RECAP OF BITCOIN

- Transactions: At any time, any buyer b can generate a transaction to pay d BTC to seller s.
- Block: A block consists of
- A set of transactions
- A cryptographic hash of the previous block (pointer to previous block
- An ID of the miner for this block
- A nonce.
- A set of properly signed transactions is valid if no account ever overspent its limit.
- -A block is valid if
- It points to a valid block.
- All transactions on the chain to B are valid.
- SHA256(nonce|| info in block) has k leading zeros.

RECAP OF BITCOIN II

- Mining: the process of extending the blockchain from some block B.
- Longest Chain Protocol (for miners):
- Choose B to be the block furthest from the root, tiebreaking in favor of the first block you heard about.
- Include all valid transactions you've heard about.
- As soon as valid block created, announce it to the network.
- Miners are paid for creating valid blocks with freshly minted Bitcoins and with transaction fees.
- Difficulty of the puzzle is adjusted every 2016 blocks with the objective of making it so that a block takes 10 minutes to make in expectation.

KEY IDEA

- Trust the ledger that has the most "computational work" put into it.
- Ensure that fraudulent transactions/conflicting ledgers would require an infeasible amount of computation to create.

Deviations from protocol

- mine off of any block yon want
- deliberately create forks
- dishonest tic-breaking
- hide a block once found
- include any transactions you want.

Blockchain mining game

- miner i has fraction x_{i} of mining pawn

$$
\sum_{i=1}^{n} x_{i}=1
$$

- discrete time model
- in each step, exactly 1 miner is selected to create a block miner : selected with prob x_{i}
- at all times, each miner m is aware

m creates a directed edge to any block in G_{m}
- in any step, any miner ${ }^{m}$ can broadcast to all other miners any paths in G_{m}. These paths get added to all $G_{m^{\prime}} \quad m^{\prime} \neq m$.
Objective maximize lime $\begin{gathered}\text { created by } m \\ \text { onlongst chain }\end{gathered}$ for miner m BTL $\quad \rightarrow \infty \quad$ \# bloules on longest unitive.

Selfish Mining

- hide blocs yove created to trick other miners into creating blocks that wail never be on longest chain
Aftaclen strategy alwwoss mine on longest chain breaking ties in favor of my own blocks but only broadcast any block Iv found y there is aretren block at sane distance from rest.

if otto people hear about my block at same tire as they lean about anctren block at save depth, they break tie in my favor.

my fracture of ming power is α
often N blocks created, Ives seated αN Ire waled αN blocks
\# blocks on longest chain $(1-\alpha) N$

Ire neated $\frac{\breve{\alpha} N}{(1-\alpha) N}=\frac{\alpha}{1-\alpha}$

$$
\alpha=\frac{1}{3}
$$

$$
\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}
$$

Sefish ming stanegs formm m

- break ties in favor of m's blocks.
- Bloer annouming strateyg
doit annome imedindy
I ates ruxith, amome
\rightarrow (a) y $h_{m} \geqslant h+2$, amome bace bion
\longrightarrow (b) y $h_{m}=h+1$, ammex $h a h+1$
Martoo chain
setf states S.

(c) $\mathrm{y}^{\prime} h_{m}=h$, announce h and finds next block
$q_{u v}$: Prob go to stak curvertly in ystateu

$$
\left.\begin{array}{l}
p_{0}=p_{0}(1-\alpha)+p_{2}(1-\alpha)+p_{0} \\
p_{0}^{\prime}=p_{1}(1-\alpha) \\
p_{1}=\alpha p_{0} \\
p_{i}=p_{i-1} \alpha+p_{i+1}(1-\alpha) \gamma_{i \geqslant 2}
\end{array}\right]
$$

Compak exp payyt
we mell count ablock when t is first arraunced \& is guaranteed to be on longest chain

$$
\begin{aligned}
& \text { Horest } \left.\exp \text { payot }=p_{0}(1-\alpha)^{\cdot 1}+p_{0^{\prime}}(1-\alpha) \cdot 2\right] \\
& \text { Selfish upp padi }=\sum_{i \geqslant 3} p_{i}(r-\alpha) \cdot 1+p_{2}(1-\alpha) \cdot 2 \\
& +p_{0} \cdot \alpha \cdot 2
\end{aligned}
$$

that lose allties.

The Miren's Dilemma group gmivens join tagetres $P_{u}=\lim _{T \rightarrow \infty} \begin{gathered}\text { tractiong } \\ \text { first } \\ \text { steps } \\ \text { trat chain } \\ \text { is in state } \\ u .\end{gathered}$ to form ming pooks.

mivens in pool submit salus to simplen cupto puzzlos

Pool 1 registas with pol a (victim) a anegnlasmines.

Pool 1 attacles pool 2 w/ haff its mining powen Pool 1. malues $\frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}}=\frac{1}{3}$ of nad blocks.
Pool 1 gels. $\frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}}=\frac{1}{3}$ of rewands modeby poo 2.

$$
\text { Pool } 1 \text { maing }=\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{3}=\frac{5}{9} \text { grewads. }
$$

Thm For any system with $p>1$ pools, and no majoity pool, not unfltraing is not an equibibrium.
optmize infiltation rates to moximize nevenue. $x_{i j}$ sracting pod: traturglivaks podj m_{1} 2 pore: bluck rewods: $R_{1}=\frac{m_{1}-x_{12}}{m-x_{12}-x_{21}}$ $m=m_{1}+m_{2}$

$$
R_{2}=\frac{m_{2}-x_{21}}{m-x_{12}-x_{21}}
$$

$$
r_{1}=\frac{R_{1}+x_{1} r_{2}}{m_{1}+x_{21} m_{2}}
$$

chrose x_{12}^{\prime} \& x_{21}^{\prime} to be best responees

$$
\begin{aligned}
& x_{12}^{\prime}=\underset{x_{12}}{\arg \max } r_{1}\left(x_{12}, x_{21}^{\prime}\right) \\
& x_{21}^{\prime}=\underset{x_{21}}{\operatorname{argnox}} r_{2}\left(x_{12}^{\prime}, x_{21}\right)
\end{aligned}
$$

NE: always want to unfltrate (as long as no single pool has too lange as fracting of ming pouen)
preyoneis worse off.
-PD tupe simaten.

- change joining fees.

Transacton tees.

- transacturs anive at cont rate.
- blocles are reated at const rate.
- if RBTC of fransaction fees are available, minen con pit any staction into block.
- miress have enorgh space for all aming transacties.
- no block sewand.

Honest miven putrof

- mineon longest chain (tie-breang frcubet
- incerde all transactions that Iread heardabat)
- prbish imnedretely
heondabut furt.

Using functor f to decide how mach to include

Find sone in f. for which this behavior is NE.

Revisit selfish mining.

- world lien better.
when selfish mines is way abed (s othat next block they nate \Longrightarrow longest chain) and block contains lots more transact

