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Problem 1

By Theorem 2.8 from Hartline (its version was also discussed in class), an easy way to
demostrate the truthfulness of the given mechanism was to show that

• The allocation rule is monotonic.

• The winners pay the threshold bid.

To show monotonicity, consider player i and fix the bids of others. There always exists the
largest number k s.t. if bid bi ≥ 1000

k then there is a total of k players bidding 1000
k or above.

For any bi <
1000
k player i loses, and for any bi ≥ 1000

k he wins. Thus, the allocation rule is
monotonic.

To show that winners pay the threshold bid, observe from the argument above that the
threshold bid for each player is exactly 1000

k — bidding less guarantees loss and bidding at least
that amount guarantees win.

Many people tried showing directly on a case-by-case basis that truth-telling is a dominant
strategy. Proofs of this type tend to be much more complicated and error-prone, and very few
of those who chose this approach for this problem got the proof entirely right.

Problem 2

• a) WLOG, assume v1 < v2. Since only one player can win, an upper bound on the total
payoff for the colluding players is v2. It can be achieved if player 2 wins and pays nothing.
For this to happen, player 1 should bid 0 and player 2 can bid anything above 0. (If
v1 = v2, one of the players should bid 0 and the other can bid anything.)

• b) The presence of player 3 changes the strategy slightly. Now player 2 should bid truth-
fully, i.e. bid v2, while player 1 should still bid 0. To see that this is a BNE strategy for
them, note that given this strategy of players 1 and 2, player 3 will want to bid truthfully
and consider two cases. First, suppose v3 > v2. Then player 2 doesn’t want to out-
bid player 3, who is playing truthfully, so player 2 shouldn’t overbid. Her underbidding
doesn’t change the colluders’ total expected payoff in this case. Similarly, Player 1 doesn’t
want to overbid, and his underbidding doesn’t help the colluders’ cause either. Second,
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suppose v3 ≤ v2. Then player 2 wants to outbid player 3. Bidding truthfully achieves that,
underbidding may lead to loss, and overbidding doesn’t help. At the same time, player 2
also wants to pay as little as possible. For any v3 < v2, player 2 pays max{b1, b3 = v3},
so player 1 bidding more than 0 may lead to a suboptimal payoff for the colluders. Thus,
the colluders don’t want to deviate from the above strategy.

Problem 3

Again using Theorem 2.8 from Hartline, it is enough to show that the allocation rule of the
described auction isn’t monotone non-decreasing. It isn’t, since if everyone bids truthfully, for a
given player, having the second-highest valuation leads to a win, but having a higher valuation
may result in outbidding everyone and lead to a loss.

As for Problem 1, several people attempted to give a direct proof. Here it is even harder to
do correctly than in Problem 1, since the payment rule isn’t known, and without making some
assumptions about the payment rule one can’t say much about players’ payoffs in case they
deviate. Unfortunately, everyone who tried a direct proof made some such assumptions, which
made the proof invalid.

Additional Problem 1

As a consequence of the Revenue Equivalence Theorem, each player with valuation vi in the
all-pay auction will make the same expected payment as a player with the same valuation in
a sealed-bid first- or second-price auction. In either of these auctions for 3 players, player i’s
expected payment is 2

3v
3
i (for n players it’s n−1

n vni ). In an all-pay auction, players pay their
bids, so it’s natural to guess that each player i with valuation vi bidding 2

3v
3
i is a BNE strategy.

Note, however — so far this is just a guess; we need to actually prove that this is indeed a BNE.
One way to do it is to show, by Theorem 2.7 from Hartline, that the allocation rule un-

der this strategy is monotone non-decreasing and the the payment for each player obeys the
formula p(vi) = vixi(vi) −

∫ vi
0 xi(z)dz. To show monotonicity, observe that if everyone bids

2
3v

3
i , the player with the highest valuation wins. To show the payment identity, WLOG as-

sume we are analyzing the game from the point of view of player 1 and observe that x1(v1) =
Pr[player 1 outbids the other two] = Pr[23v

3
1 >

2
3v

3
2 ∧ 2

3v
3
1 >

2
3v

3
3] = Pr[v1 > v2 ∧ v1 > v3] =

Pr[v1 > v2]·Pr[v1 > v3] = v21. Therefore, v1x1(v1)−
∫ v1
0 x1(z)dz = v31−

∫ v1
0 z2dz = v31−

v31
3 = 2

3v
3
1,

which is exactly the payment under our guessed strategy.
Another, about equally easy way to show that the guessed strategy is a BNE is to show that

the expected utility of each player is maximized if he bids bi = 2
3v

3
i , assuming others stick to this

strategy. To do so, we need to solve for b1 that maximizes E[u1] = Pr[player 1 outbids the other two]·
v1 − b1 = Pr[b1 >

2
3v

3
2] · Pr[b1 > 2

3v
3
3] · v1 − b1 = Pr[(32b1)

1
3 > v2] · Pr[(32b1)

1
3 > v3] · v1 − b1 =
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(32b1)
2
3 v1 − b1. Differentiating, setting to 0, and solving for b1 yields b1 = 2

3v
3
1, as we guessed.

Additional Problem 2

The solution below assumes we are dealing with a digital-goods setting, since its analysis is
slightly harder/more interesting than that of a single-item setting. A fully correct solution for
a single-item setting would get full credit though.

• a) To maximize auctioneer’s profit, we run the optimal Myerson’s mechanism, which
maximizes the virtual surplus. That is, we find the virtual surplus of each market m,
Φm =

∑
im

max{φm(bim), 0}, where im ranges over players in market m, and bim are
players’ bids in that market, and sell in the market with the bigger Φm. In that market,
we allocate to everyone with a non-negative virtual valuation, i.e. with φm(bi) ≥ 0. We
charge each winning player the threshold bid, but the threshold bid here is subtle, since
we have two markets, and players of one market are aware of players in the other market.
Therefore, we charge each winning player the lowest bid he could place that makes sure
that both his market m wins and that he wins in that market. I.e., we charge each winner
max{φ−1

m (0), φ−1
m (φm(bi)− (max{Φ1,Φ2} −min{Φ1,Φ2}))}, and charge losers nothing.

• b) To maximize social welfare, we sell to everyone in the market with the greatest sum of
bids. Again, each winner is charged his threshold bid, which in this case is the amount he
would have to bid to ensure his market wins. Letting Bm be the sum of bids in market
m and bi be the bid of player i in the winning market, the payment of each player i in
the winning market is max{bi − (max{B1, B2} −min{B1, B2}), 0}. Players in this losing
market don’t pay anything.

• c) In the profit-maximization setting, we first compute the virtual valuation function φm(z)
for each market. The general form for an exponential distribution is φm(z) = z− 1

λ ; thus,
for λ = 1 it is φm(z) = z − 1 and for λ = 2 it is φm(z) = z − 1

2 . Using these formulas
and the allocation rule from part a), we get Φ1 = 5.5 and Φ2 = 5.6, so we should
sell in the λ = 2 market. There, we allocate to the players who bid 1 and 5.6. We
charge the one who bid 1 max{φ−1

2 (0), φ−1
2 (0.5 − 0.1)} = 0.9 and the one who bid 5.6

max{φ−1
2 (0), φ−1

2 (5.1 − 0.1)} = 5.5. The player who bid 0.3 doesn’t get allocated and
doesn’t pay anything.

In the social welfare-maximization, the sums of bids is 7.7 and 6.9 respectively, so we
allocate to everyone in the λ = 1 market. The player bidding 0.2 doesn’t pay anything,
the one bidding 1.5 pays 1.5− 0.8 = 0.7, and the one bidding 6 pays 6− 0.8 = 5.2.
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