
How to Price Shared Optimizations in the Cloud

Prasang Upadhyaya, Magdalena Balazinska, and Dan Suciu
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{prasang, magda, suciu}@cs.washington.edu

ABSTRACT
Data-management-as-a-service systems are increasingly
used in collaborative settings, where multiple users access
common data sets. Cloud providers have the choice to im-
plement various optimizations, such as indexing or materi-
alized views, to accelerate queries over these datasets. Each
optimization carries a cost and may benefit multiple users.
This creates a major challenge: how to select which opti-
mizations to perform and share their cost among users. The
problem is especially challenging when users are selfish and
will only report their true values for different optimizations
if it maximizes their utility.

In this paper, we present a new approach for selecting
and pricing shared optimizations by using Mechanism De-
sign. We first show how to apply the Shapley Value Mech-
anism to the simple case of selecting and pricing additive
optimizations assuming an offline game where all users ac-
cess the service for the same time-period. Second, we extend
the approach to online scenarios where users come and go.
Finally, we consider the case of substitutive optimizations.

We show analytically that our mechanisms are truthful
and cost-recovering: i.e., selfish users are best-served when
revealing their true values and the cloud is guaranteed to
recover all optimization costs. Through experiments on the
SQL Azure cloud, we further show that our mechanisms
yield higher utility than the state-of-the-art approach based
on regret accumulation.

1. INTRODUCTION
Over the past several years, “cloud computing” has

emerged as an important new paradigm for building and
using software systems. Multiple vendors offer cloud com-
puting infrastructures, platforms, and software systems in-
cluding Amazon [4], Microsoft [10], Google [18], Sales-
force [31], and others. As part of their services, cloud
providers now offer data-management-in-the-cloud options
ranging from highly-scalable systems with simplified query
interfaces (e.g., Windows Azure Storage [11], Amazon Sim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The xth International Conference on Very Large Data Bases.
Proceedings of the VLDB Endowment, Vol. X, No. Y
Copyright 20xy VLDB Endowment 2150-8097/11/XX... $ 10.00.

pleDB [9], Google App Engine Datastore [19]), to smaller-
scale but fully relational systems (SQL Azure [22], Ama-
zon RDS [6]), to data intensive scalable computing systems
(Amazon Elastic MapReduce [5], to highly-scalable unstruc-
tured data stores (Amazon S3 [8]), and to systems that focus
on small-scale data integration (Google Fusion Tables [17]).

Existing data-management-as-a-service systems offer mul-
tiple options for users to trade-off price and performance,
which we call generically optimizations. They include
views [3] and indexes (e.g., users can create indexes in
SQL Azure and Amazon RDS, Amazon SimpleDB automat-
ically indexes data), but also the choice of physical loca-
tion of data –which affects latency and price (e.g., Ama-
zon S3, SimpleDB)– how data is partitioned (e.g., Amazon
SimpleDB data “domains” or manual partitioning across
SQL Azure instances), and the degree of data replication
(e.g., Amazon S3 standard and reduced-redundancy stor-
age, Amazon RDS multi-AZ deployment, Amazon RDS read
replicas). Cloud systems have an incentive for enabling all
the right optimizations, because this increases their cus-
tomer’s satisfaction and can also optimize the cloud’s overall
performance.

Today, data owners most commonly pay all costs asso-
ciated with hosting and querying their data, whether by
themselves or by others. Data owners also choose, when
possible, the optimizations that should be applied to their
data. However, there is a growing trend toward letting users
collaborate with each other by sharing data and splitting
the costs of accessing that data. For example, in the Ama-
zon S3 storage service, users can currently share their data
with select other users, with each user paying his or her
own data access charges [7]. Furthermore, cloud database-
as-a-service systems often co-locate multiple databases on
the same infrastructure and even use a multi-tenant config-
uration where a single database hosts the data owned by
different users (e.g., [31]). In such systems, there are opti-
mizations such as replicating the database that improve the
services for many users at once and where optimizing the
cloud separately for individual users is much costlier than
optimizing for the group.

The combination of data sharing and optimizations cre-
ates a major challenge: how to price optimizations when one
optimization can benefit multiple users. Implementing these
optimizations imposes a cost on the cloud that needs to be
recovered: resources spent on implementing and maintain-
ing optimizations are resources that cannot be sold for query
processing. The question is how to decide what optimization
to implement and how to share its cost among users.

1



A recently-proposed approach by Kantere, Dash, et
al., [15, 20] addresses this problem by asking users to in-
dicate their willingness to pay for different query perfor-
mance values, observing the query workload, and deciding
on the optimizations to implement based on optimizations
that would have been helpful in the past (i.e., based on re-
gret). The cost of implemented optimizations is amortized
to future queries that use them. This approach, however,
has two key limitations as we show in Section 7. First, it
assumes that users in the cloud will truthfully reveal their
valuations. In practice, users will try to game the system if
doing so improves their utility. Second, this approach does
not guarantee that the cost of an optimization is recovered.

Given these two observations, we develop a new approach
for selecting and pricing optimizations in the cloud based on
Mechanism Design [27, 29]. Mechanism Design is an area of
game theory whose goal is to choose a game structure and
payment scheme such as to obtain the best possible outcome
to an optimization problem in spite of selfish players having
to provide some input to the optimization. Our goal is to
enable the cloud to find the best configuration of optimiza-
tions. For this, the cloud needs users (i.e., selfish players)
to reveal their valuation for these optimizations.

The most closely related approaches from the Mechanism
Design literature are cost-sharing mechanisms [24]. Given
a service with some cost, these mechanisms consider the
problem of deciding what users to service and how much the
users should pay for the service. In this paper, we show how
to easily adapt this technique from the theory community to
the simplest problem of pricing a single optimization when
all users will access the system for a single time-period (i.e.,
offline game).

The problem of pricing optimizations in the cloud, how-
ever, raises two additional challenges. First, in the cloud,
users change their workloads, join and leave the system at
any time. Such dynamism complicates the problem because
users now have new ways of gaming the system: they can
lie about the time when they need an optimization and they
can emulate multiple users. Dynamism requires an online
mechanism. Second, multiple optimizations are available in
the cloud. In the simple case, the value that a user derives
from a set of optimizations is simply the sum of individual
optimization values. We call such optimizations additive. In
other cases, the total value from a set of optimizations may
be given by a more complex function. In this paper, as a
first step, we consider substitutive optimizations, where the
user only wants to pay for one optimization in a set. For
example, a user may be willing to pay either for an index
that accelerates a join or for a materialized view that pre-
computes the join but not both. Prior work in mechanism
design does not handle all the requiremens at a time (See
Section 7). In this paper, we develop a suite of mechanisms,
that can handle all these challenges at the same time.

We seek the following three standard properties for our
mechanisms. First, we want the mechanisms to be truth-
ful, also known as strategy-proof [27], which means that ev-
ery player should have an incentive to reveal her true value
obtained from each optimization. For example, consider a
pricing scheme where the cloud asks users how much they
are willing to pay for an optimization and divides the op-
timization cost accordingly. Users will simply lie, hoping
that the optimization happens anyway and they can get a
free ride or pay a lower price; thus, such a mechanism is

not truthful. Similarly, the approach by Dash, Kantere et
al. [15, 20] mentioned above is not truthful as we discuss
in Section 7. We also want online mechanisms to be re-
silient to multiple identities, which is another way to lie
about value, and to misrepresentation of the time when a
user needs an optimization. Second, we want the mech-
anisms to be cost-recovering, which means that the cloud
should not lose money from performing the optimizations.
For example, in the approach proposed by Dash, Kantere,
et al. [15, 20], the cloud first decides to implement an op-
timization and then it amortizes the cost to future queries
that use it. Cost-recovery is thus not guaranteed. Finally,
we want the mechanisms to be efficient, also known as value-
maximizing [27], which means that we want it to maximize
the total surplus of the system i.e., the sum of user values
minus the cost of the alternative selected. For example, if
several users could benefit from an expensive optimization
that none of them can afford to pay for individually, then
the cloud should perform the optimization and divide the
cost among the users.

In summary, we make the following four contributions:
We first show how the optimization pricing problem maps

onto a cost-recovery mechanism design problem (Section 2).
We also show how the Shapley Value Mechanism [24], which
is known to be both cost-recovering and truthful, solves the
problem of pricing a single optimization. We propose a di-
rect extension of the mechanism to the case of additive op-
timizations in an offline scenario, where all users access the
system for the same time-period. We call this basic mecha-
nism AddOff Mechanism (Section 3).

Second, we present a novel mechanism for the online sce-
nario, where users come and go. We call this new mecha-
nism AddOn Mechanism . Users of cloud services constantly
join and leave the cloud, so in practice, optimizations in the
cloud need to be designed for a dynamic setting. However,
it turns out to be much more difficult to design mechanisms
for the online setting: algorithms that are truthful or cost
recovering in the static setting cease to be so in the dy-
namic setting, see [27, pp 412]. We prove formally that our
new mechanism is both cost-recovering and truthful in the
dynamic setting (Section 4).

Third, we extend both the AddOff Mechanism and the
AddOn Mechanism to the case where optimizations are inter-
dependent: In this paper, we consider substitutive opti-
mizations, where the user derives a single value for any
optimization in a set. However, implementing more than
one optimization from the set does not improve the user
value. We call these mechanisms SubstOff Mechanism and
SubstOn Mechanism and show that they are truthful and
cost-recovering (Section 5).

A well-known result is that achieving both truthfulness
in face of selfish agents and cost-recovery comes at the ex-
pense of total utility [24]. We experimentally compare our
mechanisms against the state-of-the art approach based on
regret accumulation [15]. We show that our mechanisms
produce higher utility upto 3×, provide the same utility for
higher ranges of costs upto 12.5× than the state-of-the-art
approach in addition to handling selfish users, and all the
while ensuring that the cloud does not make a loss.

2. A MECHANISM DESIGN PROBLEM
In this section, we show how the problem of selecting and

pricing optimizations in the cloud can be modeled as a mech-

2



anism design [27] problem. We further show that our prob-
lem requires a type of mechanism called cost-sharing mech-
anism. In this paper, we assume that all optimizations are
binary. That is, the cloud either implements an optimiza-
tion or not. We do not consider continuous optimizations
(e.g., degree of replication).

We consider a set of users, I = {1, . . . ,m}, who are us-
ing a cloud service provider (a.k.a., cloud) to access and
query several data sets. Any user can potentially access any
data set. Let J = {1, . . . , n} denote the set of all potential
optimizations that the cloud could offer for these datasets.
For example, j may represent an index; or the fact that a
data set is replicated in a second data center; or may rep-
resent an expensive fuzzy join between two popular public
datasets, which is precomputed and stored as a material-
ized view. Once the cloud decides to do an optimization j,
it may restrict access to j to only certain users; a grant pair
(i, j) indicates that user i has been granted permission to
use the optimization j. While grant permissions artificially
prevent a user from accessing an optimization, this restric-
tion is necessary to ensure that users reveal their true value
for an optimization and pay accordingly. A configuration,
also called alternative is a set of optimizations j and a set
of grant pairs1 (i, j). We denote an alternative with a and
the set of all possible alternatives with A. We also denote
Sj = {i | (i, j) ∈ a} the set of users who are serviced by the
optimization j in alternative a.

The goal of the mechanism will be to select a configuration
a ∈ A. The decision will be based on the optimization costs
and their values to users, which will determine the users’
willingness to pay for various optimizations.

Values to Users. Each user i obtains a certain value
vij ≥ 0 from each optimization j: e.g., monetary savings
obtained from increased performance or the ability to do a
more complex data analysis. When multiple optimizations
are performed, the total value to a user is given by Vi(a) ≥ 0,
and is obtained by aggregating the values vij for all grant
pairs (i, j) ∈ a. In this and the following two sections, we
consider additive optimizations, where the value is given by:

Vi(a) =
∑

(i,j)∈a

vij ≥ 0 (1)

In Section 5 we will consider substitutive optimizations.
An important assumption in mechanism design is that

users try to lie about their true values: when asked for their
value vij , user i replies with a bid bij . In the case of an ad-
ditive value function, we denote Bi(a) =

∑
(i,j)∈a bij . Thus:

Bi(a) = User i’s bid about her value Vi(a)

Cost to the Cloud. For each implemented optimiza-
tion j ∈ J , the cloud incurs an optimization cost Cj > 0,
which includes the initial cost of implementing the optimiza-
tion (e.g., building an index) and any possible maintenance
costs (e.g., updating the index) for the duration of the ser-
vice. This cost is an opportunity cost: the resources used
to perform the optimization cannot be sold to other users.
The cost of an alternative a is then given by:

C(a) =
∑
j∈a

Cj (2)

1We assume that, if an alternative contains a grant pair
(i, j), then it also contains the optimization j.

While each individual cost Cj is small, the combined cost
C(a) may be significant because the number of potential
optimizations is large.

Payments. Once an outcome a is determined, each user
i who is granted access to an optimization j must pay some
amount pij . This payment is called the user’s cost-share,
and is determined based on all users’ bids2, (bij)i=1,m;j=1,n.
Denoting Pi =

∑
j pij the total payment for the user i, her

utility is defined as Ui(a) = Vi(a)−Pi. A standard assump-
tion in Mechanism Design is that users are “utility maxi-
mizers”, i.e., they try to bid in a way that maximizes their
utility [27, 29].

Cost-Sharing Mechanism Design Problem. After
collecting all bids, a mechanism chooses an outcome a0 ∈ A
that optimizes some global value function. In the case of
cloud based optimizations, we will always aim to optimize
the social surplus, in other words the mechanism will always
choose the following outcome a0:

a0 = arg max
∑
i∈I

Bi(a)− C(a) (3)

Such a mechanism is called efficient [24]. Note that the
mechanism does not know the true values Vi(a), but uses
the bids Bi(a) instead. The goal of mechanism design is
to define the payment functions pij in such a way that all
users have an incentive to bid their true values, Bi = Vi. A
mechanism is called strategy-proof [27, 29], or truthful, if no
user can improve her utility Ui(a) by bidding untruthfully
Bi 6= Vi. Truthful mechanisms are highly desirable, because
when users reveal their true values, the mechanism is in a
better position to select the optimal alternative.

Another desired property for a cost-sharing mechanism
is to be cost-recovering, meaning that it always chooses an
outcome a0 such that:

C(a0) ≤
∑
i

Pi (4)

Example 2.1. Consider the following mechanism. The
cloud collects all bids bij. If cj ≤

∑
i bij then it performs

the optimization j and splits its cost evenly, by asking each
user to pay bij (pij = bij). Clearly this mechanism is cost
recovering. However, it is not truthful: a user i will sim-
ply lie and declare a much lower value bij � vij, hoping
that the optimization will be performed anyway and she will
end up paying much less. The challenge in designing any
mechanism is to ensure that it is truthful.

Formally, a mechanism is defined as follows:

Definition 2.1. A mechanism (f, P1, · · · , Pm) consists
of a function f :

(
RA
)m → A (called social choice func-

tion) and a vector of payment functions P1, · · · , Pm, where
Pi :

(
RA
)m → R is the amount that user i pays.

The mechanisms works as follows. It collects bids
B1, . . . , Bm from all users3. Then it chooses the alter-
native a = f(B1, . . . , Bm), and each user i must pay
Pi(B1, . . . , Bm).
2This is a very important point: the payment depends not
only on the outcome a, but on all bids. For example, in the
second bidders’ auction, the payment of the winner is the
second highest bid [29].
3Each bid Bi is a function A→ R.

3



While we would like to design mechanisms that maximize
the social surplus Eq.(3), it is a well-known result that one
cannot achieve cost-recovery (a.k.a. budget balance), truth-
fulness and efficiency [24] at the same time. In our setting,
we choose to ensure only truthfulness and cost-recovery,
Eq.(4), at the expense of some efficiency loss. Indeed, if
the cloud cannot recover its cost, it will not implement the
loss-making optimization.

3. A MECHANISM FOR STATIC COLLAB-
ORATIONS

We now show how to use the Shapley Value Mecha-
nism [24], which has many desirable properties, to solve the
problem of selecting and pricing additive optimizations for
one time-period (i.e., offline game). We extend the mech-
anism to online settings, where users come and go across
multiple time-periods in Section 4 and to substitutive opti-
mizations in Section 5.

3.1 Background: Shapley Value Mechanism
We start by reviewing the Shapley Value Mechanism [24],

shown in Mechanism 3.1. Fix a single optimization j, let Cj
be its cost and b1j , . . . , bmj the users’ bids for this optimiza-
tion. The Shapley Value Mechanism determines whether to
perform the optimization or not, and, computes the set of
serviced users Sj ⊆ {1, . . . ,m}, and how much they have to
pay, pij . Recall that a configuration, a, contains all grant
pairs (i, j) such that i ∈ Sj . The mechanism starts by set-
ting Sj to the set of all users, and divides the cost Cj evenly
among them: p = Cj/|Sj |. If p is larger than a user’s bid
bij , that user is removed from Sj . The mechanism then re-
computes a new price by dividing the cost evenly among the
smaller set of users. As a result, the cost per user, Cj/|Sj |,
may increase and additional users may need to be removed
from the set Sj . The process continues until either no users
remain or no further users need to be removed from Sj . Each
serviced user, i ∈ Sj , pays the same amount, pij = Cj/|Sj |;
each non-serviced user, i 6∈ Sj , pays nothing, pij = 0. If
Sj = ∅ then no subset of users are bidding enough to pay
for the optimization, and the optimization is not performed
at all. It it obvious that this mechanism is cost recovering,
since

∑
i pij = Cj . The mechanism has also been proven to

be truthful [24]: if the user i bids the true value bij = vij
then her utility (which is vij − pij , if i ∈ Sj , and 0 other-
wise) is larger than or equal to her utility under any other
bid. Indeed, suppose the user i bids low, bij < vij . Then one
of two cases holds. Either user i is removed from the set of
serviced users Sj : in this case her utility drops to 0. Or user
i remains in Sj : in this case her payment pij remains un-
changed, and so does her utility. Hence, she cannot increase
her utility by underbidding; the reader may check that she
cannot increase it by overbidding.

3.2 AddOff Mechanism
We now propose our first mechanism for cloud optimiza-

tion, under the simplest setting, when the optimizations are
done offline and are additive; we will remove these restric-
tions in the next sections. Our mechanism, called the AddOff

Mechanism iterates over all optimizations. For each one, it
simply runs the Shapley Value Mechanism. It adds to a the
grant pairs for all serviced users and it implements the op-
timization when the set is not empty. A user pays the sum

Mechanism 3.1 Shapley Value Mechanism for computing
the set of users to be serviced by an optimization j, and
their cost-share pij .

Shapley-Mech

Input: Optimization cost Cj ; bids b1j , . . . , bmj .
Output: Serviced users Sj ; cost shares p1j , . . . , pmj
Sj ← {1, . . . ,m} /* the set of serviced users */
repeat

p← Cj

|Sj |
/* divide cost evenly */

Sj ← {i | i ∈ Sj , p ≥ bij} /* users still willing to pay */
until Sj remains unchanged, or Sj = ∅
pij ← p if i ∈ Sj /* serviced users pay same amount */
pij ← 0 if i 6∈ Sj . /* non-serviced users don’t pay */
return (Sj , (pij)i=1,m)

of all per-optimization payments. Since the AddOff Mecha-
nism simply runs the Shapley Value Mechanism separately
for each optimization, it follows directly that it preserves
the latter’s truthfulness and cost-recovery properties.

As we mentioned above, a known result is that it is not
possible for a mechanism to achieve truthfulness and budget-
balance while also being efficient. An important property
of the Shapley Value mechanism is that it minimizes wel-
fare loss, which is the reduction in total utility due to the
cost-recovery constraint [24]. We show in Section 6 how this
property enables the AddOff Mechanism to achieve high util-
ity in face of selfish users compared to existing, state-of-the
art optimization pricing techniques.

4. A MECHANISM FOR DYNAMIC COL-
LABORATIONS

The simple offline mechanism in the previous section is in-
sufficient for optimizations in the cloud, because cloud users
change over time. In this section, we develop a new online
mechanism for pricing cloud optimizations, which assumes
users join and leave the system at any time. In general, if
one applies a truthful offline mechanism to an online setting,
the resulting mechanism is no longer truthful [27, pp.412];
similarly, applying an offline cost recovering mechanisms to
an online setting may render it non-recovering. Our new
mechanism is specifically designed for an online setting, and
we prove that it is both truthful and cost recovering. We
continue to restrict our discussion to additive optimizations
(we drop this assumption in the next section), and there-
fore, without loss of generality, we discuss the mechanism
assuming a single optimization j.

The cost of an optimization has two components: an
initial implementation cost (e.g., building an index) and
a maintenance cost (i.e., cost of index storage and index
maintenance). To avoid oscillations where users can afford
the initial cost of implementing an optimization but not its
maintenance cost, we propose an approach where the cloud
computes a single, fixed cost Cj for each optimization, j.
That cost captures both the initial implementation cost and
the maintenance cost for some extended period of time T
(e.g., a month). Users are allowed to join and leave at any-
time during T . However, at the end of the time-period T ,
the cost of the optimization is re-computed and all interested
users must purchase the optimization again.

4.1 AddOn Mechanism

4



We divide T into time-slots numbered {1, . . . , z}. These
time-slots denote the smallest time interval for which a ser-
vice is provided to any user. If T is a month, slots could
correspond to hours, days, or weeks. The value for user i is
a tuple θij = (si, ei, vij), where si, ei ∈ {1, . . . , z} represent
the starting time and the ending time when the user benefits
from the optimization, and vij(t) is a function representing
her value at time t. The interpretation is the following. At
each time t, if t ∈ [si, ei] and the user gets access to opti-
mization i at time t, then she obtains a value equal to vij(t);
otherwise she does not obtain any value at time t. Her total
value is the sum of these unit values over all time slots t.
We assume that whenever t < si or t > ei then vij(t) = 0.
Of special interest to us is the case when vij(t) = vij is a
constant value throughout the interval t ∈ [si, ei].

Users bid for the optimization j, by declaring their values
as θij = (si, ei, bij), where bij(t) is a function of time over
the interval t ∈ [si, ei]. Bids are collected by the cloud at
each time slot t ∈ [1, z]: a bid cannot be retroactive (si <
t), but users are allowed to revise their future bids (bij(t

′),
t′ ≥ t) upwards4. For example, at time t = 1, user 1 bids
(1, 3, [10, 10, 10]), meaning b1j(1) = b1j(2) = b1j(3) = 10; at
time t = 2 she may revise her bids as b1j(2) = 20, b1j(3) =
10. At each time slot t, the cloud needs to determine the
set of serviced users Sj(t), based on the current bids. When
a user i leaves the system at time ei, then she has to pay a
certain amount pij .

Example 4.1. Consider one optimization j, with cost
Cj = 100, and two users with the following values: θ1j =
(1, 1, [101]), θ2j = (1, 2, [26, 26]). Thus, user 1 obtains a
value of 101 at time slot t = 1 if she can access the opti-
mization; user 2 obtains a value 26 at each of the time slots
t = 1 and t = 2, if she has access to the optimization. Con-
sider the following näıve adaptation of the Shapley Value
Mechanism to a dynamic setting. Run the mechanism at
each time slot, until the mechanism decides to implement
the optimization: at that point the cloud has recovered the
cost, and will continue to offer the optimization for free to
new users. In our example, the optimization will be per-
formed at time t = 1, each user pays 50, and user 2’s utility
is 52 − 50 = 2. The problem is that the mechanism is not
truthful: user 2 may cheat by bidding (2, 2, [26]), in other
words she hides her value during the first time slot. Now
the entire cost of the optimization is paid by user 1, at time
t = 1, and user 2 gets a free ride at time t = 2, obtaining a
utility of 26− 0 = 26.

Our AddOn Mechanism, shown in Mechanism 4.1, com-
putes for each time slot t ∈ [1, z] the set of serviced users
Sj(t), and computes the payment pij for each user i leaving
at time t. It works by running a modified Shapley-Value
Mechanism at each time-slot t, which we explain next.

Suppose that no users are serviced yet. Then, the regu-
lar Shapley-Value Mechanism is run at time t, on the bids∑
τ>t bij(τ). The sum is computed separately for each user

and each optimization. If the outcome is not to perform the
optimization, then Sj(t) = ∅ and the system tries the next
time slot t+ 1. If the mechanism decides to perform the op-
timization, then the system sets Sj(t) to the set of all users
served at that time slot, and also continues with the next

4As a consequence, ei can only increase.

time slot t + 1. As new bids arrive, or future bids bij(τ),
τ > t are revised upwards, the cost-shares for all users are
re-computed and may be lowered: as a consequence, users
that could not be serviced at time t may be serviced at time
t+ 1. Of course, users who no longer need the optimization
(because ei < t) are removed from Sj . Denote the cumu-
lative set of serviced users as CSj(t) =

⋃
τ≤t Sj(τ). The

key modification to the Shapley-Value mechanism is to have
it operate on CSj(t) rather than Sj(t). This is ensured as
follows: once a user is serviced at some time τ , i ∈ Sj(τ),
all its future bid are assumed to be∞: this ensures that the
Shapley-Value Mechanism will always include i in CSj(t).
Finally, whenever a user’s bid expires, i.e. t = ei, then
the user’s payment is computed at that time slot, by divid-
ing Cj by the number of all serviced users CSj(t): this is
precisely the payment returned by the Shapley-Value mech-
anism. The users actually serviced, Sj(t), are the active
users in CSj(t), i.e. i ∈ CSj(t) and t ≤ ei: the set of grant
permissions (i, j) at time t is {(i, j) | i ∈ Sj(t)}. In other
words, once a user i is serviced, then the user is guaranteed
to pay her cost-share, and this helps servicing more users in
the future.

Example 4.2. Let’s revisit Example 4.1, and assume the
users bid truthfully (1, 1, [101]) and (1, 2, [26, 26]) respec-
tively. At time t = 1 both users are serviced, Sj(1) =
CSj(1) = {1, 2}. User 1 leaves at this time, so she pays
Cj/2 = 50. At time t = 2 user 2 is serviced, hence the cu-
mulative set of serviced users is CSj(2) = {1, 2}. User 2
leaves at this time, so she pays Cj/2 = 50: her total util-
ity is 52 − 50 = 2. Assume that user 2 is lying and bids
(2, 2, [26]). Then CSj(1) = {1} and user 1 pays 100 when
leaving. At time 2, user 2 is in no feasible set since the
payment required of her is 50 (with CSj(2) = {1, 2}) but it
exceeds her reported value. Thus user 2 gets a utility of 0
and has reduced her utility by lying.

Example 4.3. For a more complex example, consider an
optimization with cost Cj = 100 and four users bidding
(1, 1, [101]), (1, 3, [16, 16, 16]), (2, 2, [26]), (2, 2, [26]). Then
CSj(1) = {1}, CSj(2) = {1, 2, 3, 4}, CSj(3) = {1, 2, 3, 4}.
Note that user 2 is not included in CSj(1) because his bid
48 is below Cj/2. At time t = 2 his remaining total value
is only 32: however, since now there are four users, each
users’ share is Cj/4 and therefore all users are included in
CSj(2), and in CSj(3). Users 1,2,3,4 leave at times t = 1,
t = 3, t = 2, t = 2 respectively, so they pay 100, 25, 25, 25.

4.2 Properties
We prove that AddOn Mechanism has three important

properties: (1) it is truthful, (2) it is cost recovering, and
(3) it is resilient to multiple identities, which is another way
of lying about the value.

Truthful. The definition of a truthful mechanism in the dy-
namic setting is more subtle than in the static setting. In a
static scenario, the mechanism is called truthful if for any set
of bids, user i cannot obtain more utility by bidding bij 6= vij
than by bidding her true value bij = vij . In the dynamic
case, user utilities depend not only on the other bids hap-
pening until now, but also on what will happen in the future.
We assume the model-free [27] framework to define truthful-
ness in the dynamic case: it assumes that bidders have no

5



Mechanism 4.1 AddOn Mechanism .
Input: Optimization j; cost Cj ; bids (si, ei, bij)i=1,m.
Output: Serviced users (Sj(t))t=1,z; payments (pij)i=1,m

CSj(0)← ∅ pij ← 0, ∀i = 1,m
for each time slot t = 1, z do

for each user i = 1,m do
if i ∈ CSj(t− 1) then
b′ij ←∞ /* force user i to be serviced */

else if t ≥ si then
b′ij ←

∑
τ≥t bij(τ) /* remaining value know at t */

else
b′ij ← 0 /* prune users not yet seen */

end if
end for
/* Update the set of serviced users */
(CSj(t), (p

′
ij)i=1,m)← Shapley-Mech(Cj , (b

′
ij)i=1,m)

Sj(t)← {i | i ∈ CSj(t), t ≤ ei} /*service active users*/
for i = 1,m do

if ei = t then
pij ← p′ij /* user i pays when her bid expires */

end if
end for

end for
return ((Sj(t))t=1,z, (pij)i=1,m).

knowledge of the future agents and their preferences. At
each time t, every agent assumes their worst utility over all
future bids, and they act in order to maximize this worst
utility [27].

Example 4.4. Consider Example 4.3. User 2 bids
(1, 3, [16, 16, 16]), thus he could obtain a value 16 at each
of the three time slots t = 1, 2, 3; but he is serviced only at
time slots t = 2, 3, hence his value is 16 + 16 = 32. He
pays 25, thus his utility is 32 − 25 = 7. Suppose that he
cheats, by overbidding (1, 3, [17, 17, 17]). Now he is serviced
at all three time slots, but still pays only 25 (because when
he leaves there are four users in CSj). Thus, for the par-
ticular bids in Example 4.3, user 2 could improve his utility
by cheating. In a model-free framework, however, users do
not know the future, and they must assume the worst case
scenario. In our example, the worst case utility for user 2
at time t = 1 (when he places his bid) corresponds to the
case when no new bids arrive in the future: in this case, if
he overbids ≥ 50, he ends up paying 50, and his utility is
48− 50 = −2. If he underbids, his worst case utility is still
0. By cheating at time t = 1, user 3 cannot increase his
worst case utility.

With the model-free notion of truthfulness [27], a dynamic
mechanism is called truthful if, for each user, revealing his
true preferences maximize the minimum utility he can re-
ceive, over all possible future users’ preferences. This def-
inition of truthfulness reduces to the classic definition of
truthfulness for the static case, if we assume a single time
slot, z = 1.

Proposition 4.1. AddOn Mechanism is truthful.

Proof. (Sketch) Consider a user i bidding at time t, i.e.,
his bid is (si, ei, bij) and t ≤ si (bids cannot be placed for
the past). We claim that its minimum utility over all future
user’s preferences (at times t+ 1, t+ 2, . . .) is when no new

bids arrive in the future. Indeed, any new bids in the future
can only decrease the payment due by user i (by increasing

the set Sj(ei), hence decreasing his payment pij =
Cj

|Sj(ei)|
),

and can only increase his value at every future time slot
t′ ≤ si, by including i in a set Sj(t

′) where it was previously
not included. Thus, the minimum utility for user i is when
no new bids arrive after time t. But in that case, AddOn

Mechanism degenerates to one round of the Shapley-Value
Mechanism, run at time t, which we saw was truthful.

Cost-recovering. We prove:

Proposition 4.2. AddOn Mechanism is cost-recovering.

Proof. Consider the last time slot of the algorithm,
when t = z. Assume w.l.o.g. that CSj(z) 6= ∅: oth-
erwise, if CSj(z) = ∅, then the optimization is not im-
plemented at all during the time period T = {1, . . . , z},
and the cost-recovering property Eq.(4) holds trivially. Let
p′ij be the payments determined by Shapley-Value Mecha-
nism for the time slot z (see Mechanism 4.1): by definition,
this mechanism ensures

∑
i p
′
ij = Cj . Consider any user

i. We claim that its real payment is pij ≥ p′ij . Indeed, if
i 6∈ CSj(z) then pij = p′ij = 0, otherwise pij = Cj/|CSj(ei)|
and p′ij = Cj/|CSj(z)| where ei is the time when the
users’ bid expires, and the claim follows from the fact that
CSj(ei) ⊆ CSj(z). Hence,

∑
i pij ≥

∑
i p
′
ij = Cj , proving

the proposition.

Multiple Identities. A user could create multiple identi-
ties and place a separate bid for each identity. If at least
one identity is given access to the optimization, then the
user obtains her full value (by running her queries under
that identity). However, the user is responsible for paying
on behalf of all identities. It turns out that a user can in-
crease her utility this way: by creating more identities, she
could help many more users to be serviced and thus de-
crease her total payment. For a simple example, consider
an optimization whose cost is Cj = 101 and a user Alice
whose value is (1, 1, [101]). Suppose there are 99 other users
whose values are (1, 1, [1]). Of the 100 users, only Alice is
serviced, because even if all the other 99 users were serviced,
each payment would be 101/100 = 1.01 which exceeds their
value of 1. However, if Alice creates two identities, each bid-
ding (say) (1, 1, [101]), then AddOn Mechanism will see 101
users, and now it can service all of them. Each user pays
101/101 = 1. Alice pays 2, once for each identity. Thus, her
utility has increased from 101 − 101 = 0 to 101 − 2 = 99.
AddOn Mechanism does not prevent such ways of gaming the
system, because they are indistinguishable from collabora-
tions. For example, instead of cheating, Alice could ask her
friend Bob (whose value is at least 1) to participate in the
game, then reimburse him for his payment: this is indistin-
guishable from creating a fake identity. On the other hand,
there is nothing wrong with that: through her action, Alice
helped more users being serviced, accepting to pay slightly
more than the share of the other users. We can prove that
this holds in general.

Proposition 4.3. Suppose a user i can increase her util-
ity under AddOff Mechanism or AddOn Mechanism by creat-
ing multiple identities i1, i2, . . . Then no other users’ utility
decreases.

6



Mechanism 5.1 SubstOff Mechanism : Cost-sharing
mechanism for substitutable optimizations for a single slot.

Input: Opts. J ; costs (Cj)j=1,n; bids (bij)i=1,m;j=1,n

Output: Alternative a ∈ A; cost shares (pij)i=1,m;j=1,n

a← ∅ pij ← 0,∀i = 1,m ∀j = 1, n
loop

for each optimization j in J do
/* Compute serviced users, discard payments */
(Uj , (p

′
ij)i=1,m)← Shapley-Mech(Cj , (bij)i=1,m)

end for
/* Find the smallest cost-share optimization */
Jf ← {j ∈ J |Uj 6= ∅} /* Set of feasible opts */
if Jf 6= ∅ then
jmin ← arg minj∈Jf

(
Cj/|Uj |

)
a← a ∪ {jmin} /* Perform optimization jmin */
for each user i ∈ Ujmin do
a← a ∪ {(i, jmin)}
pijmin ← Cjmin/|Ujmin |
bij ← 0 ∀j ∈ J /* Remove i from future loops */

end for
Cjmin ←∞ /* Remove jmin from future loops */

else
return (a, (pij)i=1,m;j=1,n)

end if
end loop

Proof. (Sketch) Consider two games, one with user i
with a single account and one with user i creating k identi-
ties i1, . . . , ik and associated bids. Her utility can increase by
creating dummy identities only if the total payment by the
dummies is less than the total payment without the dum-
mies. Let user i’s payment with no dummies be pi and
the total payment of her dummies be p′i. Since creating
dummies increases i’s utility p′i < pi, and the payment per
dummy (which would be the payment per user as well with
the dummy accounts) is p′i/k < p′i < pi. Thus, for all users
served in the game with no dummies are surely served with
dummies too since the payment per user did not increase.
Hence the utility of no user decreases.

5. MECHANISMS FOR SUBSTITUTABLE
OPTIMIZATIONS

In this section, we relax the requirement that optimiza-
tions be independent. Indeed, when multiple optimizations
(e.g., indexes or materialized views) exist, the value to the
user from a set of optimizations can be a complex combi-
nation of individual optimization values. In this section, we
consider the case of substitutable optimizations. Formally,
each user defines a set of substitutable optimizations Ji ⊆ J
such that ∀j, k ∈ Ji : vij = vik = vi > 0. Additionally,
given an outcome a, Vi(a) = vi if ∃j ∈ Ji : (i, j) ∈ a and
Vi(a) = 0 otherwise. In comparison to the substitutable val-
uation, the valuation function that we previously used was
the sum: Vi(a) =

∑
(i,j)∈a vij . With substitutable valua-

tions, a user bid takes the form θi = (Ji, vi), where Ji is the
set of substitutable optimizations and vi is the user value if
he is granted access to at least one optimization in Ji.

Substitutable optimizations capture the case where imple-
menting any optimization from a set (e.g., indexes, materi-
alized views, or replication) can speed-up a workload by a
similar amount. The user values this total speed-up at vi

Mechanism 5.2 SubstOn Mechanism Cost-sharing
mechanism for substitutable optimizations, for multiple slots.

Input: Opts J ; costs (Cj)j=1,n;
bids ωi = (si, ei, (bij)j=1,n)i=1,m.

Output: Serviced users (Sj(t))t=1,z; payments (pij)i=1,m

a← ∅ pij ← 0, ∀i = 1,m
for each time slot t = 1, z do

for each user i = 1,m do
if ∃j ∈ J. (i, j) ∈ a then
b′ij ←∞ /* force user i to ber serviced */
b′ij′ ← 0 ∀j′ ∈ J, j′ 6= j /* force i to only use j */

else if t ≥ si then
b′ij ←

∑
τ≥t bij(τ) /* remaining value know at t */

else
b′ij ← 0 /* prune users not yet seen*/

end if
end for
/* Update the set of serviced users */
(a, (p′ij)i=1,m;j=1,n)← SubstOff(J, (Cj)j=1,n, (b

′
ij)i=1,m;j=1,n)

Sj(t)← {i | ∃j.(i, j) ∈ a, t ≤ ei}
for i = 1,m do

if ei = t then
pij ← p′ij /* user i pays when her bid expires */

end if
end for

end for
return ((Sj(t))j=1,n;t=1,z, (pij)i=1:m,j=1:n)

and does not have any strong preference as to which of the
possible optimizations is implemented to obtain the perfor-
mance gain. However, the user gets no added value from
multiple optimizations being implemented at the same time
either because the optimizations cannot be used together
(e.g., a materialized view may remove the need for a specific
index) or because the user gets no added value from further
performance gains.

5.1 SubstOff Mechanism
We first consider the static game where all users bid and

use the system for the same time-period.

Example 5.1. Consider a set of three optimizations with
costs C1 = 60, C2 = 180, and C3 = 100. The bid
({1, 2}, 100) indicates that a user has value 100 if he is
granted access to either optimization 1 or 2. Three other
example bids include ({3}, 101), ({1, 2, 3}, 60), and ({2}, 70).

The challenge with substitutable optimizations is that
users may define overlapping but different sets of optimiza-
tions as in Example 5.1. Users also have several new ways of
cheating. In addition to lying about their value vi, they can
intentionally drop some optimizations from their set. For ex-
ample, user 3 could bid ({2, 3}, 60) instead of ({1, 2, 3}, 60)
hoping to improve utility. They can also emulate multiple
users with different optimization sets. Our mechanisms are
truthful and resilient for the former but not for the latter.

To address this challenge, we develop the mechanism
shown in Mechanism 5.1. The SubstOff Mechanism first
runs the Shapley Value mechanism for each optimization
independently. It then selects the optimization that yields
the lowest cost-share for a non-empty set of serviced users.
These users will be serviced by that optimization at the com-

7



puted cost-share. The mechanism then repeats the analysis
for the remaining users and optimizations.

Example 5.2. Consider example 5.1. We have three op-
timizations with costs C1 = 60, C2 = 180, and C3 = 100
and four bids ({1, 2}, 100), ({3}, 101), ({1, 2, 3}, 60), and
({2}, 70). The mechanism first identifies optimization 1 as
having the lowest cost-share with U1 = {1, 3} and cost-share
60
2

= 30. The mechanism thus implements optimization 1
and services users 1 and 3. Next, the mechanism considers
the remaining users (user 2 and 4) and the remaining opti-
mizations (optimizations 2 and 3). For these optimizations,
U2 = ∅ while U3 = {2}. Optimization 3 is thus implemented
and user 2 is given access to it. User 4 does not get access
to any optimization.

Due to space constraints we defer the proof that SubstOff

Mechanism is cost-recovering to the technical report [36]. It
follows directly from the mechanism’s construction.

Proposition 5.1. The SubstOff Mechanism is truthful.

Proof. We prove by induction on |J |. For any user i the
following holds.

Base case: When |J | = 1, the mechanism is identical to
AddOff Mechanism which is truthful for single optimizations
(refer to Section 3.2).

Inductive case: Now, assume that the mechanism is truth-
ful for |J | ≤ n. Consider |J ′| = n + 1. Let j be the opti-
mization found by Mechanism 5.1 with the minimum cost-
per-user, pij , with feasible user set Uj . If i ∈ Uj , increasing
her bid bij > vij will not reduce pij (and hence not change
her utility). Similarly, reducing bij < vij leads to either the
same value for pij (so her utility is unchanged) or increases
pij enough to lead to the denial of optimization j to i and
a zero utility. User i might still get serviced a higher-priced
optimization but that would also reduce i’s utility. If i /∈ Uj ,
then

1. the minimum price to access j is more than i’s value
for j and hence increasing her bid to obtain the opti-
mization would lead to negative utility.

2. vij = 0: in this case, i might want to increase pij for
some j with the hope that j will not get implemented
and hence some users from Uj might contribute to an-
other optimization j′ that i is interested in. However,
bidding any non-negative value for j can only decrease
pij further and increasing the bid for an optimization
j′ 6= j has no impact on pij . If i belongs to the feasible
set of optimization j′ then increasing her bid will not
reduce pij′ below pij since increasing the bid beyond
pij′ does not decrease pij′ . Reduce bij′ below pij′ will
remove i from j′ service set and render a utility of zero
from j′. If i does not belong to the feasible set of any
optimization j′ that it is interested in it implies that
the minimum price to access j′ is more that i’s value
for j′ and increasing her bid to obtain the optimization
would lead to negative utility.

Thus, the optimization j with the minimum cost per user is
implemented and I ← I \ Uj and J ← J ′ \ {j}.

By induction, the mechanism will be utility-maximizing,
and hence truthful, for the smaller set of users and the
smaller set of optimizations.

Example 5.3. Consider example 5.2. User 3 bids
({1, 2, 3}, 60) and is given access to optimization 1 at cost-
share 30 for a utility of 60 − 30 = 30. If user 3 increased
her bid, she would not affect the outcome and would get the
same utility. Similarly, if user 3 lowered her bid to a value in
the range [30, 60], the outcome and her utility would remain
unchanged. If the user bid below 30, however, she would not
be serviced by optimization 1 as her bid would be below the
cost-share. The user would not get serviced by any other op-
timization, either, because their cost-shares are higher than
that of 1, which was the optimization with the lowest cost-
share. The user utility would be (0 < 30). Finally, if user
3 dropped optimization 1 and bid ({2, 3}, 60), then both op-
timization 1 and 2 would tie for lowest cost-share at 60. Let
us assume the mechanism would randomly choose and imple-
ment optimization 2, user 3 would be granted access to this
optimization and would pay the cost-share of 60 achieving a
strictly lower utility of 0.

5.2 SubstOn Mechanism
We now consider substitutable optimizations, but in a dy-

namic setting where users can join and leave the system in
any time-slot. Given substitutable optimizations Ji, user i
bids ωi = (si, ei, bi, Ji), with [si, ei] as the requested interval
of service and bi(t) is the value she gets at time t.

SubstOn Mechanism, shown in Mechanism 5.2, works by
running the SubstOff Mechanism at each time-slot t with the
residual value of all the users seen. The first time a user i is
granted access to optimization j his bid for j is updated to
∞ so that he is always in the feasible set of j. His bid for
the other optimizations are updated to 0 so that he remains
serviced by optimization j.

Due to space constraints we defer the proof that SubstOn

Mechanism is cost-recovering to the technical report [36].

Proposition 5.2. The SubstOn Mechanism is truthful.

Proof. (Sketch) We claim that for all known users at
time slot t their minimum utility over all future users’ pref-
erence (at times t + 1, t + 2, . . .) is when no bids arrive in
the future. Indeed, any new future bids can only reduce the
payment due by user i by increasing the set Sj(ei), hence
decreasing his payment pij = Cj/|Sj(ei)|. It can also only
increase his value at every future time slot t′ ≤ si, by in-
cluding i in a set Sj(t

′) where it was previously not included.
Thus, the minimum utility for user i is when no new bid ar-
rive after time t. In that case, however, SubstOn Mechanism
reduces to SubstOff Mechanism, executed at time t, which
we saw was truthful in Proposition 5.1.

Multiple Identities. Unlike for AddOff and AddOn Mecha-
nisms, for SubstOff and SubstOn Mechanisms dummy users
can increase their own utility at the expense of other users as
the following example shows. Consider users {1, 2, 3} with
single-slot bids ({1}, 5), ({1, 2}, 2.51), and ({2}, 7) for opti-
mizations 1 with cost 6 and 2 with cost 5. With no dummy
users, optimization 2 is implemented with a payment of 2.5
and utilities of 0.01 for user 2 and 4.5 for user 3. If user
1 creates two identities 1′ and 1′′ that make a bid of 2.5
each for optimization 1, then both optimizations are imple-
mented with optimization 1 serving {1′, 1′′, 2} utilities of 1,
0.51, and 2 for users 1, 2, and 3 respectively. Note that user
3’s utility has reduced. Thus, extenal checks by the cloud
are needed to prevent such forms of cheating.

8



6. EVALUATION
Our mechanisms guarantee truthfulness and ensure cost-

recovery, but they do not optimize total utility (i.e., sum of
all user values minus the cost of all implemented optimiza-
tions). In this section, we empirically evaluate the utility
that our solutions provide. We focus on the online mech-
anisms (i.e., AddOn Mechanism and SubstOn Mechanism).
For brevity, we use the term “mechanism” instead of the full
name of the mechanism when the context is obvious. We
compare our mechanisms to a regret-based approach (see
Section 6.1) as recently proposed in the literature [15, 20].
The experiments are done through simulations5.

Evaluation roadmap. The evaluation assesses the total
utility of the alternatives selected by our mechanisms and
the regret-based approach. The key parameter that affects
utility is the relative cost of optimizations compared with
the user values. This parameter affects the number of users
that are necessary to cover the cost of an optimization. In all
graphs, we vary this ratio by varying the per-optimization
cost along the x-axis while keeping user values within a fixed
range. The second key parameter is how the user values are
distributed across available optimizations and over time. We
study the impact of this parameter as follows. First, we con-
sider the case where users bid for single time-slots and we
vary the size of user groups interested in a single optimiza-
tion (Section 6.2). Second, we study how sequential and
concurrent need for an optimization affect total utility and
cloud balance (Section 6.3). In Section 6.4, we look at how
usage skewed in time affects total utility and cloud balance:
we consider a uniform usage pattern and two non-uniform
ones that model early and late interest in an optimization.
Finally, in Section 6.5, for substitutable optimizations, we
look at how varying the selectivity in choosing the set of sub-
stitutes affects the total utility and the cloud balance. All
graphs show the average and standard deviation for 1000
independent runs.

6.1 Regret-Based Amortization
Prior work [15, 20] proposed to use a regret-based ap-

proach for selecting optimizations. This work developed an
entire intricate economy and considered detailed query plans
for computing regret. In this paper, we extract and evaluate
the performance of the core regret-based approach without
the surrounding economy nor query plan details.

Regret for optimization j at time t, termed Rj(t), is de-
fined as the total value, over all users, until time t (and
excluding it) that would have been realized had j been
implemented and the users serviced. Formally, Rj(t) =∑
τ<t

∑
i∈I vij(τ). The policy we adopt as to when to imple-

ment the optimization is the greedy approach [27] where the
optimization is implemented at time slot t when cj ≤ Rj(t).
For the case of substitutable optimizations, once an opti-
mizations j is implemented for a user i, user i stops con-
tributing to the regret of other optimizations in J \ {j}.

To recoup the cost cj , each future user who gets access

5For context, on SQL Azure, storing and querying a 144 GB
scientific dataset [1] costs $1600/month [23]. We find that an
index on a commonly queried column requires 14GB for an
added cost of $200 in storage per month. The index speeds-
up common queries by up to 8X. Our simulation numbers
assume that scientists would be willing to pay, on average,
$100, for this optimization, with values varying between $0
and $200. Time-slots correspond to months.

to optimization j pays a price pj until the cost is amor-
tized. Let tjr be the time at which the regret-based ap-
proach implements j. To fix pj , we look at the remain-
ing value in the game assuming perfect knowledge of future
users and their values. We choose a pj that minimizes the
cloud loss. Let Uj(p, t

j
r) = {i |

∑
t>t

j
r
vij(t) ≥ p}. Then

pj = arg minp max{c − p × |Uj(p, tjr)|, 0}. (In case of mul-
tiple choices for pj we choose the one with the lowest mag-
nitude since that maximizes the user utilities.) Thus, our
price point is the optimal choice to minimize the cloud loss.
It over-estimates how well regret would work in practice.

Our approach thus computes regret the same way as Kan-
tere, Dash, et al. [20, 15] except that, in their approach,
users assign values to individual queries. Our approach ag-
gregates this information and assigns values to workloads
spanning larger ranges of time.

6.2 Collaboration Size
We compare the regret and mechanism-based approaches

for two different collaboration sizes. For both approaches,
larger collaborations should enable the implementation of
more expensive optimizations and yield higher utilities. We
let users pick one service slot, uniformly at random, from
12 slots6. We experiment with group sizes of 6 and 24 to
simulate low and high collaborations with expected number
of users per slot being 0.5 and 2, respectively.

6.2.1 Additive Optimizations
We first consider additive optimizations with a single op-

timization since optimizations are independent.
Figure 1(a) shows the results for the small collaboration

size. As the figure shows, the Regret Algorithm works well
for inexpensive optimizations but can quickly lead to cloud
loss and even negative total utility. When considering only
the optimization costs where the Regret Algorithm yields
a zero or positive utility, the mechanism-based approach
achieves an average utility 1.43× higher than the Regret Al-
gorithm. Further, the mechanism yields substantial positive
utility (taken as 10% of total user value) for optimization
costs that are 7× larger than the cost at which the Regret
Algorithm starts losing money for the cloud. The Regret Al-
gorithm underperforms compared to the mechanism for two
reasons. First, for inexpensive optimizations that should be
implemented, the Regret Algorithm loses some user value
building up regret. Second, for costly optimizations, the
Regret Algorithm implements the optimization even when
the values from future users are insufficient to pay for the
optimization’s cost, hence incurring a negative utility.

For larger collaboration sizes, as shown in Figure 1(b),
the mechanism provides worse utility than the Regret Algo-
rithm for a subset of costs. Intuitively, the mechanism looses
some opportunities to implement optimizations because it is
more cautious than the Regret Algorithm: To avoid losses,
the mechanism only implements an optimization when it is
certain to recoup the costs given current information. The
benefit of regret, however, is limited: only in 5% of the range
where the Regret Algorithm achieves a non-zero utility, it
also outperforms the mechanism and yields no loss. Over all

6The number 12 was chosen since 2, 3, 4, and 6 divide it
perfectly and give us a larger space of parameter values to
experiment with as compared to some other number like
10 or 15. The other parameter values were chosen to be
multiples of 12 for ease of understanding.

9



-­‐3	
  
-­‐2	
  
-­‐1	
  
0	
  
1	
  
2	
  
3	
  
4	
  

0.
03
	
  

0.
24
	
  

0.
45
	
  

0.
66
	
  

0.
87
	
  

1.
08
	
  

1.
29
	
  

1.
5	
  

1.
71
	
  

1.
92
	
  

2.
13
	
  

2.
34
	
  

2.
55
	
  

2.
76
	
  

2.
97
	
  

U
"l
ity

	
  

Op"miza"on	
  cost	
  

Mechanism	
   Regret	
   Loss	
  

(a) Users = 6

-­‐15	
  
-­‐10	
  
-­‐5	
  
0	
  
5	
  

10	
  
15	
  

0.
12
	
  

0.
96
	
  

1.
8	
  

2.
64
	
  

3.
48
	
  

4.
32
	
  

5.
16
	
   6	
  

6.
84
	
  

7.
68
	
  

8.
52
	
  

9.
36
	
  

10
.2
	
  

11
.0
4	
  

11
.8
8	
  

U
"l
ity

	
  

Op"miza"on	
  cost	
  

Mechanism	
   Regret	
   Loss	
  

(b) Users = 24

-­‐3	
  
-­‐2	
  
-­‐1	
  
0	
  
1	
  
2	
  
3	
  
4	
  

0.
03
	
  

0.
24
	
  

0.
45
	
  

0.
66
	
  

0.
87
	
  

1.
08
	
  

1.
29
	
  

1.
5	
  

1.
71
	
  

1.
92
	
  

2.
13
	
  

2.
34
	
  

2.
55
	
  

2.
76
	
  

2.
97
	
  

U
"l
ity

	
  

Op"miza"on	
  cost	
  

Mechanism	
   Regret	
   Loss	
  

(c) Users = 6

-­‐15	
  
-­‐10	
  
-­‐5	
  
0	
  
5	
  
10	
  
15	
  

0.
12
	
  

0.
96
	
  

1.
8	
  

2.
64
	
  

3.
48
	
  

4.
32
	
  

5.
16
	
   6	
  

6.
84
	
  

7.
68
	
  

8.
52
	
  

9.
36
	
  

10
.2
	
  

11
.0
4	
  

11
.8
8	
  

U
"l
ity

	
  

Op"miza"on	
  cost	
  

Mechanism	
   Regret	
   Loss	
  

(d) Users = 24

Figure 1: All users bid for a uniformly random time slot from 12 slots. User values are uniformly random in
[0, 1). Figures 1(a) and 1(b) show average utility of 1000 runs for the additive case and a single optimization,
while Figures 1(c) and 1(d) do so for the substitutive case where each user chooses 3 uniformly random
substitutes out of 12 optimizations. The figures also show the cloud balance with regret. X- and Y-axes
ranges are different in figures (a) and (c) compared with (b) and (d). Error bars show standard deviations.

the costs from 0 to 3.0 the average utility of the mechanism
is 0.87 while that of the Regret Algorithm is −0.63.

For large collaborations, the mechanism utilities sharply
decrease after a point because of the definition of a feasible
set of users: when costs increase, the payment per user in-
creases super-linearly, since the mechanism prunes out users
for whom the payments are larger than the value. No users
are pruned by the Regret Algorithm and thus it sees a linear
reduction in utilities with increasing costs.

Interestingly, the range of costs for which the Regret Al-
gorithm makes a loss depends on the total number of users
who bid. It yields a loss at a cost of 0.18 for the small group
(Figure 1(a)) and 1.80 for the large one (Figure 1(b)). Since
the number of users is not known in advance, the cloud can
not know when now to use the Regret Algorithm.

6.2.2 Substitutive Optimizations
To compare the mechanism-based and regret-based ap-

proaches in the case of substitutive optimizations, we con-
sider a scenario with 12 optimizations. Each user selects 3
optimizations, uniformly at random, as the set of substitutes
(Section 6.5 experiments with other ratios). Unlike for the
experiments in the additive case, the costs of the 12 opti-
mizations are sampled uniformly from [0, 2c] so that c is the
average optimization cost: this is to simulate that not all
substitutes are equally expensive. Thus the x-axes of Fig-
ures 1(c) and 1(d) are the mean value of the optimizations.

Compared to the corresponding additive optimizations in
Figures 1(a) and 1(b), we see that both the mechanism and
the Regret Algorithm achieve lower overall utility. Indeed,
with substitutes, each optimization has fewer users bidding
for it and, once an optimization is implemented, the ser-
viced users no longer contribute to the other optimizations.
Hence, fewer optimizations are implemented and, in the case
of regret, there are fewer users over whom the costs can be
amortized. In the scenarios shown, the Regret Algorithm
yields a loss earlier than in the additive case.

When averaged over those costs for which the Regret Al-
gorithm yields either zero or positive utility, the mechanism
yields 1.63× and 3× the utility achieved by the Regret Al-
gorithm for group sizes of 24 and 6, respectively.

6.3 Overlap in Usage
In this section, we fix the collaboration size at 6, but we

vary the degree of user overlap and the manner in which
overlap occurs. We consider a single, additive optimization.

0	
  

1	
  

2	
  

3	
  

4	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  10	
  11	
  12	
  

U
"l
ity

	
  d
iff
er
en

ce
	
  

Number	
  of	
  "me	
  slots	
  available	
  

(a) The number of avail-
able slots for bidding
varied on the x-axis.

0	
  

0.5	
  

1	
  

1.5	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  10	
  11	
  12	
  

U
"l
ity

	
  d
iff
er
en

ce
	
  

Dura"on	
  of	
  slots	
  serviced	
  

(b) The service duration
is varied on the x-axis.
Start times uniformly
random in {1, . . . , 12}.

Figure 2: User values and cost identical to the setup
in Figure 1(a). The y-axis is the average of the dif-
ference in utility between the mechanism and the
Regret Algorithm over optimization costs in [0, 3.0].

We first repeat the experiment from Figure 1(a) but slowly
decrease the total number of slots from 12 to 1. Figure 2(a)
shows the results. As the figure shows, with fewer slots
to sample from and hence with increased overlap amongst
users, the mechanism generates 0.77 to 2.75 more utility,
on average, than the Regret Algorithm. (For context, the
entire value in the game is 3.0, which sets an upper bound
on the utility.) As we decrease the number of time-slots,
the probability increases that the mechanism finds enough
value in some slot to justify implementing the optimization.
In contrast, regret accumulation stays unchanged.

Next, we study what happens when user values are spread
across an interval rather than being concentrated in a sin-
gle time-slot. The setup in Figure 2(b) is identical to the
additive case with the group size of 6 in Figure 1(a) ex-
cept that instead of bidding for only one slot, users bid as
(si, si + d − 1), where d is the duration of the service and
is varied on the x-axis. si is chosen uniformly at random
from 12 slots. Users divide their values, chosen uniformly at
random from [0, 1), equally among all d time slots in their
bids. The average extra value that the mechanism generates
over the Regret Algorithm increases from 0.77 to 0.98. In-
deed, as users spread their value across multiple time-slots,
the mechanism becomes more likely to find a single time-slot
with sufficient value to justify implementing the optimiza-
tion. The difference, however, is small because the increased
probability of overlap due to increased duration is offset by
the fact that the values available are also spread over a larger

10



-­‐1	
  

-­‐0.5	
  

0	
  

0.5	
  

1	
  

1.5	
  

0.
03
	
  

0.
15
	
  

0.
27
	
  

0.
39
	
  

0.
51
	
  

0.
63
	
  

0.
75
	
  

0.
87
	
  

0.
99
	
  

1.
11
	
  

1.
23
	
  

1.
35
	
  

1.
47
	
  

1.
59
	
  

1.
71
	
  

Ra
#o

	
  o
f	
  u

#l
ity

	
  

Cost	
  of	
  op#miza#on	
  

Uniform-­‐Mech	
  

Uniform-­‐Regret	
  

Early-­‐Mech	
  

Early-­‐Regret	
  

Late-­‐Mech	
  

Late-­‐Regret	
  

Figure 3: Setup identical to Figure 1(a) but with
three arrival patterns: uniform, early, and late.
“Mech” refers to the mechanism.

range of slots and hence, even if a user arriving at slot, say
1 and with duration of 2 slots, overlaps with a user arriving
at slot 2, only half of her value is available at slot 2.

6.4 Arrival Skew
Figure 3 shows how the two strategies perform as one

changes the way users arrive over time. The setup is iden-
tical to the additive case with group size of 6 (Figure 1(b)),
except that we consider three cases with users arriving: (a)
uniformly at random in one of 12 slots, (b) early following an
exponential distribution with mean 1.27, (c) late following a
distribution that is 12− t with t sampled exponentially with
mean 1.2. Case (b) simulates datasets that become stale
and hence less frequently used while (c) simulates datasets
that become popular over time. The y-axis is the ratio of
the utility of different settings to that of the utility of the
mechanism with early arrivals.

The mechanism outperforms the Regret Algorithm sub-
stantially as user arrival becomes non-uniform (and the lat-
ter soon starts generating negative utilities). The mecha-
nism improves with skew because skew increases the chance
of a time slot with enough value to pay for all costs. Fur-
ther, early arrivals can be 6.7× and 1.8× more efficient that
uniform and late, respectively. This points to an interest-
ing property of the mechanism-design-based approach: the
approach performs much better as non-uniformity increases.

6.5 Selectivity of Substitutes
We now vary the selectivity of the substitutes defined as

the ratio of the number of substitutable optimizations to the
total number of optimizations. Figures 4(a) and 4(b) show
the total utility for selectivities of 0.75 and 0.25, where each
user chooses 3 optimizations uniformly at random from 4
and 12 optimizations, respectively.

The figures show that, with more selective users, abso-
lute utilities derived by both algorithms decrease. For e.g.,
the Regret Algorithm goes from a utility of 2.28 to 1.22 for
the optimization cost of 0.03 as selectivity increases. In-
deed, with more selective users, the number of users per
optimization decreases and more optimizations have to be
be implemented to satisfy the users. In our simulations, the
mechanism yields an average total utility of 1.0 even for op-
timizations that are 2.5× and 12.5× costlier than the opti-
mizations at which the Regret Algorithm generates utilities
of 1.0, for Figures 4(a) and 4(b), respectively.

Summary. In summary, our mechanism-based ap-
proaches not only guarantee truthfullness and cost-recovery
but also yield utility that frequently exceeds that of the
regret-based approach. Our approaches work especially well

7With mean 1.2, the maximum starting time slot of 6 users
in 1000 runs was 12 as it is in case (a).

-­‐4	
  
-­‐2	
  
0	
  
2	
  
4	
  

0.
03
	
  

0.
42
	
  

0.
81
	
  

1.
2	
  

1.
59
	
  

1.
98
	
  

2.
37
	
  

2.
76
	
  

To
ta
l	
  s
oc
ia
l	
  u
+l
ity

	
  

Op+miza+on	
  cost	
  

Mechanism	
   Regret	
  

(a) Each user chooses 3
uniformly random opti-
mizations out of 4.

-­‐4	
  
-­‐2	
  
0	
  
2	
  
4	
  

0.
03
	
  

0.
42
	
  

0.
81
	
  

1.
2	
  

1.
59
	
  

1.
98
	
  

2.
37
	
  

2.
76
	
  

To
ta
l	
  s
oc
ia
l	
  u
+l
ity

	
  

Op+miza+on	
  cost	
  

Mechanism	
   Regret	
  

(b) Each user chooses 3
uniformly random opti-
mizations out of 12.

Figure 4: User values and optimization costs are
identical to the setup in Figure 1(c).

in scenarios where many users derive significant value from
an optimization during the same time-slot. They under-
perform compared to regret in scenarios where users value
the same optimization but during non-overlapping periods.

7. RELATED WORK
Today, cloud providers use two strategies for pricing op-

timizations. In the first, the cost of the optimization is in-
cluded in the base service price. For e.g., Amazon Sim-
pleDB [9] automatically indexes user data and includes the
corresponding overhead in the base-price computation (45
bytes of extra storage are added to each item, attribute, and
attribute-value). Similarly, SimpleDB and SQL Azure [22]
automatically replicate data and include that cost in the
base service cost. The key limitation with this approach is
that the cloud must decide up-front what optimizations are
worth offering and it forces users to pay for these optimiza-
tions. In other cases, users choose desired optimizations and
pay their exact cost. For example, in Amazon RDS [6] a user
can choose to launch and pay-for a desired number of read-
replicas to speed-up her query workload. This approach,
however, works well only in the absence of collaborations.

Significant recent work studies existing cloud pricing
schemes, economic models, and their implications [21, 34,
39]. In contrast we develop a new pricing mechanism.

Most closely related to our work, Dash et al., developed
an approach for pricing data structures (indexes, materi-
alized views, etc.) in a DBMS cloud cache [15]. In their
approach, the cloud selects the structures to build based on
the notion of regret. The cost is amortized to the first N
queries that use the new structure. To compute regret, the
cloud relies on budget functions provided by users, which in-
dicate their willingness to pay for various quality of service.
In follow-up work Kantere et al. [20] tuned their approach
and developed a regression-based technique for predicting
the extent of cost amortization. In contrast to our work,
this previous approach relies on users being truthful and
does not guarantee that the cost of an optimization will be
recovered. As an example, consider a user who needs to
run a single, very expensive query over a private dataset. If
the user is truthful, no optimization will be implemented for
this one query. Instead, the user thus submits a large num-
ber of inexpensive queries over the same dataset. The user
expresses willingness to pay zero for processing these extra
queries, yet indicates a preference for low execution times
over low costs. The regret-based approach will let the user

11



manually pick slow and cheap service for these queries. It
will then compute the maximum possible regret for the miss-
ing data structure that would have enabled faster plans for
these queries. Once regret accumulates sufficiently, the user
can run his single expensive query and pay a small fraction
of the total cost of the optimization.

Significant research applies economic principles to re-
source allocation in distributed systems [2, 12, 13, 14, 16,
30, 32, 38], collaboration promotion in peer-to-peer sys-
tems [26, 25, 37], or more recently, VM allocation in the
cloud [35]. We study how to choose and price optimizations
rather than allocate processing resources. The Mariposa dis-
tributed database system [33] introduced a microeconomic
paradigm for optimizing distributed query evaluation and
data placement. This is a problem orthogonal to ours.

We build on the Shapley Value Mechanism, which is an in-
stance of a Moulin Mechanism [24] that have been designed
for various combinatorial cost-sharing problems where the
cost of servicing a set of players is determined by solving a
offline combinatorial optimization problem defined by the
set [28]. We design Moulin mechanisms in an online setting.

Online mechanisms [27, Ch. 16] consider games where
not all valuations are known simultaneously. While there
is work on characterizing truthful mechanisms to maximize
social utility in dynamic games [27, Theorem 16.17], to the
best of our knowledge, there is no work that applies to cost-
sharing in dynamic games.

8. CONCLUSIONS
We studied how a cloud data service provider should ac-

tivate and price optimizations that benefit many users. We
have shown how the problem can be modeled as an instance
of cost-recovery mechanism design. We also showed how
the Shapley Value mechanism solves the problem of pricing
a single optimization in an offline game. We then developed
a series of mechanisms that enable the pricing of either ad-
ditive or substitutive optimizations in either an offline or an
online game. We proved analytically that our mechanisms
are truthful and cost-recovering. Through simulations, we
demonstrated that our mechanisms also yield high utility
compared with the state-of-the-art approach based on re-
gret accumulation.

9. REFERENCES
[1] Cosmo benchmark.

http://nuage.cs.washington.edu/benchmark/astro-nbody/.

[2] D. Abramson, R. Buuya, and J. Giddy. A computational
economy for grid computing and its implementation in the
Nimrod-G resource broker. Future Generation Computer
Systems, 18(8), Oct. 2002.

[3] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and
R. Ramakrishnan. Asynchronous view maintenance for vlsd
databases. In Proc. of the SIGMOD Conf., pages 179–192,
2009.

[4] Amazon Web Services (AWS). http://aws.amazon.com.

[5] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce/.

[6] Amazon Relational Database Service (RDS).
http://www.amazon.com/rds/.

[7] Amazon S3: Requester Pays Buckets.
http://docs.amazonwebservices.com/AmazonS3/latest/dev/
index.html?RequesterPaysBuckets.html.

[8] Amazon Simple Storage Service (Amazon S3).
http://www.amazon.com/gp/browse.html?node=16427261.

[9] Amazon SimpleDB. http://www.amazon.com/simpledb/.

[10] Windows Azure Platform.
http://www.microsoft.com/windowsazure/.

[11] Windows Azure Storage Services REST API Ref.
http://msdn.microsoft.com/en-us/library/dd179355.aspx.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based load management in federated distributed
systems. In Proc. of the First NSDI Symp., Mar. 2004.

[13] Buuya et. al. Economic models for management of resources in
peer-to-peer and grid computing. In Proc of SPIE, Aug. 2001.

[14] B. N. Chun. Market-Based Cluster Resource Management.
PhD thesis, University of California at Berkeley, 2001.

[15] D. Dash, V. Kantere, and A. Ailamaki. An economic model for
self-tuned cloud caching. In Proc. of the 25th ICDE Conf.,
pages 1687–1693, 2009.

[16] D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini.
Economic models for allocating resources in computer systems.
In S. H. Clearwater, editor, Market based Control of
Distributed Systems. World Scientist, Jan. 1996.

[17] Gonzalez et al. Google fusion tables: data management,
integration and collaboration in the cloud. In Proc. of SOCC,
pages 175–180, 2010.

[18] Google App Engine. http://code.google.com/appengine/.

[19] Google App Engine Datastore.
http://code.google.com/appengine/docs/datastore/.

[20] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki. Predicting
cost amortization for query services. In Proc. of the SIGMOD
Conf., 2011.

[21] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
Shopping for a cloud made easy. In Proc. of HotCloud’10, 2010.

[22] Microsoft SQL Azure.
http://www.microsoft.com/windowsazure/sqlazure/.

[23] Microsoft SQL Azure Prices.
"http://www.microsoft.com/windowsazure/offers/popup/popup.
a\spx?lang=en&locale=en-us&offer=MS-AZR-0003P".

[24] H. Moulin and S. Shenker. Strategyproof sharing of submodular
costs:budget balance versus efficiency. Economic Theory,
18(3):511–533, 2001.

[25] C. Ng, D. C. Parkes, and M. Seltzer. Strategyproof computing:
Systems infrastructures for self-interested parties. In Proc. of
P2PECON Workshop, June 2003.

[26] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resources. In Proc of IPTPS Workshop,
Feb. 2003.

[27] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani.
Algorithmic Game Theory. Cambridge University Press, New
York, NY, USA, 2007.

[28] M. Pal and E. Tardos. Group strategyproof mechanisms via
primal-dual algorithms. In In Proceedings of the 44th Annual
Symposium on Foundations of Computer Science (FOCS,
pages 584–593, 2003.

[29] D. C. Parkes. Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency. PhD thesis,
Department of Computer and Information Science, University
of Pennsylvania, May 2001.

[30] J.-A. Quiané-Ruiz, P. Lamarre, S. Cazalens, and P. Valduriez.
Managing virtual money for satisfaction and scale up in p2p
systems. In Proc. of DaMaP Workshop, pages 67–74, 2008.

[31] Salesforce. http://www.salesforce.com/.

[32] T. Sandholm. An implementation of the contract net protocol
based on marginal cost calculations. In Proc. of the 12th
International Workshop on Distributed Artificial Intelligence,
pages 295–308, 1993.

[33] Stonebraker et al. Mariposa: a wide-area distributed database
system. VLDB Journal, 5(1):048–063, 1996.

[34] P. B. Teregowda, B. Urgaonkar, and C. L. Giles. Implications
of moving to the cloud: A digital libraries perspective. In Proc.
of HotCloud’10, 2010.

[35] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos,
D. Paparas, and A. Delis. Flexible use of cloud resources
through profit maximization and price discrimination. In Proc.
of the 27th ICDE Conf., 2011.

[36] Upadhyaya et. al. How to price shared optimizations in the
cloud. Technical report, UW, 2011.

[37] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA:
A secure economic framework for peer-to-peer resource sharing.
In Proc. of P2PECON Workshop, June 2003.

[38] Waldspurger et al. Spawn: A distributed computational
economy. IEEE Trans. on Software Engineering,
SE-18(2):103–117, Feb. 1992.

[39] Wang et al. Distributed systems meet economics: Pricing in the
cloud. In Proc. of HotCloud’10, 2010.

12


