Revenue Maximization
I sellen n biddens biden is value $V_{i} \sim F$

Revernmassimizing trutugle auction:
Thm If alll $V i \sim F_{N}$ indegerdatly (neg-an)
them ree mastimizy auctoon. is Viclney VCG

$$
r^{*}=\underset{p}{\operatorname{argmax}} \underset{p(1-F(p))}{\text { resenk price } r}
$$

to any "single paramaten settrig"

Auctorren selling 2 itens.
sing bidten

Example:

$$
V_{i}=\left\{\begin{array}{ll}
(1) & \frac{1}{2} \\
2 & \frac{1}{2}
\end{array}\right\}
$$

setprice ' $^{\prime}[21-\varepsilon]$

$$
i=1,2 .
$$

$$
\begin{aligned}
& E(n v)=2-2 \varepsilon \\
& u_{i}=\left(V_{1}-p_{1}\right)^{+}+\left(v_{2}-p_{2}\right)^{+} \\
& E(n w)=\left(\frac{2-\varepsilon}{2}\right) 2
\end{aligned}
$$

set $\quad p_{1}=\frac{2-\varepsilon}{T} \quad p_{0}=2-\varepsilon$
sttpre of $3-\varepsilon$ for buth ters

$$
E(w)=3 \cdot \frac{3}{4}=\frac{9}{4}>
$$

$$
\begin{aligned}
& \left.\operatorname{Pr}(\text { oups })=1-\frac{\operatorname{Pr}\left(v_{1}=1=v_{2}\right.}{\frac{1}{4}}\right)=\frac{3}{4} \\
& \frac{9}{4}> \\
& r_{\text {budil }}=\text { argrar } \\
& \operatorname{PPr}\left(v_{1}+y_{2} P\right.
\end{aligned}
$$

$$
p_{1}, p_{2}
$$

$$
p_{1}-p_{2}=1-\varepsilon
$$

ouctereens revenue.

$$
\sim 1 \geq
$$

$$
\begin{aligned}
& \begin{array}{l}
p_{1}=1-\varepsilon \\
E(n)=\frac{4}{9}+\frac{4}{9} \cdot 2
\end{array} \\
& =\frac{12}{9} \\
& p_{1}=2-c \quad p_{2}=2-\varepsilon \\
& E(\mu)=\frac{4}{9} \cdot 2+\frac{1}{9} \cdot \frac{4}{=}=\frac{12}{9} \\
& p_{\text {bunde }}=2^{-\varepsilon} \\
& E(\omega)=(2-\varepsilon) \cdot \frac{2}{3}=\frac{4}{3}-\frac{R}{9} \\
& P_{\text {murde }}=3-\varepsilon
\end{aligned}
$$

		1	\bar{x}
	x	x	x
		x	x
x	$3-\varepsilon$	$3-\varepsilon$	

$$
\begin{aligned}
& E(w)=3 \cdot \frac{1}{3}=1 \\
& P_{\text {bonde }}=4 \\
& E(w)=4 \cdot \frac{1}{9}
\end{aligned}
$$

		$4-\varepsilon$

Better Offen byenchoice between any single item at price of $2-\varepsilon$ or burdle of botn tiems at prief 3-2ع

$$
E(w)=3 \cdot \frac{3}{9}+2 \cdot \frac{2}{9}=\frac{13}{9}
$$

when values are curclated, possible to design an anticn that extracts "frell value"
singlectern aucth: best possible care

$$
E(N w)=E\left(\max \left(V_{1}, \ldots, V_{n}\right)\right)
$$

2 ster
singe ton

$$
\frac{5}{12} \Longrightarrow \frac{2}{3}
$$

Prior indep antons.
Hors do we kraw F ?
Trum Suppose F is regulan.
Then expected reverve of vidurey auch with $n+1$ bidders
\geqslant exprew of pt auction w) n biddens/
competiton is more important than reseave price. Corllany If $n \geq 2$, exp revenve of Vickney anch (n) $\geqslant \frac{n-1}{n}$ of anp ses of opt anch (n)

Pf

$$
\begin{aligned}
& \frac{n-1}{n} \text { ¢ } \\
& \text { of } A_{n}^{x}
\end{aligned}
$$

Mechanisms for profit maximization

- Research divided into three strands:
- Bayesian:
- Agents values assumed to come from publicly known prior distributions.
- Goal: to do well in expectation
- Prior-independent
- There is a prior, but auctioneer doesn't know it.
- Goal: to do well in expectation.
- Prior-free
- What if we don't want to assume a prior?
- Want to do well in worst case

Prior-free

- Key questions:
- How do we design mechanisms for profit maximization that work well without priors?
- How do we evaluate these mechanisms?

Example: Digital Goods Auction

 wartdes VCG do fir digite gads?- Given
- Unlimited number of copies of identical items for sale
- n bidders, bidder i has private value v_{i} for obtaining one item (and no additional value for more than one)
- Goal: Design truthful auction to maximize profit

Maximizing Profit: A Competitive Analysis Framework

- Goal: truthful profit maximizing basic auction
- There is no auction that is best on every input.
- How do we evaluate auctions?
truinfieress \Rightarrow imposes constraints on what we con achieve. absolute gosinality \Rightarrow relative optimally.

Maximizing Profit: A Competitive Analysis Framework

- Goal: truthful profit maximizing basic auction
- There is no auction that is best on every input.
- How do we evaluate auctions?
- Competitive analysis
- Compare auction profit to "profit benchmark(OPT(v).

Profit Benchmark for Digital Goods Auction
 Definition:
 $$
\vec{v}=\left(v_{1}, v_{n}\right)
$$

A truthful auction is c-competitive if for all vits profit is at least $\operatorname{OPT}(\vec{v}) / \mathrm{c}$ 2

- Define OPT(v) = optimal fixed price revenue
- Example: $\mathrm{v}=(3,2,2,1,1)$

