

[
Ki∑
k=2

fi(θ
k
i )(y

G,SN
i (θki , θ−i)− y

G,SN
i (θ1

i , θ−i))

]

≤ Eθ−i

[
Ki∑
k=1

(θk+1
i − θki )fi(θki )

1− Fi(θki )
fi(θki )

yG,SNi (θki , θ−i)

]
+ ε (22)

Summing across agents yields the upper bound:

EθN

[∑
i∈N

yG,SNi (θN)ηi(θi)

]
− π(G,SN)−

∑
i∈N

ǔG,SNi (1, 1) ≤ ε (23)

B.4 Theorem 2

B.4.1 credible, strategy-proof → ascending

We start by deriving several properties of credible strategy-proof optimal (G,SN), without

assuming that FN is regular or symmetric. Since we are mostly holding fixed (G,SN), we

will drop the superscripts on yG,SN and tG,SNi to reduce clutter.

Proposition 14. If (G,SN) is optimal and strategy-proof, then (G,SN) is winner-paying.

Proof. For all (θi, θ−i), if y(θi, θ−i) 6= i then ti(θi, θ−i) ≤ 0. Suppose not. (G,SN) satisfies

voluntary participation. When i’s opponent’s imitate θ−i,
35 type θi can profitably deviate

to non-participation if ti(θi, θ−i) > 0, contradicting strategy-proofness.

θ1
i ≤ 0, so ηi(θ

1
i ) < 0. (G,SN) is optimal, so θ1

i never wins (by Proposition 3). θ1
i ’s

participation constraint binds, so for all θ−i, ti(θ
1
i , θ−i) = 0.

Take any (θi, θ−i). If y(θi, θ−i) 6= i and ti(θi, θ−i) > 0, then when i’s opponents

imitate θ−i, θ
1
i can profitably imitate θi, contradicting strategy-proofness. Thus, (G,SN)

is winner-paying.

Proposition 15. If (G,SN) is strategy-proof, then the allocation rule is monotone. That

is, if θi < θ′i and y(θi, θ−i) = i, then y(θ′i, θ−i) = i.

35Formally, define S′−i such that for all j 6= i, Ij , and θ′j , S
′
j(Ij , θ

′
j) = Sj(Ij , θj)
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Proof. Suppose not, so y(θ′i, θ−i) 6= i. By strategy-proofness, −ti(θ′i, θ−i) ≥ θ′i− ti(θi, θ−i),
which implies −ti(θ′i, θ−i) > θi− ti(θi, θ−i), so θi can profitably imitate θ′i, a contradiction.

Definition 26. (G,SN) has threshold pricing if:

ti(θN) =

minθ′i∈Θi θ
′
i | y(θ′i, θ−i) = i if y(θN) = i

0 otherwise
(24)

Proposition 16. If (G,SN) is optimal and strategy-proof, then (G,SN) has threshold

pricing.

Proof. Proposition 14 pins down the payments whenever y(θN) 6= i.

We prove the rest by induction. (G,SN) is optimal, so θ1
i ’s participation constraint

binds. Thus, Equation 24 holds when for θ1
i . Suppose that Equation 24 holds for all θk

′
i

such that k′ ≤ k. We prove it holds for θk+1
i .

Take any θ−i. There are three cases to consider.

If y(θki , θ−i) = i, then strategy-proofness implies that y(θk+1
i , θ−i) = i and ti(θ

k+1
i , θ−i) =

ti(θ
k
i , θ−i) = minθ′i∈Θi θ

′
i | y(θ′i, θ−i) = i.

If y(θk+1
i , θ−i) 6= i, then ti(θi, θ−i) = 0.

Notice that, in the previous two cases, θk+1
i is exactly indifferent between Si and

deviating to imitate type θki . Finally, suppose y(θki , θ−i) 6= i and y(θk+1
i , θ−i) = i.

ti(θ
k+1
i , θ−i) ≤ θk+1

i , since (G,SN) is strategy-proof. If ti(θ
k+1
i , θ−i) < θk+1

i , then (G,SN)

is not optimal, since the incentive constraints do not bind locally downward (Proposition

3). Thus, ti(θ
k+1
i , θ−i) = θk+1

i , and the inductive step is proved.

Given (G,SN), let Θh
i denote the types of i that are consistent with i’s actions up to

history h, that is:

Θh
i = {θi | ∀h′, h′′ � h : [h′ ∈ Ii, h′′ ∈ σ(h′)]→ [Si(Ii, θi) = A(h′′)]} (25)

For N̂ ⊆ N , let Θh
N̂

= ×i∈N̂Θh
i .

Proposition 17. If h ≺ h′ then Θh
i ⊇ Θh′

i . If h ∈ Ii and h′ ∈ Ii, then Θh
i = Θh′

i .

The first is clear by inspection. The second follows because the definition of Θh
i

invokes only i’s past information sets and actions, and G has perfect recall. Thus, we

define ΘIi
i = Θh

i | h ∈ Ii. Define also:

θhi = min{θi ∈ Θh
i } (26)

θ
h

i = max{θi ∈ Θh
i } (27)
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The next proposition states that strategy-proofness constrains what agents can learn

about each others’ play midway through the protocol. In essence, it says that if, at some

history h where i is called to play, i can affect whether or not θj wins, then i cannot (at

this information set) rule out the possibility that j’s type is instead some θ′j > θj.

Proposition 18. Assume (G,SN) is optimal and strategy-proof. Take any information

set Ii and history h ∈ Ii. Take any θi, θ
′
i ∈ Θh

i , θj ∈ Θh
j , and θN\{i,j} ∈ Θh

N\{i,j}.

If y(θi, θj, θN\{i,j}) = j and y(θ′i, θj, θN\{i,j}) 6= j, then ∀θ′j > θj : ∃h′ ∈ Ii : θ′j ∈
Θh′
j and θN\{i,j} ∈ Θh′

N\{i,j}.

Proof. Suppose not. We construct a strategy profile S ′−j such that θ′j has a profitable

deviation. For l ∈ N \ {i, j}, let l imitate θl; that is ∀Il : ∀θ′l : S ′l(Il, θ
′
l) = Sl(Il, θl). Let

i imitate θ′i unless he encounters Ii, and let him imitate type θi if he has encountered Ii.

Formally:

∀I ′i : ∀θ′′i : S ′i(I
′
i, θ
′′
i ) =

Si(I ′i, θi) if ∃h′′ ∈ I ′i : ∃h′′′ ∈ Ii : h′′′ � h′′

Si(I
′
i, θ
′
i) otherwise

(28)

By Proposition 16, (G,SN) has threshold pricing. If type θ′j deviates to imitate θj,

then (when facing S ′j), the path of play passes through Ii, so j wins at price minθ′′j ∈Θj θ
′′
j |

y(θi, θ
′′
j , θN\{i,j}) = j, for a positive surplus since θ′j > θj. On the other hand, if type θ′j

plays according to Sj, then the path of play does not pass through Ii, so j either wins

at a strictly higher price minθ′′j ∈Θj θ
′′
j | y(θ′i, θ

′′
j , θN\{i,j}) = j, or does not win and has

zero surplus. Thus, j has a profitable deviation, and (G,SN) is not strategy-proof, a

contradiction.

Let W h
i denote the subset of i’s types that might reach h and then win. Similarly, let

Lhi denote the subset of i’s types that might reach h and then lose.

W h
i = {θi ∈ Θh

i | ∃θ−i ∈ Θh
−i : y(θi, θ−i) = i} (29)

Lhi = {θi ∈ Θh
i | ∃θ−i ∈ Θh

−i : y(θi, θ−i) 6= i} (30)

Definition 27. (G,SN) is winner-pooling if for all Ii, h ∈ Ii:

1. Either: ∀θi, θ′i ∈ W h
i : Si(Ii, θi) = Si(Ii, θ

′
i)

2. Or: W h
i ∩ Lhi = ∅

Proposition 19. Assume FN is symmetric and regular, and (G,SN) is optimal, orderly,

and strategy-proof. If (G,SN) is credible, then (G,SN) is winner-pooling.

Before starting the proof of Proposition 19, we highlight that this is the reason that

we have assumed regularity and orderliness in the statement of Theorem 2. Together,
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regularity and orderliness imply that, if there are two distinct types θi < θ′i in W h
i that

do not pool on the same action, then there exists θ−i such that θi loses when facing θ−i,

but θ′i wins. This enables us to construct profitable safe deviations for the auctioneer.36

Proof. Under the assumptions of Proposition 19, we will show that if (G,SN) is not

winner-pooling, then the auctioneer has a profitable safe deviation, so (G,SN) is not

credible.

Let h∗ be some history at which the winner-pooling property does not hold; we pick

h∗ such that, for all h ≺ h∗, h is not a counterexample to winner-pooling. Since (G,SN)

is orderly and the winner-pooling property held at all predecessors to h∗, it follows that

for all i, either W h∗
i = ∅ or W h∗

i = {θi | θiB
B

max
j 6=i

θh
∗

j and θiB ρ}.
Let i∗ denote P (h∗), and I∗i∗ the corresponding information set. Since the winner-

pooling property doesn’t hold at h∗, W h∗
i∗ ∩ Lh

∗
i∗ 6= ∅ and there exist two distinct actions

taken by types in W h∗
i∗ at I∗i∗ .

Since (G,SN) is orderly,
B

minW h∗
i∗ ∈ W h∗

i∗ ∩ Lh
∗
i∗ . Define

θ∗i∗ =
B

min θi∗ ∈ W h∗

i∗ | Si∗(I∗i∗ , θi∗) 6= Si∗(I
∗
i∗ ,

B
minW h∗

i∗ ) (31)

We are going to squeeze extra revenue out of agent i∗ when his type is θ∗i∗ : by his actions

at h∗, he hints that his type is more than high enough to win. Let h∗∗ be the immediate

successor of h∗ that would be reached by θ∗i∗ , that is

h∗∗ = h | h ∈ σ(h∗) and θ∗i∗ ∈ Θh
i∗ (32)

Since W h∗
i∗ ∩ Lh

∗
i∗ 6= ∅ and (G,SN) is orderly, {j ∈ N | W h∗

j 6= ∅} includes i∗ and at least

one other agent. For each i ∈ N , we assign a nemesis:

ψ(i) =
B

max{j ∈ N \ {i} | W h∗

j 6= ∅} (33)

By choosing i’s nemesis in this way, we ensure a useful property; given any θj, we can

find θψ(i) such that i has the same allocation and transfer when the highest opponent type

is θj and when it is θψ(i). Similarly, given any θi, we can find θψ(i) that forces i to pay

exactly θi if he wins (by threshold pricing). Formally, we say θψ(i) is i-equivalent to θj

if

{θi | θiD θj} = {θi | θiD θψ(i)} (34)

where D is the reflexive order implied by the strict order B.

Given SG0 (with corresponding λ), we now exhibit a (partial) behavioral strategy that

36If type spaces were continuous, regularity would by itself imply the desired property for every optimal
allocation rule. However, for discrete types, we need to pick a particular allocation rule - and the orderly
one will do.
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deviates from SG0 upon encountering h∗∗ and is strictly profitable. We describe this

algorithmically. The description is lengthy, because it must produce a safe deviation for

any extensive game form in a large class. We start by defining several subroutines for the

algorithm.

The algorithm calls the following subroutine: Given some variable ĥ that takes values

in the set of histories, we can start at the initial value of ĥ and communicate with i as

though the opponent types were θ−i, updating ĥ as we go along. When we do this, we

say that we simulate θ−i against i starting from ĥ, until certain specified conditions are

met. Formally,

1. If [conditions], STOP.

2. Else if P (ĥ) 6= i, set ĥ := h ∈ σ(ĥ) | θ−i ∈ Θh
−i

3. Else if P (ĥ) = i:

(a) Send (λ(Ii), λ(A(Ii))) for Ii | ĥ ∈ Ii to i.

(b) Upon receiving r, set ĥ := h | h ∈ σ(ĥ) and A(h) = λ−1(r).

(c) Go to step 1.

The algorithm also calls the following subroutine: Given some history h and some

θ−i, where i was called to play at h’s immediate predecessor, we may find the cousin

of h consistent with θ−i. This is the history that immediately follows from the same

information set, is consistent with the action i just took, but is also consistent with the

opponent types being θ−i. Formally, let cousin(h, θ−i) be equal to h′ such that ∃Ii :

∃h′′, h′′′ :

1. h′′, h′′′ ∈ Ii

2. h ∈ σ(h′′)

3. h′ ∈ σ(h′′′)

4. A(h) = A(h′)

5. θ−i ∈ Θh′
−i

Clearly, it is not always possible to find such a history. But we will be careful to prove

that cousin(h, θ−i) is well-defined when we invoke it.

Our algorithm keeps track of several variables:

1. A best offer, initialized β := θ∗i .

2. A set of ‘active’ agents, initialized N̂ := N .
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3. The agent we are currently communicating with, î := i∗.

4. A simulated history, for each agent: ĥi∗ := h∗∗ and for i ∈ N \ {i∗}, ĥi := h∗.

The algorithm proceeds in three stages. At h∗∗, i∗’s type could be at least θ∗i∗ , but

it could also be too low to exploit (if some types not in W h∗
i∗ took the same action as

θ∗i∗ at h∗). In Stage 1, we check whether i∗’s type is at least θ∗i∗ . If it is, we set β to be

the least type consistent with i∗’s responses, and go to Stage 2. Otherwise, we lower β

appropriately, and proceed to Stage 2. In Stage 2, we cycle through the bidders, updating

β to be equal to the highest type we’ve confirmed so far, until we have found the bidder

with the highest type (breaking ties with B). Finally, in Stage 3, we sell to the bidder

with the highest type (if it’s above the reserve), at a price greater than or equal to the

price in the original protocol. We use := for the assignment operator, and :∈ to assign an

arbitrary element in the set on the right-hand side.

Stage 1

1. Pick θψ(i∗) that is i∗-equivalent to β.

2. Simulate (θψ(i∗), θ
h∗

N\{i∗,ψ(i∗)}) against i∗ starting from ĥi∗ , until either θĥi∗i∗ D β or

ĥi∗ ∈ Z.

3. If θĥi∗i∗ D β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗}, β :=
B

min
i 6=i∗,θi

θi | θi ∈ W h∗
i and go to Stage 2.

Stage 2

1. If N̂ = 1, go to Stage 3.

2. Set î :∈ {i ∈ N̂ | θĥii C β}.

3. Pick θψ(̂i) that is î-equivalent to β.

4. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

5. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until either θ
ĥî
î
D β or ĥî ∈ Z.

6. If θ
ĥî
î
D β, set β := θ

ĥî
î

and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {̂i} and go to Step 1 of Stage 2.

Stage 3

1. Set î := i | i ∈ N̂ .

2. Pick θψ(̂i) that is î-equivalent to β.
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3. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

4. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until ĥî ∈ Z.

5. Choose the outcome that corresponds to that terminal history, x = g(ĥî), and

terminate.

Since (G,SN) is orderly, the deviation does not change the allocation. In particular,

some agent î is removed from N̂ only when we know that θψ(̂i) B θî, since θψ(̂i) is î-

equivalent to β, the latter implies that βB θî.
37 Moreover, since (G,SN) is orderly and

has threshold pricing (by Proposition 16), the resulting algorithm results in transfers that

are always at least as high as the transfers under (G,SN). The transfers are strictly higher

for at least one type profile, namely (θ∗i∗ , θ
h∗

−i∗). Under (G,SN), ti∗(θ
∗
i∗ , θ

h∗

−i∗) =
B

minW h∗
i∗ ,

whereas under the deviation i∗’s transfer is θ∗i∗ . Thus, the deviation is profitable.

It remains to prove that the deviation is safe. When we first start communicating with

any agent î under the deviation, we are simulating opponent types that are consistent

with h∗, because the winner-pooling property holds at all histories prior to h∗, and we

have chosen the simulated nemesis type θψ(̂i) to be in W h∗

ψ(̂i)
. (Thus, Step 4 of Stage 2

and Step 3 of Stage 3 are not triggered if this is the first time the deviating algorithm is

communicating with that agent.)

Whenever the deviation communicates with some agent î for a second time, we have

to prove that we can find cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) in the

way the algorithm requires. Let θold
ψ(̂i)

and βold denote the simulated nemesis type and

the best offer from the last time the algorithm communicated with î. Let θnew
ψ(̂i)

and βnew

denote the current simulated nemesis type and best offer. Observe that we always revise

the nemesis type upwards; βold E βnew, so θold
ψ(̂i)
≤ θnew

ψ(̂i)
. If θold

ψ(̂i)
= θnew

ψ(̂i)
, we are done,

since (θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) ∈ Θ
ĥî
−î. Otherwise, consider h′, the immediate predecessor of ĥî.

At h′, î is called to play, and it is not yet clear whether ψ(̂i) wins. In particular, θold
ψ(̂i)

would win against θh
′

î
, but would lose against θ

ĥî
î

, i.e. y(θh
′

î
, θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) = ψ(̂i) 6=

y(θ
ĥî
î
, θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}). By Proposition 18, there exists another history h′′ in the same

information set as h′, such that (θnew
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) ∈ Θh′′

−î. Thus, we can find cousins in the

way that the algorithm requires.

Observe that, whenever î is removed from N̂ , he has seen a communication sequence

that is consistent with his reaching a terminal history with an opponent type profile such

that î does not win and has a zero transfer, and the Stage 3 outcome respects that. At

Stage 3, the final agent î’s observation is consistent with (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}). Thus, the

algorithm produces a profitable safe deviation.

37Since (G,SN ) is orderly, we must eventually learn either that θîB θψ(̂i) or vice versa, since this

information is necessary to determine whether î or ψ(̂i) should win when the other agents’ types are

θh
∗

N\{î,ψ(̂i)}. Thus, reaching Step 4 of Stage 1 or Step 7 of Stage 2 implies that βB θî.
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We are now ready to show that, under the assumptions of Theorem 2, if (G,SN) is

credible and strategy-proof, then (G,SN) is an ascending auction. With Propositions 16

and 19 in hand, what remains is mostly an exercise in labeling.

Bidder i is active at h if W h
i 6= ∅. There are three cases to consider:

1. An active bidder is called to play, and there is more than one active bidder.

2. An inactive bidder is called to play.

3. An active bidder is called to play, and there are no other active bidders. (We leave

this case till last - it can only happen when every other bidder has a type below the

reserve.)

Take any Ii and h ∈ Ii such that an active bidder i is called to play. Suppose there

exists another active bidder, so W h
i ∩Lhi 6= ∅. There is some action Si(Ii, θ

K
i ) that is taken

by the highest type of i. Proposition 19 implies that for all θi ∈ W h
i , Si(Ii, θi) = Si(Ii, θ

K
i ).

Thus, any agent who does not play that action has quit. The bid at Ii is the least type

of i consistent with playing Si(Ii, θ
K
i ), that is

B
min{θi ∈ Θh

i | Si(Ii, θi) = Si(Ii, θ
K
i )}. By

Proposition 17, each bid is weakly more than the last bid that i placed.

By construction, all types strictly below the bid quit. Since (G,SN) is orderly, if there

is no high bidder, then all types weakly above the reserve ρ place a bid. Similarly, all

types above the current high bid place a bid.

If bidder i quits, then he either has a type lower than the reserve, or we have identified

another bidder whose type is greater than i’s (according to the order B). Thus, since

(G,SN) is orderly, once i is inactive, further information about his type no longer affects

the outcome, so (since (G,SN) is pruned) only active bidders are called to play. Similarly,

if i is the current high bidder at history h and there is another active bidder, then by

Proposition 19, all i’s types who reach h take the same action, and (by (G,SN) pruned)

i is not called to play at h. Thus, if i is called to play at h, he is an active bidder who is

not the current high bidder.

Suppose an active bidder i is called to play at h and is the unique active bidder. Since

(G,SN) is pruned, i is not the current high bidder, which implies that there is no high

bidder - all the other bidders have types below the reserve. Let Ii be such that h ∈ Ii.
In this case, we can define an action a as quitting if there is no type above the reserve

that plays a, that is:

¬∃θi ∈ Θh
i | θiB ρ and Si(Ii, θi) = a (35)

For any non-quitting action a, the associated bid is:

B
min{θi | θiB ρ or [θi ∈ Θh

i and Si(Ii, θi) = a]} (36)

By construction, if i has a type strictly below the bid associated with a, then he does
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not play a. If i has a type above the reserve, then he places a bid. However, W h
i ∩Lhi = ∅,

so there can be multiple actions that place bids. Again, by Proposition 17, each bid is

weakly more than the last bid that i placed.

The three conditions that specify what happens when the auction ends are similarly

entailed by orderliness and threshold pricing (Proposition 16). If there are no active

bidders at h, then for all i, ρB θ
h

i . Thus, the object is not sold, and since (G,SN) is

pruned, h is a terminal history. If the high bidder i is the unique active bidder at h, then

we know that no bidder in N \ i has a higher type than i, and that i’s current bid is equal

to
B

min{θi | θiB
B

max
j 6=i

θj and θiB ρ} =
B

min{θi | y(θi, θ−i) = i}. Thus, i must win and pay

his bid, and since (G,SN) is pruned, h is a terminal history. Finally, if the high bidder

has bid θK and no active bidder has higher tie-breaking priority, then i must win and pay

θK , and since (G,SN) is pruned, h is a terminal history.

This completes the proof that, under the assumptions of Theorem 2, if (G,SN) is

credible and strategy-proof, then (G,SN) is an ascending auction.

B.4.2 ascending → credible, strategy-proof

Now we show that if (G,SN) is orderly, optimal, and an ascending auction, it is credible

and strategy-proof.

That (G,SN) is strategy-proof is straightforward. It remains to show that (G,SN) is

credible. As a preliminary, we prove that for any safe deviation S ′0 ∈ S∗0 (SG0 , SN) and for

any S ′−i, Si is a best response to (S ′0, S
′
−i) in the messaging game.

First, consider information sets at which there is a unique action that places a bid.

Take any i, Ii, and θi such that θi ∈ ΘIi
i . Recall that Si requires that i quit if θi is

strictly below the bid b(Ii) at Ii, and that i places the bid if θi is above the least high bid

consistent with reaching Ii. The least high bid consistent with reaching Ii is, formally,

B
min{ρ,

B
min

h∈Ii,j 6=i
θhj } (37)

And, since (G,SN) is optimal and has threshold pricing,

b(Ii)E
B

min{θ′i | θ′iB
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }} (38)

For any safe deviation S ′0 and for any S ′−i, it is optimal for i to quit (upon reaching

information set Ii) if θiC
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }. In particular, note that under (G,SN), if i

wins after reaching Ii, he pays at least
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }. Thus, for any safe deviation,

i’s best possible payoff upon placing a bid is no more than zero, so it is optimal to quit

(which yields zero payoff).

For any safe deviation S ′0 and for any S ′−i, it is optimal for i to place a bid if θi is
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weakly above that bid. This is because i can quit if the required bid ever rises strictly

above θi. Under any safe deviation, i cannot be charged more than θi unless he (at some

later point) bids more than θi. Thus, the worst possible payoff from placing a bid is zero,

and the best possible payoff from quitting is zero.

By the above arguments and Equation 38, there are three possibilities at each Ii and

θi ∈ ΘIi
i :

1.
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }C θi, in which case Si requires that i place a bid, and this is a best

response to (S ′0, S
′
−i).

2. θiC b(Ii), in which case Si requires i to quit, and this is a best response to (S ′0, S
′
−i).

3. b(Ii)E θiC
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }, in which case Si is underdetermined, and both quit-

ting now or placing the bid and quitting later are best responses to (S ′0, S
′
−i).

Finally, consider information sets at which there are multiple bid-placing actions. In

this case, under any safe deviation, i is sure to win if and only if he eventually bids the

reserve - this implies that Si remains a best response to any safe deviation.

Suppose now that (G,SN) is an orderly ascending auction but not credible, so the

auctioneer has a profitable safe deviation S ′0. Consider a corresponding G′ in which the

auctioneer ‘commits openly’ to that deviation, that is to say, G′ such that S ′0 runs G′.

For all i, Si is a best response to (S ′0, S−i), so (G′, SN) is also BIC. (We abuse notation

slightly to use SN as a strategy profile for G and G′. Every information set in G′ has a

corresponding information set in G, so it is clear what is meant.) By hypothesis, S ′0 is a

profitable deviation, so π(G′, SN) > π(G,SN), so (G,SN) is not optimal. Thus, if (G,SN)

is orderly, optimal, and an ascending auction, then (G,SN) is credible. This completes

the proof of Theorem 2.

B.5 Proposition 7

Suppose (G,SN) is a twin-bid auction and strategy-proof. We drop the superscripts on

tG,SNi and yG,SN to reduce clutter. Strategy-proofness requires:

ti(θ
′
i, θ−i)− ti(θi, θ−i) ≤ θ′i (39)

θ′′i ≤ ti(θ
′′′
i , θ

′
−i)− ti(θ′′i , θ′−i) (40)

yG,SN is monotone, so y(θi, θ
′
−i) 6= i and y(θ′′′i , θ−i) = i. It follows that:

ti(θi, θ−i) = ti(θi, θ
′
−i) = ti(θ

′′
i , θ
′
−i) (41)

ti(θ
′′′
i , θ

′
−i) = ti(θ

′′′
i , θ−i) = ti(θ

′
i, θ−i) (42)
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where the first equality in each line follows from the definition of a twin-bid auction and

the second equality follows from strategy-proofness. Substituting into Equation 40 yields

θ′′i ≤ ti(θ
′
i, θ−i)− ti(θi, θ−i) (43)

which contradicts Equation 39.

B.6 Theorem 4

B.6.1 virtual ascending → credible, strategy-proof

Suppose (G,SN) is a virtual ascending auction. By inspection, (G,SN) is strategy-proof.

Moreover, Si is a best response to any (S ′0, S−i) for S ′0 ∈ S∗0 (SG0 , SN). (This requires only

small modifications to the proof of Theorem 2, which we omit to avoid repetition.) Thus,

if (G,SN) is not credible, then there exists (G′, SN) that yields strictly higher expected

revenue for the auctioneer, which implies that (G,SN) is not optimal. Thus, if (G,SN) is

optimal and a virtual ascending auction, then (G,SN) is credible.

B.6.2 credible, strategy-proof → virtual ascending

Propositions 15, 16, 17, and 18 pin down some details even when FN is not symmetric.

We start by proving an analogue to Proposition 19.

Proposition 20. Assume FN is regular and interleaved, and (G,SN) is optimal and

strategy-proof. If (G,SN) is credible, then (G,SN) is winner-pooling.

Proof. As before, we will show that if (G,SN) is not winner-pooling, then the auctioneer

has a profitable safe deviation, so (G,SN) is not credible. Let h∗ be some history at which

the winner-pooling property does not hold; we pick h∗ such that, for all h ≺ h∗, h is not

a counterexample to winner-pooling. Since (G,SN) is regular and interleaved, and the

winner-pooling property held at all predecessors to h∗, Proposition 3 implies that for all

i, either W h∗
i = ∅ or W h∗

i = {θi | ηi(θi) > max(0,
B

max
j 6=i

ηj(θ
h∗

j ))}. Let us define i∗, θ∗i∗ and

h∗∗ as before.

The proof of Proposition 19 works here with the following modifications: First, we

define

ψ(i) = argmax
j∈N\{i}

{ηj(θ
Kj
j ) | W h∗

j 6= ∅} (44)

Second, we say θψ(i) i-separates at γ ∈ R if

{θi | ηi(θi) ≥ γ} = {θi | ηi(θi) ≥ ηj(θψ(i))} (45)

Thirdly, we initialize β := min{ηi∗(θ∗i∗), ηψ(i∗)(θ
Kψ(i∗)
ψ(i∗) )} and specify the algorithm as:

Stage 1
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1. Pick θψ(i∗) that i∗-separates at β.

2. Simulate (θψ(i∗), θ
h∗

N\{i∗,ψ(i∗)}) against i∗ starting from ĥi∗ , until either ηi∗(θ
ĥi∗
i∗ ) ≥ β

or ĥi∗ ∈ Z.

3. If ηi∗(θ
ĥi∗
i∗ ) ≥ β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗},

β := min
i 6=i∗,θi

ηi(θi) | θi ∈ W h∗

i (46)

and go to Stage 2.

Stage 2

1. If N̂ = 1, go to Stage 3.

2. Set î :∈ {i ∈ N̂ | ηi(θĥii ) < β}.

3. Pick θψ(̂i) that î-separates at β.

4. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

5. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until either ηî(θ
ĥî
î

) ≥ β or

ĥî ∈ Z.

6. If ηî(θ
ĥî
î

) ≥ β, set β := ηî(θ
ĥî
î

) and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {̂i} and go to Step 1 of Stage 2.

Stage 3

1. Set î := i | i ∈ N̂ .

2. Pick θψ(̂i) that î-separates at β.

3. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

4. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until ĥî ∈ Z.

5. Choose the outcome that corresponds to that terminal history, x = g(ĥî), and

terminate.

This deviating algorithm does not change the allocation; the object is kept if maxi ηi(θi) ≤
0, and allocated to argmaxi ηi(θi) otherwise (where argmaxi ηi(θi) is singleton since FN

is interleaved). Revenue is at least as high as under SG0 , and strictly higher when

θN = (θ∗i∗ , θ
h∗

−i∗).
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It remains to check that the various steps of the algorithm are well-defined. We

can pick separating types in Step 1 of Stage 1, because either β = ηψ(i∗)(θ
Kψ(i∗)
ψ(i∗) ) or

β = ηi∗(θ
∗
i∗) < ηψ(i∗)(θ

Kψ(i∗)
ψ(i∗) ). In the first case, θ

Kψ(i∗)
ψ(i∗) will i∗-separate at β. In the second

case, since ηi∗(θ
∗
i∗) > ηψ(i∗)(θ

1
ψ(i∗)), by FN interleaved there exists θψ(i∗) that will i∗-separate

at β.

When we pick separating types in Step 3 of Stage 2 and Step 2 of Stage 3, β is

equal to ηj(θj) for some agent j where θj ∈ W h∗
j . Consider θ′

î
= min{θî | ηî(θî) ≥ β}.

Since θj ∈ W h∗
j , it follows (by FN regular and interleaved) that ηî(θ

′
î
) > ηψ(̂i)(θ

1
ψ(̂i)

). If

ηî(θ
′
î
) < ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
), then, by FN interleaved, there exists θψ(̂i) that will î-separate at β.

If ηî(θ
′
î
) ≥ ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
) then since β never exceeds min{ηî(θî) | ηî(θî) ≥ ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
)}, it

follows that θ
Kψ(̂i)

ψ(̂i)
will î-separate at β.

We can choose cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) because FN

is regular and (G,SN) is strategy-proof and optimal, by the same argument as in the

proof of Theorem 2 that invokes Proposition 18. Thus, the algorithm is well-defined, and

produces a profitable safe deviation, which completes the proof.

With Proposition 20 in hand, we now complete the proof that, under the assumptions

of Theorem 4, if (G,SN) is credible and strategy-proof, then (G,SN) is a virtual ascending

auction. Since FN is regular and interleaved, the allocation and payments are entirely

pinned down by Proposition 3 and 16. At type profile θN , agent i wins if and only if

ηi(θi) > max{0,maxj 6=i ηj(θj)}, and pays min θ′i | ηi(θ′i) > max{0,maxj 6=i ηj(θj)}.
Bidder i is active at h if W h

i 6= ∅. There are three cases to consider:

1. An active bidder is called to play, and there is more than one active bidder.

2. An inactive bidder is called to play.

3. An active bidder is called to play, and there are no other active bidders.

Take any Ii and h ∈ Ii such that an active bidder i is called to play, and there exists

another active bidder, so W h
i ∩ Lhi 6= ∅. Proposition 20 implies that for all θi ∈ W h

i ,

Si(Ii, θi) = Si(Ii, θ
Ki
i ). Thus, if bidder i does not play that action, then he has quit. The

bid at Ii is the least type of i consistent with playing Si(Ii, θ
Ki
i ), that is min{θi ∈ Θh

i |
Si(Ii, θi) = Si(Ii, θ

Ki
i )}. By Proposition 17, each bid is weakly more than the last bid that

i placed.

By construction, all types strictly below the bid quit. Since (G,SN) is optimal, i places

a bid if ηi(θi) > max{0,maxj 6=i ηj(bj)}.
If bidder i quits, then either his virtual value is negative, or we have identified another

bidder with a strictly higher virtual value. Thus, since (G,SN) is pruned, only active

bidders are called to play. Similarly, if i is the current high bidder at history h and there

is another active bidder, then by Proposition 20, all i’s types who reach h take the same
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action, and (by (G,SN) pruned) i is not called to play at h. Thus, if i is called to play at

h, he is an active bidder who is not the current high bidder.

Suppose an active bidder i is called to play at h and is the unique active bidder. Since

(G,SN) is pruned, i is not the current high bidder, which implies that there is no high

bidder. Let Ii be such that h ∈ Ii.
In this case, we can define an action a as quitting if no type with a positive virtual

value plays a, that is:

¬∃θi ∈ Θh
i | ηi(θi) > 0 and Si(Ii, θi) = a (47)

For any non-quitting action a, the associated bid is:

min{θi | ηi(θi) > 0 or [θi ∈ Θh
i and Si(Ii, θi) = a]} (48)

In this case, W h
i ∩ Lhi = ∅, so there can be multiple actions that place bids. Again,

by Proposition 17, each bid is weakly more than the last bid that i placed. The three

conditions that specify what happens when the auction ends are entailed by optimality

and threshold pricing (Proposition 16). Thus, under the assumptions of Theorem 4, if

(G,SN) is credible and strategy-proof, then (G,SN) is a virtual ascending auction.

B.7 Proposition 8

There are two bidders i and j, each with two possible values 0 < θi < θ′i < θj < θ′j. The

joint distribution of types is fN(θi, θj) = fN(θ′i, θ
′
j) = 1/3, fN(θi, θ

′
j) = fN(θ′i, θj) = 1/6,

which satisfies the full rank condition of Cremer and McLean (1988) Theorem 2.

Suppose (G,SN) is credible and extracts full surplus. By Propositions 1 and 2, it is

without loss of generality to restrict (G,SN) so that after j is called to play once, he is

never called to play again.

Take any information set Ij at which j is called to play. Since (G,SN) is credible, for

each action that j takes at Ij, there is a unique transfer from j if j wins (Proposition

6). Since (G,SN) extracts full surplus, j wins no matter whether he plays Sj(Ij, θj) or

Sj(Ij, θ
′
j). Since (G,SN) is BIC, j’s transfer after playing Sj(Ij, θj) is the same as j’s

transfer after playing Sj(Ij, θ
′
j).

This argument applies to every information set at which j is called to play, so j’s

transfer does not depend on his own type; tG,SNj (θi, θj) = tG,SNj (θi, θ
′
j) and tG,SNj (θ′i, θj) =

tG,SNj (θ′i, θ
′
j).

Since j always wins the object, the auctioneer can safely deviate to communicate

with j as though i’s type is θi or as though i’s type is θ′i. Since (G,SN) is credible, j’s

transfer does not depend on i’s type; tG,SNj (θi, θj) = tG,SNj (θ′i, θj). Thus, j’s transfer is

some constant tj across all type profiles. θj − tj = 0, so θ′j − tj > 0, and (G,SN) does not
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extract full surplus, a contradiction.

B.8 Proposition 9

To ease notation, we drop the superscripts on tG,SNi and yG,SNi . Define ν(θi, θ−i) =

θiyi(θi, θ−i)− ti(θi, θ−i).
We can use the same method as Proposition 4 to derive an upper bound on ν(θi, θ−i)

under ex post incentive compatibility and ex post individual rationality, namely:

ν(θki , θ−i) ≥
k∑
l=2

yi(θ
l−1
i , θ−i)(θ

l
i − θl−1

i ) (49)

This implies a bound on i’s expected utility conditional on θ−i, namely

Eθi [ν(θki , θ−i) | θ−i] ≥
K∑
k=2

fi(θ
k
i )

k∑
l=1

yi(θ
l−1
i , θ−i)(θ

l
i − θl−1

i )

=
K∑
k=1

fi(θ
k
i |θ−i)

1− Fi(θki |θ−i)
fi(θki |θ−i)

(θk+1
i − θki )yi(θki , θ−i) (50)

which gives an upper bound on expected revenue

π(G,SN) =
∑
i∈N

EθN [θiyi(θN)− ν(θi, θ−i)]

=
∑
i∈N

Eθ−i [Eθi [θiyi(θN)− ν(θi, θ−i) | θ−i]]

≤
∑
i∈N

Eθ−i [Eθi [ηi(θi|θ−i)yi(θN) | θ−i]] = EθN

[∑
i∈N

ηi(θi|θ−i)yi(θN)

]
(51)

Moreover, the above equation holds with equality if the local downward incentive con-

straints bind and the participation constraints bind for the lowest type, where these

constraints are conditional on θ−i.

We now apply the argument in Roughgarden and Talgam-Cohen (2013), which is

written for continuous densities but works also for the discrete case. For the reader’s

convenience, we repeat it here.

Proposition 21. If fN is affiliated and θj < θ′j, then ηi(θi|θj, θN\{i,j}) ≥ ηi(θi|θ′j, θN\{i,j})

Proof. By affiliation, Fi(θi|θ′j, θN\{i,j}) dominates Fi(θi|θj, θN\{i,j}) in terms of hazard rate

(Krishna, 2010, Appendix D), i.e.

1− Fi(θi|θj, θN\{i,j})
fi(θi|θj, θN\{i,j})

≤
1− Fi(θi|θ′j, θN\{i,j})
fi(θi|θ′j, θN\{i,j})

(52)
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which implies ηi(θi|θj, θN\{i,j}) ≥ ηi(θi|θ′j, θN\{i,j}).

Proposition 22. Assume fN is symmetric, regular, and affiliated. For all θN\{i,j}, if

k ≥ k′, then ηi(θ
k
i |θN\{i,j}, θk

′
j ) ≥ ηj(θ

k′
j |θN\{i,j}, θki ).

Proof.

ηi(θ
k
i |θN\{i,j}, θk

′

j ) ≥ θk
′

i −
1− Fi(θk

′
i |θN\{i,j}, θk

′
j )

fi(θk
′
i |θN\{i,j}, θk

′
j )

(θk
′+1
i − θk′i )

≥ θk
′

i −
1− Fi(θk

′
i |θN\{i,j}, θkj )

fi(θk
′
i |θN\{i,j}, θkj )

(θk
′+1
i − θk′i ) = ηj(θ

k′

j |θN\{i,j}, θki ) (53)

where the first inequality follows from regularity, the second inequality follows from Propo-

sition 21, and the equality follows from symmetry.

By Proposition 22, the right-hand side of Equation 51 is maximized by, at each θN ,

selling to some agent in argmaxi θi if maxi ηi(θi|θ−i) > 0, and keeping the object otherwise.

The quirky ascending auction does this, and additionally the local incentive constraints

bind downward and the participation constraint of the lowest type binds, so the left-hand

side of Equation 51 is equal to the right-hand side. Thus, any quirky ascending auction

is optimal among ex post mechanisms.

It remains to prove that the quirky ascending auction is credible. Once more, note that

Si is a best response to any safe deviation by the auctioneer. Under any safe deviation,

if bi ≤ θi, then bidder i’s utility is non-negative if he continues bidding according to Si,

and zero if he quits now. If bi > θi, then bidder i’s utility is non-positive if he continues

bidding, and zero if he quits now. Thus, Si is a best-response to any safe deviation by

the auctioneer, regardless of θ−i. For any safe deviation S ′0, the corresponding protocol

(G′, SN) is ex post incentive compatible and ex post individually rational. Suppose that

S ′0 is profitable, so (G′, SN) yields strictly more expected revenue than (G,SN). Since

(G,SN) is optimal among ex post mechanisms, we have the desired contradiction.

B.9 Proposition 11

Suppose we construct ironed virtual values for discrete type spaces as in Elkind (2007).

Let the protocol break ties according to some fixed order on N , when two bids have the

same ironed virtual value.

Fix some type profile θN . Let us label agents in decreasing order of ironed virtual

values, {1, 2, . . . , n}, breaking ties according to the fixed order. Let {i1, i2, . . . , iJ} be the

set picked by the greedy algorithm, in order of selection (where the algorithm breaks ties

using the same fixed order). We must show that the protocol described in Subsection 6.1

results in the same allocation.
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Take the greedy algorithm’s jth pick, ij = k. We will show that k is essential with

respect to the set of active bidders N̂ before k is asked to place a bid strictly above his

type. Take any step at which k’s bid is equal to his type, and k’s score is minimal in N̂ .

By construction, N̂ ⊆ {1, 2, . . . , k}, since bidders with lower ironed virtual values have

either been put in the allocation or quit.

Take any Y ⊆ {1, 2, . . . , k} such that Y ∈ F . We assert that Y ∪ {k} ∈ F . There are

two cases: either |Y | ≥ j or |Y | < j.

If |Y | ≥ j > |{i1, . . . , ij−1}| and Y ∪ {k} /∈ F , then since F is a matroid, there exists

l ∈ Y \ {i1, . . . , ij−1}, such that {i1, . . . , ij−1} ∪ {l} ∈ F . Thus ij = k is not the greedy

algorithm’s jth pick, a contradiction.

If |Y | < j = |{i1, . . . , ij}|, then since F is a matroid, there exists l ∈ {i1, . . . , ij} \ Y
such that Y ∪ {l} ∈ F and Y ∪ {l} ⊆ {1, . . . , k}. Thus, we can find Y ′ ⊃ Y such that

|Y ′| = j, Y ′ ⊆ {1, . . . , k}, and Y ′ ∈ F . From the argument in the previous paragraph,

Y ′ ∪ {k} ∈ F , and, since F is a matroid, Y ∪ {k} ∈ F .

We have now established that, since N̂ ⊆ {1, 2, . . . , k}, k is essential with respect to N̂ .

Thus the jth pick of the greedy algorithm is in the allocation produced by the protocol.

This argument holds for all j, so the protocol’s allocation is a superset of {i1, . . . , iJ}.
But the protocol only sells to bidders with positive ironed virtual values, so its allocation

is exactly {i1, . . . , iJ}, and the protocol is optimal.

Finally, note that for any safe deviation, each bidder’s ‘truth-telling’ strategy is a best

response. That is, each bidder should keep bidding so long as the price he faces is weakly

below his value, and quit otherwise. Thus, if the auctioneer has a profitable safe deviation,

then the original protocol is not optimal, a contradiction.

B.10 Proposition 12

Suppose not. Since (G,SN) is prior-free credible and efficient, there exist unique transfers

t1i (θ
′
i), t

1
i (θ
′′
i ), t

1
i (θ
′′′
i ) that are paid if the public good is provided and i has the corresponding

type. Since (G,SN) is strategy-proof, these transfers are all equal t1i (θ
′
i) = t1i (θ

′′
i ) =

t1i (θ
′′′
i ) = t1i . Similarly, there exist unique transfers t0i (θi) = t0i (θ

′
i) = t0i (θ

′′
i ) = t0i that are

paid if the public good is not provided and i has the corresponding type.

(G,SN) is strategy-proof and efficient, so θ′i − t1i ≥ −t0i , which implies θ′′i − t1i > −t0i .
Thus, when i’s opponents play as though their types are θ′N\i, type θ′′i can profitably

imitate θ′′′i , a contradiction.
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