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Introduction

In this course on game theory, we will be studying a range of mathematical

models of conflict and cooperation between two or more agents. Here, we

outline the content of this course, giving examples.

We will first look at combinatorial games, in which two players take

turns making moves until a winning position for one of the players is reached.

The solution concept for this type of game is a winning strategy — a

collection of moves for one of the players, one for each possible situation,

that guarantees his victory.

A classic example of a combinatorial game is Nim. In Nim, there are

several piles of chips, and the players take turns choosing a pile and removing

one or more chips from it. The goal for each player is to take the last chip.

We will describe a winning strategy for Nim and show that a large class of

combinatorial games are essentially similar to it.

Chess and Go are examples of popular combinatorial games that are fa-

mously difficult to analyze. We will restrict our attention to simpler exam-

ples, such as the game of Hex, which was invented by Danish mathemati-

cian, Piet Hein, and independently by the famous game theorist John Nash,

while he was a graduate student at Princeton. Hex is played on a rhom-

bus shaped board tiled with small hexagons (see Figure 0.1). Two players,

Blue and Yellow, alternate coloring in hexagons in their assigned color, blue

or yellow, one hexagon per turn. The goal for Blue is to produce a blue

chain crossing between his two sides of the board. The goal for Yellow is to

produce a yellow chain connecting the other two sides.

As we will see, it is possible to prove that the player who moves first can

always win. Finding the winning strategy, however, remains an unsolved

problem, except when the size of the board is small.

In an interesting variant of the game, the players, instead of alternating

turns, toss a coin to determine who moves next. In this case, we are able

1



2 Introduction

Fig. 0.1. The board for the game of Hex.

to give an explicit description of the optimal strategies of the players. Such

random-turn combinatorial games are the subject of Chapter 8.

Next, we will turn our attention to games of chance, in which both play-

ers move simultaneously. In two-person zero-sum games, each player

benefits only at the expense of the other. We will show how to find optimal

strategies for each player. These strategies will typically turn out to be a

randomized choice of the available options.

In Penalty Kicks, a soccer/football-inspired zero-sum game, one player,

the penalty-taker, chooses to kick the ball either to the left or to the right

of the other player, the goal-keeper. At the same instant as the kick, the

goal-keeper guesses whether to dive left or right.

Fig. 0.2. The game of Penalty Kicks.

The goal-keeper has a chance of saving the goal if he dives in the same

direction as the kick. The penalty-taker, being left-footed, has a greater

likelihood of success if he kicks left. The probabilities that the penalty kick

scores are displayed in the table below:
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For this set of scoring probabilities, the optimal strategy for the penalty-

taker is to kick left with probability 5/7 and kick right with probability 2/7

— then regardless of what the goal-keeper does, the probability of scoring is

6/7. Similarly, the optimal strategy for the goal-keeper is to dive left with

probability 5/7 and dive right with probability 2/7.

In general-sum games, the topic of Chapter 3, we no longer have op-

timal strategies. Nevertheless, there is still a notion of a “rational choice”

for the players. A Nash equilibrium is a set of strategies, one for each

player, with the property that no player can gain by unilaterally changing

his strategy.

It turns out that every general-sum game has at least one Nash equi-

librium. The proof of this fact requires an important geometric tool, the

Brouwer fixed-point theorem.

One interesting class of general-sum games, important in computer sci-

ence, is that of congestion games. In a congestion game, there are two

drivers, I and II, who must navigate as quickly as possible through a con-

gested network of roads. Driver I must travel from city B to city D, and

driver II, from city A to city C.

(3,5) (2,4)

B C

(1,2)

(3,4)

A D

Fig. 0.3. A congestion game. Shown here are the commute times for the
four roads connecting four cities. For each road, the first number is the
commute time when only one driver uses the road, the second number is
the commute time when two drivers use the road.

The travel time for using a road is less when the road is less congested.

In the ordered pair (t1, t2) attached to each road in the diagram below,

t1 represents the travel time when only one driver uses the road, and t2
represents the travel time when the road is shared. For example, if drivers I

and II both use road AB, with I traveling from A to B and II from B to A,
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then each must wait 5 units of time. If only one driver uses the road, then

it takes only 3 units of time.

A development of the last twenty years is the application of general-sum

game theory to evolutionary biology. In economic applications, it is often

assumed that the agents are acting “rationally,” which can be a hazardous

assumption in many economic applications. In some biological applications,

however, Nash equilibria arise as stable points of evolutionary systems com-

posed of agents who are “just doing their own thing.” There is no need for

a notion of rationality.

Another interesting topic is that of signaling. If one player has some

information that another does not, that may be to his advantage. But if he

plays differently, might he give away what he knows, thereby removing this

advantage?

The topic of Chapter 4 is cooperative game theory, in which players

form coalitions to work toward a common goal.

As an example, suppose that three people are selling their wares in a

market. Two are each selling a single, left-handed glove, while the third is

selling a right-handed one. A wealthy tourist enters the store in dire need

of a pair of gloves. She refuses to deal with the glove-bearers individually,

so that it becomes their job to form coalitions to make a sale of a left-

and right-handed glove to her. The third player has an advantage, because

his commodity is in scarcer supply. This means that he should be able to

obtain a higher fraction of the payment that the tourist makes than either

of the other players. However, if he holds out for too high a fraction of

the earnings, the other players may agree between them to refuse to deal

with him at all, blocking any sale, and thereby risking his earnings. Finding

a solution for such a game involves a mathematical concept known as the

Shapley value.

Another major topic within game theory, the topic of Chapter 5, is mech-

anism design, the study of how to design a market or scheme that achieves

an optimal social outcome when the participating agents act selfishly.

An example is the problem of fairly sharing a resource. Consider the

problem of a pizza with several different toppings, each distributed over

portions of the pizza. The game has two or more players, each of whom

prefers certain toppings. If there are just two players, there is a well-known

mechanism for dividing the pizza: One splits it into two sections, and the

other chooses which section he would like to take. Under this system, each

player is at least as happy with what he receives as he would be with the

other player’s share.
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What if there are three or more players? We will study this question, as

well as an interesting variant of it.

Some of the mathematical results in mechanism design are negative, im-

plying that optimal design is not attainable. For example, a famous theorem

by Arrow on voting schemes (the topic of Chapter 6) states, more or less,

that if there is an election with more than two candidates, then no matter

which system one chooses to use for voting, there is trouble ahead: at least

one desirable property that we might wish for the election will be violated.

Another focus of mechanism design is on eliciting truth in auctions. In

a standard, sealed-bid auction, there is always a temptation for bidders to

bid less than their true value for an item. For example, if an item is worth

$100 to a bidder, then he has no motive to bid more, or even that much,

because by exchanging $100 dollars for an item of equal value, he has not

gained anything. The second-price auction is an attempt to overcome this

flaw: in this scheme, the lot goes to the highest bidder, but at the price

offered by the second-highest bidder. In a second-price auction, as we will

show, it is in the interests of bidders to bid their true value for an item, but

the mechanism has other shortcomings. The problem of eliciting truth is

relevant to the bandwidth auctions held by governments.

In the realm of social choice is the problem of finding stable matchings,

the topic of Chapter 7. Suppose that there are n men and n women, each

man has a sorted list of the women he prefers, and each woman has a sorted

list of the men that she prefers. A matching between them is stable if

there is no man and woman who both prefer one another to their partners

in the matching. Gale and Shapley showed that there always is a stable

matching, and showed how to find one. Stable matchings generalize to

stable assignments, and these are found by centralized clearinghouses for

markets, such as the National Resident Matching Program which each year

matches about 20,000 new doctors to residency programs at hospitals.

Game theory and mechanism design remain an active area of research,

and our goal is whet the reader’s appetite by introducing some of its many

facets.
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Combinatorial games

In this chapter, we will look at combinatorial games, a class of games

that includes some popular two-player board games such as Nim and Hex,

discussed in the introduction. In a combinatorial game, there are two play-

ers, a set of positions, and a set of legal moves between positions. Some of

the positions are terminal. The players take turns moving from position to

position. The goal for each is to reach the terminal position that is winning

for that player. Combinatorial games generally fall into two categories:

Those for which the winning positions and the available moves are the

same for both players are called impartial. The player who first reaches

one of the terminal positions wins the game. We will see that all such games

are related to Nim.

All other games are called partisan. In such games the available moves,

as well as the winning positions, may differ for the two players. In addition,

some partisan games may terminate in a tie, a position in which neither

player wins decisively.

Some combinatorial games, both partisan and impartial, can also be

drawn or go on forever.

For a given combinatorial game, our goal will be to find out whether one

of the players can always force a win, and if so, to determine the winning

strategy — the moves this player should make under every contingency.

Since this is extremely difficult in most cases, we will restrict our attention

to relatively simple games.

In particular, we will concentrate on the combinatorial games that termi-

nate in a finite number of steps. Hex is one example of such a game, since

each position has finitely many uncolored hexagons. Nim is another exam-

ple, since there are finitely many chips. This class of games is important

enough to merit a definition:

6
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Definition 1.0.1. A combinatorial game with a position set X is said to

be progressively bounded if, starting from any position x ∈ X, the game

must terminate after a finite number B(x) of moves.

Here B(x) is an upper bound on the number of steps it takes to play a

game to completion. It may be that an actual game takes fewer steps.

Note that, in principle, Chess, Checkers and Go need not terminate in a fi-

nite number of steps since positions may recur cyclically; however, in each of

these games there are special rules that make them effectively progressively

bounded games.

We will show that in a progressively bounded combinatorial game that

cannot terminate in a tie, one of the players has a winning strategy. For

many games, we will be able to identify that player, but not necessarily the

strategy. Moreover, for all progressively bounded impartial combinatorial

games, the Sprague-Grundy theory developed in section 1.1.3 will reduce the

process of finding such a strategy to computing a certain recursive function.

We begin with impartial games.

1.1 Impartial games

Before we give formal definitions, let’s look at a simple example:

Example 1.1.1 (A Subtraction game). Starting with a pile of x ∈ N
chips, two players alternate taking one to four chips. The player who removes

the last chip wins.

Observe that starting from any x ∈ N, this game is progressively bounded

with B(x) = x.

If the game starts with 4 or fewer chips, the first player has a winning

move: he just removes them all. If there are five chips to start with, however,

the second player will be left with between one and four chips, regardless of

what the first player does.

What about 6 chips? This is again a winning position for the first player

because if he removes one chip, the second player is left in the losing position

of 5 chips. The same is true for 7, 8, or 9 chips. With 10 chips, however,

the second player again can guarantee that he will win.

Let’s make the following definition:

N =

{
x ∈ N :

the first (“next”) player can ensure a win

if there are x chips at the start

}
,

P =

{
x ∈ N :

the second (“previous”) player can ensure a win
if there are x chips at the start

}
.
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So far, we have seen that {1, 2, 3, 4, 6, 7, 8, 9} ⊆ N, and {0, 5} ⊆ P. Continu-

ing with our line of reasoning, we find that P = {x ∈ N : x is divisible by five}
and N = N \P.

The approach that we used to analyze the Subtraction game can be ex-

tended to other impartial games. To do this we will need to develop a formal

framework.

Definition 1.1.1. An impartial combinatorial game has two players,

and a set of possible positions. To make a move is to take the game from one

position to another. More formally, a move is an ordered pair of positions. A

terminal position is one from which there are no legal moves. For every non-

terminal position, there is a set of legal moves, the same for both players.

Under normal play, the player who moves to a terminal position wins.

We can think of the game positions as nodes and the moves as directed

links. Such a collection of nodes (vertices) and links (edges) between them

is called a graph. If the moves are reversible, the edges can be taken as

undirected. At the start of the game, a token is placed at the node corre-

sponding to the initial position. Subsequently, players take turns placing the

token on one of the neighboring nodes until one of them reaches a terminal

node and is declared the winner.

With this definition, it is clear that the Subtraction game is an impartial

game under normal play. The only terminal position is x = 0. Figure 1.1

gives a directed graph corresponding to the Subtraction game with initial

position x = 14.

14136 127 1184 93

5

2

10

1

0

Fig. 1.1. Moves in the Subtraction game. Positions in N are marked in red
and those in P, in black.

We saw that starting from a position x ∈ N, the next player to move can

force a win by moving to one of the elements in P = {5n : n ∈ N}, namely

5bx/5c.
Let’s make a formal definition:

Definition 1.1.2. A (memoryless) strategy for a player is a function that

assigns a legal move to each non-terminal position. A winning strategy
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from a position x is a strategy that, starting from x, is guaranteed to result

in a win for that player in a finite number of steps.

We say that the strategy is memoryless because it does not depend on the

history of the game, i.e., the previous moves that led to the current game

position. For games which are not progressively bounded, where the game

might never end, the players may need to consider more general strategies

that depend on the history in order to force the game to end. But for games

that are progressively bounded, this is not an issue, since as we will see, one

of the players will have a winning memoryless strategy.

We can extend the notions of N and P to any impartial game.

Definition 1.1.3. For any impartial combinatorial game, we define N (for

“next”) to be the set of positions such that the first player to move can

guarantee a win. The set of positions for which every move leads to an

N-position is denoted by P (for “previous”), since the player who can force

a P-position can guarantee a win.

In the Subtraction game, N = N ∪P, and we were easily able to specify

a winning strategy. This holds more generally: If the set of positions in an

impartial combinatorial game equals N ∪ P, then from any initial position

one of the players must have a winning strategy. If the starting position is

in N, then the first player has such a strategy, otherwise, the second player

does.

In principle, for any progressively bounded impartial game it is possible,

working recursively from the terminal positions, to label every position as

either belonging to N or to P. Hence, starting from any position, a winning

strategy for one of the players can be determined. This, however, may be

algorithmically hard when the graph is large. In fact, a similar statement

also holds for progressively bounded partisan games. We will see this in

§ 1.2.

We get a recursive characterization of N and P under normal play by

letting Ni and Pi be the positions from which the first and second players

respectively can win within i ≥ 0 moves:

N0 = ∅
P0 = { terminal positions }

Ni+1 = { positions x for which there is a move leading to Pi }
Pi+1 = { positions y such that each move leads to Ni }
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N =
⋃
i≥0

Ni, P =
⋃
i≥0

Pi.

Notice that P0 ⊆ P1 ⊆ P2 ⊆ · · · and N0 ⊆ N1 ⊆ N2 ⊆ · · · .
In the Subtraction game, we have

N0 = ∅ P0 = {0}
N1 = {1, 2, 3, 4} P1 = {0, 5}
N2 = {1, 2, 3, 4, 6, 7, 8, 9} P2 = {0, 5, 10}

...
...

N = Nr 5N P = 5N

Let’s consider another impartial game that has some interesting proper-

ties. The game of Chomp was invented in the 1970’s by David Gale, now a

professor emeritus of mathematics at the University of California, Berkeley.

Example 1.1.2 (Chomp). In Chomp, two players take turns biting off a

chunk of a rectangular bar of chocolate that is divided into squares. The

bottom left corner of the bar has been removed and replaced with a broccoli

floret. Each player, in his turn, chooses an uneaten chocolate square and

removes it along with all the squares that lie above and to the right of it.

The person who bites off the last piece of chocolate wins and the loser has

to eat the broccoli.

Fig. 1.2. Two moves in a game of Chomp.

In Chomp, the terminal position is when all the chocolate is gone.

The graph for a small (2 × 3) bar can easily be constructed and N and

P (and therefore a winning strategy) identified, see Figure 1.3. However, as

the size of the bar increases, the graph becomes very large and a winning

strategy difficult to find.

Next we will formally prove that every progressively bounded impartial

game has a winning strategy for one of the players.
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N

P

N

N

N

N

N

P

P

Fig. 1.3. Every move from a P-position leads to an N-position (bold black
links); from every N-position there is at least one move to a P-position
(red links).

Theorem 1.1.1. In a progressively bounded impartial combinatorial game

under normal play, all positions x lie in N ∪P.

Proof. We proceed by induction on B(x), where B(x) is the maximum num-

ber of moves that a game from x might last (not just an upper bound).

Certainly, for all x such that B(x) = 0, we have that x ∈ P0 ⊆ P. Assume

the theorem is true for those positions x for which B(x) ≤ n, and consider

any position z satisfying B(z) = n + 1. Any move from z will take us to a

position in N ∪P by the inductive hypothesis.

There are two cases:

Case 1: Each move from z leads to a position in N. Then z ∈ Pn+1 by

definition, and thus z ∈ P.

Case 2: If it is not the case that every move from z leads to a position

in N, it must be that there is a move from z to some Pn-position. In this

case, by definition, z ∈ Nn+1 ⊆ N.

Hence, all positions lie in N ∪P.

Now, we have the tools to analyze Chomp. Recall that a legal move (for

either player) in Chomp consists of identifying a square of chocolate and

removing that square as well as all the squares above and to the right of it.

There is only one terminal position where all the chocolate is gone and only

broccoli remains.
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Chomp is progressively bounded because we start with a finite number

of squares and remove at least one in each turn. Thus, the above theorem

implies that one of the players must have a winning strategy.

We will show that it’s the first player that does. In fact, we will show

something stronger: that starting from any position in which the remaining

chocolate is rectangular, the next player to move can guarantee a win. The

idea behind the proof is that of strategy-stealing. This is a general technique

that we will use frequently throughout the chapter.

Theorem 1.1.2. Starting from a position in which the remaining chocolate

bar is rectangular of size greater than 1 × 1, the next player to move has a

winning strategy.

Proof. Given a rectangular bar of chocolate R of size greater than 1× 1, let

R− be the result of chomping off the upper-right corner of R.

If R− ∈ P, then R ∈ N, and a winning move is to chomp off the upper-

right corner.

If R− ∈ N, then there is a move from R− to some position S in P. But if

we can chomp R− to get S, then chomping R in the same way will also give

S, since the upper-right corner will be removed by any such chomp. Since

there is a move from R to the position S in P, it follows that R ∈ N.

Note that the proof does not show that chomping the upper-right hand

corner is a winning move. In the 2 × 3 case, chomping the upper-right

corner happens to be a winning move (since this leads to a move in P,

see Figure 1.3), but for the 3 × 3 case, chomping the upper-right corner is

not a winning move. The strategy-stealing argument merely shows that a

winning strategy for the first player must exist; it does not help us identify

the strategy. In fact, it is an open research problem to describe a general

winning strategy for Chomp.

Next we analyze the game of Nim, a particularly important progressively

bounded impartial game.

1.1.1 Nim and Bouton’s solution

Recall the game of Nim from the Introduction.

Example 1.1.3 (Nim). In Nim, there are several piles, each containing

finitely many chips. A legal move is to remove any number of chips from a

single pile. Two players alternate turns with the aim of removing the last

chip. Thus, the terminal position is the one where there are no chips left.
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Because Nim is progressively bounded, all the positions are in N or P,

and one of the players has a winning strategy. We will be able to describe

the winning strategy explicitly. We will see in section 1.1.3 that any progres-

sively bounded impartial game is equivalent to a single Nim pile of a certain

size. Hence, if the size of such a Nim pile can be determined, a winning

strategy for the game can also be constructed explicitly.

As usual, we will analyze the game by working backwards from the termi-

nal positions. We denote a position in the game by (n1, n2, . . . , nk), meaning

that there are k piles of chips, and that the first has n1 chips in it, the second

has n2, and so on.

Certainly (0, 1) and (1, 0) are in N. On the other hand, (1, 1) ∈ P be-

cause either of the two available moves leads to (0, 1) or (1, 0). We see that

(1, 2), (2, 1) ∈ N because the next player can create the position (1, 1) ∈ P.

More generally, (n, n) ∈ P for n ∈ N and (n,m) ∈ N if n,m ∈ N are not

equal.

Moving to three piles, we see that (1, 2, 3) ∈ P, because whichever move

the first player makes, the second can force two piles of equal size. It follows

that (1, 2, 3, 4) ∈ N because the next player to move can remove the fourth

pile.

To analyze (1, 2, 3, 4, 5), we will need the following lemma:

Lemma 1.1.1. For two Nim positions X = (x1, . . . , xk) and Y = (y1, . . . , y`),

we denote the position (x1, . . . , xk, y1, . . . , y`) by (X,Y ).

(i) If X and Y are in P, then (X,Y ) ∈ P.

(ii) If X ∈ P and Y ∈ N (or vice versa), then (X,Y ) ∈ N.

(iii) If X,Y ∈ N, however, then (X,Y ) can be either in P or in N.

Proof. If (X,Y ) has 0 chips, then X, Y , and (X,Y ) are all P-positions, so

the lemma is true in this case.

Next, we suppose by induction that whenever (X,Y ) has n or fewer chips,

X ∈ P and Y ∈ P implies (X,Y ) ∈ P

and

X ∈ P and Y ∈ N implies (X,Y ) ∈ N.

Suppose (X,Y ) has at most n+ 1 chips.

If X ∈ P and Y ∈ N, then the next player to move can reduce Y to a

position in P, creating a P-P configuration with at most n chips, so by the

inductive hypothesis it must be in P. It follows that (X,Y ) is in N.

If X ∈ P and Y ∈ P, then the next player to move must takes chips from

one of the piles (assume the pile is in Y without loss of generality). But



14 Combinatorial games

moving Y from P-position always results in a N-position, so the resulting

game is in a P-N position with at most n chips, which by the inductive

hypothesis is an N position. It follows that (X,Y ) must be in P.

For the final part of the lemma, note that any single pile is in N, yet, as

we saw above, (1, 1) ∈ P while (1, 2) ∈ N.

Going back to our example, (1, 2, 3, 4, 5) can be divided into two sub-

games: (1, 2, 3) ∈ P and (4, 5) ∈ N. By the lemma, we can conclude that

(1, 2, 3, 4, 5) is in N.

The divide-and-sum method (using Lemma 1.1.1) is useful for analyzing

Nim positions, but it doesn’t immediately determine whether a given posi-

tion is in N or P. The following ingenious theorem, proved in 1901 by a

Harvard mathematics professor named Charles Bouton, gives a simple and

general characterization of N and P for Nim. Before we state the theorem,

we will need a definition.

Definition 1.1.4. The Nim-sum of m,n ∈ N is the following operation:

Write m and n in binary form, and sum the digits in each column modulo 2.

The resulting number, which is expressed in binary, is the Nim-sum of m

and n. We denote the Nim-sum of m and n by m⊕ n.

Equivalently, the Nim-sum of a collection of values (m1,m2, . . . ,mk) is

the sum of all the powers of 2 that occurred an odd number of times when

each of the numbers mi is written as a sum of powers of 2.

If m1 = 3, m2 = 9, m3 = 13, in powers of 2 we have:

m1 = 0× 23 + 0× 22 + 1× 21 + 1× 20

m2 = 1× 23 + 0× 22 + 0× 21 + 1× 20

m3 = 1× 23 + 1× 22 + 0× 21 + 1× 20.

The powers of 2 that appear an odd number of times are 20 = 1, 21 = 2,

and 22 = 4, so m1 ⊕m2 ⊕m3 = 1 + 2 + 4 = 7.

We can compute the Nim-sum efficiently by using binary notation:

decimal binary

3 0 0 1 1

9 1 0 0 1

13 1 1 0 1

7 0 1 1 1

Theorem 1.1.3 (Bouton’s Theorem). A Nim position x = (x1, x2, . . . , xk)

is in P if and only if the Nim-sum of its components is 0.

To illustrate the theorem, consider the starting position (1, 2, 3):
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decimal binary

1 0 1

2 1 0

3 1 1

0 0 0

Summing the two columns of the binary expansions modulo two, we obtain

00. The theorem affirms that (1, 2, 3) ∈ P. Now, we prove Bouton’s theorem.

Proof of Theorem 1.1.3. Define Z to be those positions with Nim-sum zero.

Suppose that x = (x1, . . . , xk) ∈ Z, i.e., x1 ⊕ · · · ⊕ xk = 0. Maybe there

are no chips left, but if there are some left, suppose that we remove some

chips from a pile `, leaving x′` < x` chips. The Nim-sum of the resulting

piles is x1⊕ · · · ⊕ x`−1⊕ x′`⊕ x`+1⊕ · · · ⊕ xk = x′`⊕ x` 6= 0. Thus any move

from a position in Z leads to a position not in Z.

Suppose that x = (x1, x2, . . . , xk) /∈ Z. Let s = x1 ⊕ · · · ⊕ xk 6= 0.

There are an odd number of values of i ∈ {1, . . . , k} for which the binary

expression for xi has a 1 in the position of the left-most 1 in the expression

for s. Choose one such i. Note that xi⊕s < xi, because xi⊕s has no 1 in this

left-most position, and so is less than any number whose binary expression

does. Consider the move in which a player removes xi−xi⊕s chips from the

ith pile. This changes xi to xi ⊕ s. The Nim-sum of the resulting position

(x1, . . . , xi−1, xi ⊕ s, xi+1, . . . , xk) = 0, so this new position lies in Z. Thus,

for any position x /∈ Z, there exists a move from x leading to a position

in Z.

For any Nim-position that is not in Z, the first player can adopt the

strategy of always moving to a position in Z. The second player, if he

has any moves, will necessarily always move to a position not in Z, always

leaving the first player with a move to make. Thus any position that is not

in Z is an N-position. Similarly, if the game starts in a position in Z, the

second player can guarantee a win by always moving to a position in Z when

it is his turn. Thus any position in Z is a P-position.

1.1.2 Other impartial games

Example 1.1.4 (Staircase Nim). This game is played on a staircase of n

steps. On each step j for j = 1, . . . , n is a stack of coins of size xj ≥ 0.

Each player, in his turn, moves one or more coins from a stack on a step

j and places them on the stack on step j − 1. Coins reaching the ground

(step 0) are removed from play. The game ends when all coins are on the

ground, and the last player to move wins.
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Corresponding_move_of_Nim

1

2

3

x3

x1

x3

x1

0

1

2

3

0

Fig. 1.4. A move in Staircase Nim, in which 2 coins are moved from step
3 to step 2. Considering the odd stairs only, the above move is equivalent
to the move in regular Nim from (3, 5) to (3, 3).

As it turns out, the P-positions in Staircase Nim are the positions such

that the stacks of coins on the odd-numbered steps correspond to a P-

position in Nim.

We can view moving y coins from an odd-numbered step to an even-

numbered one as corresponding to the legal move of removing y chips in

Nim. What happens when we move coins from an even numbered step to

an odd numbered one?

If a player moves z coins from an even numbered step to an odd numbered

one, his opponent may then move the coins to the next even-numbered step;

that is, she may repeat her opponent’s move at one step lower. This move

restores the Nim-sum on the odd-numbered steps to its previous value, and

ensures that such a move plays no role in the outcome of the game.

Now, we will look at another game, called Rims, which, as we will see, is

also just Nim in disguise.

Example 1.1.5 (Rims). A starting position consists of a finite number

of dots in the plane and a finite number of continuous loops that do not

intersect. Each loop may pass through any number of dots, and must pass

through at least one.

Each player, in his turn, draws a new loop that does not intersect any

other loop. The goal is to draw the last such loop.

For a given position of Rims, we can divide the dots that have no loop

through them into equivalence classes as follows: Each class consists of a
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x4

x1 x1

x2x2

x1

x2

x3 x3
x3

Fig. 1.5. Two moves in a game of Rims.

set of dots that can be reached from a particular dot via a continuous path

that does not cross any loops.

To see the connection to Nim, think of each class of dots as a pile of chips.

A loop, because it passes through at least one dot, in effect, removes at least

one chip from a pile, and splits the remaining chips into two new piles. This

last part is not consistent with the rules of Nim unless the player draws the

loop so as to leave the remaining chips in a single pile.

x4

x1

x2

x3

x1

x2

x3

x1

x2

x3

Fig. 1.6. Equivalent sequence of moves in Nim with splittings allowed.

Thus, Rims is equivalent to a variant of Nim where players have the option

of splitting a pile into two piles after removing chips from it. As the following

theorem shows, the fact that players have the option of splitting piles has

no impact on the analysis of the game.

Theorem 1.1.4. The sets N and P coincide for Nim and Rims.

Proof. Thinking of a position in Rims as a collection of piles of chips, rather

than as dots and loops, we write PNim and NNim for the P- and N-positions

for the game of Nim (these sets are described by Bouton’s theorem).

From any position in NNim, we may move to PNim by a move in Rims,

because each Nim move is legal in Rims.

Next we consider a position x ∈ PNim. Maybe there are no moves from

x, but if there are, any move reduces one of the piles, and possibly splits it

into two piles. Say the `th pile goes from x` to x′` < x`, and possibly splits

into u, v where u+ v < x`.
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Because our starting position x was a PNim-position, its Nim-sum was

x1 ⊕ · · · ⊕ x` ⊕ · · · ⊕ xk = 0.

The Nim-sum of the new position is either

x1 ⊕ · · · ⊕ x′` ⊕ · · · ⊕ xk = x` ⊕ x′` 6= 0,

(if the pile was not split), or else

x1 ⊕ · · · ⊕ (u⊕ v)⊕ · · · ⊕ xk = x` ⊕ u⊕ v.

Notice that the Nim-sum u⊕v of u and v is at most the ordinary sum u+v:

This is because the Nim-sum involves omitting certain powers of 2 from the

expression for u+ v. Hence, we have

u⊕ v ≤ u+ v < x`.

Thus, whether or not the pile is split, the Nim-sum of the resulting position

is nonzero, so any Rims move from a position in PNim is to a position in

NNim.

Thus the strategy of always moving to a position in PNim (if this is pos-

sible) will guarantee a win for a player who starts in an NNim-position, and

if a player starts in a PNim-position, this strategy will guarantee a win for

the second player. Thus NRims = NNim and PRims = PNim.

The following examples are particularly tricky variants of Nim.

Example 1.1.6 (Moore’s Nimk). This game is like Nim, except that each

player, in his turn, is allowed to remove any number of chips from at most

k of the piles.

Write the binary expansions of the pile sizes (n1, . . . , n`):

n1 = n
(m)
1 · · ·n(0)

1 =

m∑
j=0

n
(j)
1 2j ,

...

n` = n
(m)
` · · ·n(0)

` =
m∑
j=0

n
(j)
` 2j ,

where each n
(j)
i is either 0 or 1.

Theorem 1.1.5 (Moore’s Theorem). For Moore’s Nimk,

P =
{

(n1, . . . , n`) :
∑̀
i=1

n
(j)
i ≡ 0 mod (k + 1) for each j

}
.
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The notation “a ≡ b mod m” means that a − b is evenly divisible by m,

i.e., that (a− b)/m is an integer.

Proof of Theorem 1.1.5. Let Z denote the right-hand-side of the above ex-

pression. We will show that every move from a position in Z leads to a

position not in Z, and that for every position not in Z, there is a move to a

position in Z. As with ordinary Nim, it will follow that a winning strategy

is to always move to position in Z if possible, and consequently P = Z.

Take any move from a position in Z, and consider the left-most column

for which this move changes the binary expansion of at least one of the pile

numbers. Any change in this column must be from one to zero. The existing

sum of the ones and zeros (mod (k + 1)) is zero, and we are adjusting at

most k piles. Because ones are turning into zeros in this column, we are

decreasing the sum in that column and by at least 1 and at most k, so the

resulting sum in this column cannot be congruent to 0 modulo k + 1. We

have verified that no move starting from Z takes us back to Z.

We must also check that for each position x not in Z, we can find a move

to some y that is in Z. The way we find this move is a little bit tricky, and

we illustrate it in the following example:

p
il

e
si

ze
s

in
b

in
a
ry 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1

1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1

5 0 5 2 1 4 2 6 3 3 3 2 1 2 6 5

⇒

p
il

e
si

ze
s

in
b

in
ar

y 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1
1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1
1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0

5 0 5 0 0 5 0 5 5 5 0 5 0 5 5 5

Fig. 1.7. Example move in Moore’s Nim4 from a position not in Z to a
position in Z. When a row becomes activated, the bit is boxed, and active
rows are shaded. The bits in only 4 rows are changed, and the resulting
column sums are all divisible by 5.

We write the pile sizes of x in binary, and make changes to the bits so that

the sum of the bits in each column congruent to 0 modulo k + 1. For these

changes to correspond to a valid move in Moore’s Nimk, we are constrained

to change the bits in at most k rows, and for any row that we change, the

left-most bit that is changed must be a change from a 1 to a 0.

To make these changes, we scan the bits columns from the most significant

to the least significant. When we scan, we can “activate” a row if it contains

a 1 in the given column which we change to a 0, and once a row is activated,

we may change the remaining bits in the row in any fashion.
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At a given column, let a be the number of rows that have already been

activated (0 ≤ a ≤ k), and let s be the sum of the bits in the rows that

have not been activated. Let b = (s+ a) mod (k+ 1). If b ≤ a, then we can

set the bits in b of the active rows to 0 and a − b of the active rows to 1.

The new column sum is then s + a − b, which is evenly divisible by k + 1.

Otherwise, a < b ≤ k, and b − a = s mod (k + 1) ≤ s, so we may activate

b− a inactive rows that have a 1 in that column, and set the bits in all the

active rows in that column to 0. The column sum is then s− (b− a), which

is again evenly divisible by k+ 1, and the number of active rows remains at

most k. Continuing in this fashion results in a position in Z, by reducing at

most k of the piles.

Example 1.1.7 (Wythoff Nim). A position in this game consists of two

piles of sizes m and n. The legal moves are those of Nim, with one addition:

players may remove equal numbers of chips from both piles in a single move.

This extra move prevents the positions {(n, n) : n ∈ N} from being P-

positions.

This game has a very interesting structure. We can say that a position

consists of a pair (m,n) of natural numbers, such that m,n ≥ 0. A legal

move is one of the following:

Reduce m to some value between 0 and m−1 without changing m, reduc-

ing n to some value between 0 and n − 1 without changing m, or reducing

each of m and n by the same amount. The one who reaches (0, 0) is the

winner.

To analyze Wythoff Nim (and other games), we define

mex(S) = min{n ≥ 0 : n /∈ S},

for S ⊆ {0, 1, . . .} (the term “mex” stands for “minimal excluded value”).

For example, mex({0, 1, 2, 3, 5, 7, 12}) = 4. Consider the following recursive

definition of two sequences of natural numbers: For each k ≥ 0,

ak = mex({a0, a1, . . . , ak−1, b0, b1, . . . , bk−1}), and bk = ak + k.

Notice that when k = 0, we have a0 = mex({}) = 0 and b0 = a0 + 0 = 0.

The first few values of these two sequences are

k 0 1 2 3 4 5 6 7 8 9 . . .

ak 0 1 3 4 6 8 9 11 12 14 . . .

bk 0 2 5 7 10 13 15 18 20 23 . . .

(For example, a4 = mex({0, 1, 3, 4, 0, 2, 5, 7}) = 6 and b4 = a4 + 4 = 10.)
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0
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2 3 40 1

0

1
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3

2 3 40 1

Fig. 1.8. Wythoff Nim can be viewed as the following game played on a
chess board. Consider an m×n section of a chess-board. The players take
turns moving a queen, initially positioned in the upper right corner, either
left, down, or diagonally toward the lower left. The player that moves the
queen into the bottom left corner wins. If the position of the queen at
every turn is denoted by (x, y), with 1 ≤ x ≤ m, 1 ≤ y ≤ n, we see that
the game corresponds to Wythoff Nim.

Theorem 1.1.6. Each natural number greater than zero is equal to precisely

one of the ai’s or bi’s. That is, {ai}∞i=1 and {bi}∞i=1 form a partition of N∗.

Proof. First we will show, by induction on j, that {ai}ji=1 and {bi}ji=1 are

disjoint strictly increasing subsets of N∗. This is vacuously true when

j = 0, since then both sets are empty. Now suppose that {ai}j−1
i=1 is

strictly increasing and disjoint from {bi}j−1
i=1 , which, in turn, is strictly in-

creasing. By the definition of the ai’s, we have have that both aj and

aj−1 are excluded from {a0, . . . , aj−2, b0, . . . , bj−2}, but aj−1 is the small-

est such excluded value, so aj−1 ≤ aj . By the definition of aj , we also

have aj 6= aj−1 and aj /∈ {b0, . . . , bj−1}, so in fact {ai}ji=1 and {bi}j−1
i=1 are

disjoint strictly increasing sequences. Moreover, for each i < j we have

bj = aj + j > ai + j > ai + i = bi > ai, so {ai}ji=1 and {bi}ji=1 are strictly

increasing and disjoint from each other, as well.

To see that every integer is covered, we show by induction that

{1, . . . , j} ⊂ {ai}ji=1 ∪ {bi}
j
i=1 .

This is clearly true when j = 0. If it is true for j, then either j + 1 ∈
{ai}ji=1 ∪ {bi}

j
i=1 or it is excluded, in which case aj+1 = j + 1.

It is easy to check the following theorem:
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Theorem 1.1.7. The set of P-positions for Wythoff Nim is exactly P̂ :=

{(ak, bk) : k = 0, 1, 2, . . . } ∪ {(bk, ak) : k = 0, 1, 2, . . . }.

Proof. First we check that any move from a position (ak, bk) ∈ P̂ is to a

position not in P̂ . If we reduce both piles, then the gap between them

remains k, and the only position in P̂ with gap k is (ak, bk). If we reduce

the first pile, the number bk only occurs with ak in P̂ , so we are taken to

a position not in P̂ , and similarly, reducing the second pile also leads to a

position not in P̂ .

Let (m,n) be a position not in P̂ , say m ≤ n, and let k = n − m. If

(m,n) > (ak, bk), we can reduce both piles of chips to take the configuration

to (ak, bk), which is in P̂ . If (m,n) < (ak, bk), then either m = aj or

m = bj for some j < k. If m = aj , then we can remove k − j chips from

the second pile to take the configuration to (aj , bj) ∈ P̂ . If m = bj , then

n ≥ m = bj > aj , so we can remove chips from the second pile to take the

state to (bj , aj) ∈ P̂ .

Thus P = P̂ .

It turns out that there is there a fast, non-recursive, method to decide if

a given position is in P:

Theorem 1.1.8. ak = bk(1 +
√

5)/2c and bk = bk(3 +
√

5)/2c.

bxc denotes the “floor of x,” i.e., the greatest integer that is ≤ x. Similarly,

dxe denotes the “ceiling of x,” the smallest integer that is ≥ x.

Proof of Theorem 1.1.8. Consider the following sequences positive integers:

Fix any irrational θ ∈ (0, 1), and set

αk(θ) = bk/θc, βk(θ) = bk/(1− θ)c.

We claim that {αk(θ)}∞k=1 and {βk(θ)}∞k=1 form a partition of N∗. Clearly,

αk(θ) < αk+1(θ) and βk(θ) < βk+1(θ) for any k. Observe that αk(θ) = N if

and only if

k ∈ IN := [Nθ,Nθ + θ),

and β`(θ) = N if and only if

−`+N ∈ JN := (Nθ + θ − 1, Nθ].

These events cannot both happen with θ ∈ (0, 1) unless N = 0, k = 0, and

` = 0. Thus, {αk(θ)}∞k=1 and {βk(θ)}∞k=1 are disjoint. On the other hand,

so long as N 6= −1, at least one of these events must occur for some k or `,

since JN ∪ IN = ((N + 1)θ− 1, (N + 1)θ) contains an integer when N 6= −1
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and θ is irrational. This implies that each positive integer N is contained in

either {αk(θ)}∞k=1 or {βk(θ)}∞k=1.

Does there exist a θ ∈ (0, 1) for which

αk(θ) = ak and βk(θ) = bk? (1.1)

We will show that there is only one θ for which this is true.

Because bk = ak + k, (1.1) implies that bk/θc+ k = bk/(1− θ)c. Dividing

by k we get

1

k
bk/θc+ 1 =

1

k
bk/(1− θ)c,

and taking a limit as k →∞ we find that

1/θ + 1 = 1/(1− θ). (1.2)

Thus, θ2 + θ − 1 = 0. The only solution in (0, 1) is θ = (
√

5 − 1)/2 =

2/(1 +
√

5).

We now fix θ = 2/(1 +
√

5) and let αk = αk(θ), βk = βk(θ). Note that

(1.2) holds for this particular θ, so that

bk/(1− θ)c = bk/θc+ k.

This means that βk = αk + k. We need to verify that

αk = mex
{
α0, . . . , αk−1, β0, . . . , βk−1}.

We checked earlier that αk is not one of these values. Why is it equal to

their mex? Suppose, toward a contradiction, that z is the mex, and αk 6= z.

Then z < αk ≤ α` ≤ β` for all ` ≥ k. Since z is defined as a mex, z 6= αi, βi
for i ∈ {0, . . . , k − 1}, so z is missed and hence {αk}∞k=1 and {βk}∞k=1 would

not be a partition of N∗, a contradiction.

1.1.3 Impartial games and the Sprague-Grundy theorem

In this section, we will develop a general framework for analyzing all pro-

gressively bounded impartial combinatorial games. As in the case of Nim,

we will look at sums of games and develop a tool that enables us to analyze

any impartial combinatorial game under normal play as if it were a Nim pile

of a certain size.

Definition 1.1.5. The sum of two combinatorial games, G1 and G2,

is a game G in which each player, in his turn, chooses one of G1 or G2 in

which to play. The terminal positions in G are (t1, t2), where ti is a terminal

position in Gi for i ∈ {1, 2}. We write G = G1 +G2.
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Example 1.1.8. The sum of two Nim games X and Y is the game (X,Y )

as defined in Lemma 1.1.1 of the previous section.

It is easy to see that Lemma 1.1.1 generalizes to the sum of any two

progressively bounded combinatorial games:

Theorem 1.1.9. Suppose G1 and G2 are progressively bounded impartial

combinatorial games.

(i) If x1 ∈ PG1 and x2 ∈ PG2, then (x1, x2) ∈ PG1+G2.

(ii) If x1 ∈ PG1 and x2 ∈ NG2, then (x1, x2) ∈ NG1+G2.

(iii) If x1 ∈ NG1 and x2 ∈ NG2, then (x1, x2) could be in either NG1+G2

or PG1+G2.

Proof. In the proof for Lemma 1.1.1 for Nim, replace the number of chips

with B(x), the maximum number of moves in the game.

Definition 1.1.6. Consider two arbitrary progressively bounded combina-

torial games G1 and G2 with positions x1 and x2. If for any third such game

G3 and position x3, the outcome of (x1, x3) in G1 +G3 (i.e., whether it’s an

N- or P-position) is the same as the outcome of (x2, x3) in G2 + G3, then

we say that (G1, x1) and (G2, x2) are equivalent.

It follows from Theorem 1.1.9 that in any two progressively bounded im-

partial combinatorial games, the P-positions are equivalent to each other.

In Exercise 1.12 you will prove that this notion of equivalence for games

defines an equivalence relation. In Exercise 1.13 you will prove that two

impartial games are equivalent if and only if there sum is a P-position. In

Exercise 1.14 you will show that if G1 and G2 are equivalent, and G3 is a

third game, then G1 +G3 and G2 +G3 are equivalent.

Example 1.1.9. The Nim game with starting position (1, 3, 6) is equivalent

to the Nim game with starting position (4), because the Nim-sum of the

sum game (1, 3, 4, 6) is zero. More generally, the position (n1, . . . , nk) is

equivalent to (n1⊕· · ·⊕nk) because the Nim-sum of (n1, . . . , nk, n1⊕· · ·⊕nk)
is zero.

If we can show that an arbitrary impartial game (G, x) is equivalent to a

single Nim pile (n), we can immediately determine whether (G, x) is in P

or in N, since the only single Nim pile in P is (0).

We need a tool that will enable us to determine the size n of a Nim pile

equivalent to an arbitrary position (G, x).
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Definition 1.1.7. Let G be a progressively bounded impartial combinato-

rial game under normal play. Its Sprague-Grundy function g is defined

recursively as follows:

g(x) = mex({g(y) : x→ y is a legal move}).

Note that the Sprague-Grundy value of any terminal position is mex(∅) =

0. In general, the Sprague-Grundy function has the following key property:

Lemma 1.1.2. In a progressively bounded impartial combinatorial game,

the Sprague-Grundy value of a position is 0 if and only if it is a P-position.

Proof. Proceed as in the proof of Theorem 1.1.3 — define P̂ to be those

positions x with g(x) = 0, and N̂ to be all other positions. We claim that

P̂ = P and N̂ = N.

To show this, we need to show first that t ∈ P̂ for every terminal position t.

Second, that for all x ∈ N̂ , there exists a move from x leading to P̂ . Finally,

we need to show that for every y ∈ P̂ , all moves from y lead to N̂ .

All these are a direct consequence of the definition of mex. The details of

the proof are left as an exercise (Ex. 1.15).

Let’s calculate the Sprague-Grundy function for a few examples.

Example 1.1.10 (The m-Subtraction game). In them-subtraction game

with subtraction set {a1, . . . , am}, a position consists of a pile of chips, and

a legal move is to remove from the pile ai chips, for some i ∈ {1, . . . ,m}.
The player who removes the last chip wins.

Consider a 3-subtraction game with subtraction set {1, 2, 3}. The follow-

ing table summarizes a few values of its Sprague-Grundy function:

x 0 1 2 3 4 5 6

g(x) 0 1 2 3 0 1 2

In general, g(x) = x mod 4.

Example 1.1.11 (The Proportional Subtraction game). A position

consists of a pile of chips. A legal move from a position with n chips is to

remove any positive number of chips that is at most dn/2e.

Here, the first few values of the Sprague-Grundy function are:

x 0 1 2 3 4 5 6

g(x) 0 1 0 2 1 3 0
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Example 1.1.12. Note that the Sprague-Grundy value of any Nim pile (n)

is just n.

Now we are ready to state the Sprague-Grundy theorem, which allows us

relate impartial games to Nim:

Theorem 1.1.10 (Sprague-Grundy Theorem). Let G be a progressively

bounded impartial combinatorial game under normal play with starting po-

sition x. Then G is equivalent to a single Nim pile of size g(x) ≥ 0, where

g(x) is the Sprague-Grundy function evaluated at the starting position x.

Proof. We let G1 = G, and G2 be the Nim pile of size g(x). Let G3 be any

other combinatorial game under normal play. One player or the other, say

player A, has a winning strategy for G2 +G3. We claim that player A also

has a winning strategy for G1 +G3.

For each move of G2 + G3 there is an associated move in G1 + G3: If

one of the players moves in G3 when playing G2 + G3, this corresponds to

the same move in G3 when playing G1 + G3. If one of the players plays

in G2 when playing G2 + G3, say by moving from a Nim pile with y chips

to a Nim pile with z < y chips, then the corresponding move in G1 + G3

would be to move in G1 from a position with Sprague-Grundy value y to a

position with Sprague-Grundy value z (such a move exists by the definition

of the Sprague-Grundy function). There may be extra moves in G1 + G3

that do not correspond to any move G2 +G3, namely, it may be possible to

play in G1 from a position with Sprague-Grundy value y to a position with

Sprague-Grundy value z > y.

When playing in G1 + G3, player A can pretend that the game is really

G2 +G3. If player A’s winning strategy is some move in G2 +G3, then A can

play the corresponding move in G1 + G3, and pretends that this move was

made in G2 +G3. If A’s opponent makes a move in G1 +G3 that corresponds

to a move in G2 +G3, then A pretends that this move was made in G2 +G3.

But player A’s opponent could also make a move in G1 +G3 that does not

correspond to any move of G2 + G3, by moving in G1 and increasing the

Sprague-Grundy value of the position in G1 from y to z > y. In this case,

by the definition of the Sprague-Grundy value, player A can simply play in

G1 and move to a position with Sprague-Grundy value y. These two turns

correspond to no move, or a pause, in the game G2 +G3. Because G1 +G3 is

progressively bounded, G2 +G3 will not remain paused forever. Since player

A has a winning strategy for the game G2 +G3, player A will win this game

that A is pretending to play, and this will correspond to a win in the game
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G1 +G3. Thus whichever player has a winning strategy in G2 +G3 also has

a winning strategy in G1 +G3, so G1 and G2 are equivalent games.

We can use this theorem to find the P- and N-positions of a particular

impartial, progressively bounded game under normal play, provided we can

evaluate its Sprague-Grundy function.

For example, recall the 3-subtraction game we considered in Example 1.1.10.

We determined that the Sprague-Grundy function of the game is g(x) =

x mod 4. Hence, by the Sprague-Grundy theorem, 3-subtraction game with

starting position x is equivalent to a single Nim pile with x mod 4 chips.

Recall that (0) ∈ PNim while (1), (2), (3) ∈ NNim. Hence, the P-positions

for the Subtraction game are the natural numbers that are divisible by four.

Corollary 1.1.1. Let G1 and G2 be two progressively bounded impartial

combinatorial games under normal play. These games are equivalent if and

only if the Sprague-Grundy values of their starting positions are the same.

Proof. Let x1 and x2 denote the starting positions of G1 and G2. We saw

already that G1 is equivalent to the Nim pile (g(x1)), and G2 is equivalent

to (g(x2)). Since equivalence is transitive, if the Sprague-Grundy values

g(x1) and g(x2) are the same, G1 and G2 must be equivalent. Now suppose

g(x1) 6= g(x2). We have that G1 + (g(x1)) is equivalent to (g(x1)) + (g(x1))

which is a P-position, while G2 + (g(x1)) is equivalent to (g(x2)) + (g(x1)),

which is an N-position, so G1 and G2 are not equivalent.

The following theorem gives a way of finding the Sprague-Grundy func-

tion of the sum game G1 + G2, given the Sprague-Grundy functions of the

component games G1 and G2.

Theorem 1.1.11 (Sum Theorem). Let G1 and G2 be a pair of impartial

combinatorial games and x1 and x2 positions within those respective games.

For the sum game G = G1 +G2,

g(x1, x2) = g1(x1)⊕ g2(x2), (1.3)

where g, g1, and g2 respectively denote the Sprague-Grundy functions for the

games G, G1, and G2, and ⊕ is the Nim-sum.

Proof. It is straightforward to see that G1 + G1 is a P-position, since the

second player can always just make the same moves that the first player

makes but in the other copy of the game. Thus G1 +G2 +G1 +G2 is a P-

position. Since G1 is equivalent to (g(x1)), G2 is equivalent to (g(x2)), and

G1 + G2 is equivalent to (g(x1, x2)), we have that (g(x1), g(x2), g(x1, x2))

is a P-position. From our analysis of Nim, we know that this happens
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only when the three Nim piles have Nim-sum zero, and hence g(x1, x2) =

g(x1)⊕ g(x2).

Let’s use the Sprague-Grundy and the Sum Theorems to analyze a few

games.

Example 1.1.13. (4 or 5) There are two piles of chips. Each player, in his

turn, removes either one to four chips from the first pile or one to five chips

from the second pile.

Our goal is to figure out the P-positions for this game. Note that the

game is of the form G1 + G2 where G1 is a 4-subtraction game and G2

is a 5-subtraction game. By analogy with the 3-subtraction game, g1(x) =

x mod 5 and g2(y) = y mod 6. By the Sum Theorem, we have that g(x, y) =

(x mod 5) ⊕ (y mod 6). We see that g(x, y) = 0 if and only if x mod 5 =

y mod 6.

The following example bears no obvious resemblance to Nim, yet we can

use the Sprague-Grundy function to analyze it.

Example 1.1.14 (Green Hackenbush). Green Hackenbush is played on

a finite graph with one distinguished vertex r, called the root, which may be

thought of as the base on which the rest of the structure is standing. (Recall

that a graph is a collection of vertices and edges that connect unordered pairs

of vertices.) In his turn, a player may remove an edge from the graph. This

causes not only that edge to disappear, but all of the structure that relies on

it — the edges for which every path to the root travels through the removed

edge.

The goal for each player is to remove the last edge from the graph.

We talk of “Green” Hackenbush because there is a partisan variant of the

game in which edges are colored red, blue, or green, and one player can

remove red or green edges, while the other player can remove blue or green

edges.

Note that if the original graph consists of a finite number of paths, each of

which ends at the root, then Green Hackenbush is equivalent to the game of

Nim, in which the number of piles is equal to the number of paths, and the

number of chips in a pile is equal to the length of the corresponding path.

To handle the case in which the graph is a tree, we will need the following

lemma:

Lemma 1.1.3 (Colon Principle). The Sprague-Grundy function of Green

Hackenbush on a tree is unaffected by the following operation: For any two

branches of the tree meeting at a vertex, replace these two branches by a
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path emanating from the vertex whose length is the Nim-sum of the Sprague-

Grundy functions of the two branches.

Proof. We will only sketch the proof. For the details, see Ferguson [?, I-42].

If the two branches consist simply of paths, or “stalks,” emanating from

a given vertex, then the result follows from the fact that the two branches

form a two-pile game of Nim, using the direct sum theorem for the Sprague-

Grundy functions of two games. More generally, we may perform the re-

placement operation on any two branches meeting at a vertex by iterating

replacing pairs of stalks meeting inside a given branch until each of the two

branches itself has become a stalk.

Fig. 1.9. Combining branches in a tree of Green Hackenbush.

As a simple illustration, see Fig. 1.9. The two branches in this case are

stalks of lengths 2 and 3. The Sprague-Grundy values of these stalks are 2

and 3, and their Nim-sum is 1.

For a more in-depth discussion of Hackenbush and references, see Ferguson

[?, Part I, Sect. 6] or [?].

Next we leave the impartial and discuss a few interesting partisan games.

1.2 Partisan games

A combinatorial game that is not impartial is called partisan. In a partisan

games the legal moves for some positions may be different for each player.

Also, in some partisan games, the terminal positions may be divided into

those that have a win for player I and those that have a win for player II.

Hex is an important partisan game that we described in the introduction.

In Hex, one player (Blue) can only place blue tiles on the board and the

other player (Yellow) can only place yellow tiles, and the resulting board

configurations are different, so the legal moves for the two players are dif-

ferent. One could modify Hex to allow both players to place tiles of either

color (though neither player will want to place a tile of the other color), so

that both players will have the same set of legal moves. This modified Hex

is still partisan because the winning configurations for the two players are
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different: positions with a blue crossing are winning for Blue and those with

a yellow crossing are winning for Yellow.

Typically in a partisan game not all positions may be reachable by every

player from a given starting position. We can illustrate this with the game

of Hex. If the game is started on an empty board, the player that moves

first can never face a position where the number of blue and yellow hexagons

on the board is different.

In some partisan games there may be additional terminal positions which

mean that neither of the players wins. These can be labelled “ties” or

“draws” (as in Chess, when there is a stalemate).

While an impartial combinatorial game can be represented as a graph

with a single edge-set, a partisan game is most often given by a single set

of nodes and two sets of edges that represent legal moves available to either

player. Let X denote the set of positions and EI, EII be the two edge-

sets for players I and II respectively. If (x, y) is a legal move for player

i ∈ {I, II} then ((x, y) ∈ Ei) and we say that y is a successor of x. We

write Si(x) = {y : (x, y) ∈ Ei}. The edges are directed if the moves are

irreversible.

A partisan game follows the normal play condition if the first player

who cannot move loses. The misère play condition is the opposite, i.e.,

the first player who cannot move wins. In games such as Hex, some terminal

nodes are winning for one player or the other, regardless of whose turn it is

when the game arrived in that position. Such games are equivalent to normal

play games on a closely related graph (you will show this in an exercise).

A strategy is defined in the same way as for impartial games; however, a

complete specification of the state of the game will now, in addition to the

position, require an identification of which player is to move next (which

edge-set is to be used).

We start with a simple example:

Example 1.2.1 (A partisan Subtraction game). Starting with a pile

of x ∈ N chips, two players, I and II, alternate taking a certain number of

chips. Player I can remove 1 or 4 chips. Player II can remove 2 or 3 chips.

The last player who removes chips wins the game.

This is a progressively bounded partisan game where both the terminal

nodes and the moves are different for the two players.

From this example we see that the number of steps it takes to complete

the game from a given position now depends on the state of the game,

s = (x, i), where x denotes the position and i ∈ {I, II} denotes the player
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Fig. 1.10. Moves of the partisan Subtraction game. Node 0 is terminal for
either player, and node 1 is also terminal with a win for player I.

that moves next. We let B(x, i) denote the maximum number of moves to

complete the game from state (x, i).

We next prove an important theorem that extends our previous result to

include partisan games.

Theorem 1.2.1. In any progressively bounded combinatorial game with no

ties allowed, one of the players has a winning strategy which depends only

upon the current state of the game.

At first the statement that the winning strategy only depends upon the

current state of the game might seem odd, since what else could it depend

on? A strategy tells a player which moves to make when playing the game,

and a priori a strategy could depend upon the history of the game rather

than just the game state at a given time. In games which are not progres-

sively bounded, if the game play never terminates, typically one player is

assigned a payoff of −∞ and the other player gets +∞. There are examples

of such games (which we don’t describe here), where the optimal strategy of

one of the players must take into account the history of the game to ensure

that the other player is not simply trying to prolong the game. But such

issues do not exist with progressively bounded games.

Proof of Theorem 1.2.1. We will recursively define a function W , which

specifies the winner for a given state of the game: W (x, i) = j where
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i, j ∈ {I, II} and x ∈ X. For convenience we let o(i) denote the opponent of

player i.

When B(x, i) = 0, we set W (x, i) to be the player who wins from terminal

position x.

Suppose by induction, that whenever B(y, i) < k, the W (y, i) has been

defined. Let x be a position with B(x, i) = k for one of the players. Then

for every y ∈ Si(x) we must have B(y, o(i)) < k and hence W (y, o(i)) is

defined. There are two cases:

Case 1: For some successor state y ∈ Si(x), we have W (y, o(i)) = i. Then

we define W (x, i) = i, since player i can move to state y from which he can

win. Any such state y will be a winning move.

Case 2: For all successor states y ∈ Si(x), we have W (y, o(i)) = o(i).

Then we define W (x, i) = o(i), since no matter what state y player i moves

to, player o(i) can win.

In this way we inductively define the function W which tells which player

has a winning strategy from a given game state.

This proof relies essentially on the game being progressively bounded.

Next we show that many games have this property.

Lemma 1.2.1. In a game with a finite position set, if the players cannot

move to repeat a previous game state, then the game is progressively bounded.

Proof. If there there are n positions x in the game, there are 2n possible

game states (x, i), where i is one of the players. When the players play from

position (x, i), the game can last at most 2n steps, since otherwise a state

would be repeated.

The games of Chess and Go both have special rules to ensure that the

game is progressively bounded. In Chess, whenever the board position (to-

gether with whose turn it is) is repeated for a third time, the game is declared

a draw. (Thus the real game state effectively has built into it all previous

board positions.) In Go, it is not legal to repeat a board position (together

with whose turn it is), and this has a big effect on how the game is played.

Next we go on to analyze some interesting partisan games.

1.2.1 The game of Hex

Recall the description of Hex from the introduction.

Example 1.2.2 (Hex). Hex is played on a rhombus-shaped board tiled

with hexagons. Each player is assigned a color, either blue or yellow, and

two opposing sides of the board. The players take turns coloring in empty



1.2 Partisan games 33

hexagons. The goal for each player is to link his two sides of the board with

a chain of hexagons in his color. Thus, the terminal positions of Hex are the

full or partial colorings of the board that have a chain crossing.

R_1

G_1

G_2

R_2

Fig. 1.11. A completed game of Hex with a yellow chain crossing.

Note that Hex is a partisan game where both the terminal positions and

the legal moves are different for the two players. We will prove that any

fully-colored, standard Hex board contains either a blue crossing or a yellow

crossing but not both. This topological fact guarantees that in the game of

Hex ties are not possible.

Clearly, Hex is progressively bounded. Since ties are not possible, one of

the players must have a winning strategy. We will now prove, again using a

strategy-stealing argument, that the first player can always win.

Theorem 1.2.2. On a standard, symmetric Hex board of arbitrary size, the

first player has a winning strategy.

Proof. We know that one of the players has a winning strategy. Suppose that

the second player is the one. Because moves by the players are symmetric, it

is possible for the first player to adopt the second player’s winning strategy as

follows: The first player, on his first move, just colors in an arbitrarily chosen

hexagon. Subsequently, for each move by the other player, the first player

responds with the appropriate move dictated by second player’s winning

strategy. If the strategy requires that first player move in the spot that

he chose in his first turn and there are empty hexagons left, he just picks

another arbitrary spot and moves there instead.

Having an extra hexagon on the board can never hurt the first player —

it can only help him. In this way, the first player, too, is guaranteed to win,

implying that both players have winning strategies, a contradiction.

In 1981, Stefan Reisch, a professor of mathematics at the Universität
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Bielefeld in Germany, proved that determining which player has a winning

move in a general Hex position is PSPACE-complete for arbitrary size Hex

boards [?]. This means that it is unlikely that it’s possible to write an ef-

ficient computer program for solving Hex on boards of arbitrary size. For

small boards, however, an Internet-based community of Hex enthusiasts has

made substantial progress (much of it unpublished). Jing Yang [?], a mem-

ber of this community, has announced the solution of Hex (and provided

associated computer programs) for boards of size up to 9× 9. Usually, Hex

is played on an 11 × 11 board, for which a winning strategy for player I is

not yet known.

We will now prove that any colored standard Hex board contains a monochro-

matic crossing (and all such crossings have the same color), which means

that the game always ends in a win for one of the players. This is a purely

topological fact that is independent of the strategies used by the players.

In the following two sections, we will provide two different proofs of this

result. The first one is actually quite general and can be applied to non-

standard boards. The section is optional, hence the *. The second proof

has the advantage that it also shows that there can be no more than one

crossing, a statement that seems obvious but is quite difficult to prove.

1.2.2 Topology and Hex: a path of arrows*

The claim that any coloring of the board contains a monochromatic cross-

ing is actually the discrete analog of the 2-dimensional Brouwer fixed-point

theorem, which we will prove in section 3.5. In this section, we provide a

direct proof.

In the following discussion, pre-colored hexagons are referred to as bound-

ary. Uncolored hexagons are called interior. Without loss of generality, we

may assume that the edges of the board are made up of pre-colored hexagons

(see figure). Thus, the interior hexagons are surrounded by hexagons on all

sides.

Theorem 1.2.3. For a completed standard Hex board with non-empty inte-

rior and with the boundary divided into two disjoint yellow and two disjoint

blue segments, there is always at least one crossing between a pair of seg-

ments of like color.

Proof. Along every edge separating a blue hexagon and a yellow one, insert

an arrow so that the blue hexagon is to the arrow’s left and the yellow one

to its right. There will be four paths of such arrows, two directed toward
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the interior of the board (call these entry arrows) and two directed away

from the interior (call these exit arrows), see Fig. 1.12.

Fig. 1.12. On an empty board the entry and exit arrows are marked. On
a completed board, a blue chain lies on the left side of the directed path.

Now, suppose the board has been arbitrarily filled with blue and yellow

hexagons. Starting with one of the entry arrows, we will show that it is

possible to construct a continuous path by adding arrows tail-to-head always

keeping a blue hexagon on the left and a yellow on the right.

In the interior of the board, when two hexagons share an edge with an

arrow, there is always a third hexagon which meets them at the vertex

toward which the arrow is pointing. If that third hexagon is blue, the next

arrow will turn to the right. If the third hexagon is yellow, the arrow will

turn to the left. See (a,b) of Fig. 1.13.

ba c

Fig. 1.13. In (a) the third hexagon is blue and the next arrow turns to the
right; in (b) — next arrow turns to the left; in (c) we see that in order to
close the loop an arrow would have to pass between two hexagons of the
same color.

Loops are not possible, as you can see from (c) of Fig. 1.13. A loop circling

to the left, for instance, would circle an isolated group of blue hexagons

surrounded by yellow ones. Because we started our path at the boundary,

where yellow and blue meet, our path will never contain a loop. Because

there are finitely many available edges on the board and our path has no

loops, it eventually must exit the board using via of the exit arrows.

All the hexagons on the left of such a path are blue, while those on the

right are yellow. If the exit arrow touches the same yellow segment of the
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boundary as the entry arrow, there is a blue crossing (see Fig. 1.12). If it

touches the same blue segment, there is a yellow crossing.

1.2.3 Hex and Y

That there cannot be more than one crossing in the game of Hex seems

obvious until you actually try to prove it carefully. To do this directly, we

would need a discrete analog of the Jordan curve theorem, which says that

a continuous closed curve in the plane divides the plane into two connected

components. The discrete version of the theorem is slightly easier than the

continuous one, but it is still quite challenging to prove.

Thus, rather than attacking this claim directly, we will resort to a trick:

We will instead prove a similar result for a related, more general game —

the game of Y, also known as Tripod. Y was introduced in the 1950s by the

famous information theorist, Claude Shannon.

Our proof for Y will give us a second proof of the result of the last section,

that each completed Hex board contains a monochromatic crossing. Unlike

that proof, it will also show that there cannot be more than one crossing in

a complete board.

Example 1.2.3 (Game of Y). Y is played on a triangular board tiled with

hexagons. As in Hex, the two players take turns coloring in hexagons, each

using his assigned color. The goal for both players is to establish a Y, a

monochromatic connected region that meets all three sides of the triangle.

Thus, the terminal positions are the ones that contain a monochromatic Y.

We can see that Hex is actually a special case of Y: Playing Y, starting

from the position shown in Fig. 1.14 is equivalent to playing Hex in the

empty region of the board.

Blue has a winning Y here. Reduction of Hex to Y.

Fig. 1.14. Hex is a special case of Y.

We will first show below that a filled-in Y board always contains a sin-
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gle Y. Because Hex is equivalent to Y with certain hexagons pre-colored, the

existence and uniqueness of the chain crossing is inherited by Hex from Y.

Once we have established this, we can apply the strategy-stealing argu-

ment we gave for Hex to show that the first player to move has a winning

strategy.

Theorem 1.2.4. Any blue/yellow coloring of the triangular board contains

either contains a blue Y or a yellow Y, but not both.

Proof. We can reduce a colored board with sides of size n to one with sides of

size n− 1 as follows: Think of the board as an arrow pointing right. Except

for the left-most column of cells, each cell is the tip of a small arrow-shaped

cluster of three adjacent cells pointing the same way as the board. Starting

from the right, recolor each cell the majority color of the arrow that it tips,

removing the left-most column of cells altogether.

Continuing in this way, we can reduce the board to a single, colored cell.

Fig. 1.15. A step-by-step reduction of a colored Y board.

We claim that the color of this last cell is the color of a winning Y on the

original board. Indeed, notice that any chain of connected blue hexagons

on a board of size n reduces to a connected blue chain of hexagons on the

board of size n − 1. Moreover, if the chain touched a side of the original

board, it also touches the corresponding side of the smaller board.

The converse statement is harder to see: if there is a chain of blue hexagons

connecting two sides of the smaller board, then there was a corresponding

blue chain connecting the corresponding sides of the larger board. The proof

is left as an exercise (Ex. 1.3).

Thus, there is a Y on a reduced board if and only if there was a Y on

the original board. Because the single, colored cell of the board of size one

forms a winning Y on that board, there must have been a Y of the same

color on the original board.

Because any colored Y board contains one and only one winning Y, it

follows that any colored Hex board contains one and only one crossing.
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1.2.4 More general boards*

The statement that any colored Hex board contains exactly one crossing is

stronger than the statement that every sequence of moves in a Hex game

always leads to a terminal position. To see why it’s stronger, consider the

following variant of Hex, called Six-sided Hex.

Example 1.2.4 (Six-sided Hex). Six-sided Hex is just like ordinary Hex,

except that the board is hexagonal, rather than square. Each player is as-

signed 3 non-adjacent sides and the goal for each player is to create a crossing

in his color between any pair of his assigned sides.

Thus, the terminal positions are those that contain one and only one monochro-

matic crossing between two like-colored sides.

Fig. 1.16. A filled-in Six-sided Hex board can have both blue and yellow
crossings. In a game when players take turns to move, one of the crossings
will occur first, and that player will be the winner.

Note that in Six-sided Hex, there can be crossings of both colors in a com-

pleted board, but the game ends before a situation with these two crossings

can be realized.

The following general theorem shows that, as in standard Hex, there is

always at least one crossing.

Theorem 1.2.5. For an arbitrarily shaped simply-connected completed Hex
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board with non-empty interior and the boundary partitioned into n blue and

and n yellow segments, with n ≥ 2, there is always at least one crossing

between some pair of segments of like color.

The proof is very similar to that for standard Hex; however, with a larger

number of colored segments it is possible that the path uses an exit arrow

that lies on the boundary between a different pair of segments. In this case

there is both a blue and a yellow crossing (see Fig. 1.16).

Remark. We have restricted our attention to simply-connected boards (those

without holes) only for the sake of simplicity. With the right notion of entry

and exit points the theorem can be extended to practically any finite board

with non-empty interior, including those with holes.

1.2.5 Other partisan games played on graphs

We now discuss several other partisan games which are played on graphs.

For each of our examples, we can describe an explicit winning strategy for

the first player.

Example 1.2.5 (The Shannon Switching Game). The Shannon Switch-

ing Game, a partisan game similar to Hex, is played by two players, Cut and

Short, on a connected graph with two distinguished nodes, A and B. Short,

in his turn, reinforces an edge of the graph, making it immune to being cut.

Cut, in her turn, deletes an edge that has not been reinforced. Cut wins if

she manages to disconnect A from B. Short wins if he manages to link A

to B with a reinforced path.

There is a solution to the general Shannon Switching Game, but we will

not describe it here. Instead, we will focus our attention on a restricted,

simpler case: When the Shannon Switching Game is played on a graph that

is an L× (L+ 1) grid with the vertices of the top side merged into a single

vertex, A, and the vertices on the bottom side merged into another node, B,

then it is equivalent to another game, known as Bridg-It (it is also referred

to as Gale, after its inventor, David Gale).

Example 1.2.6 (Bridg-It). Bridg-It is played on a network of green and

black dots (see Fig. 1.18). Black, in his turn, chooses two adjacent black

dots and connects them with a line. Green tries to block Black’s progress

by connecting an adjacent pair of green dots. Connecting lines, once drawn,

may not be crossed.

Black’s goal is to make a path from top to bottom, while Green’s goal is

to block him by building a left-to-right path.
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Short

AA

BBB

A

ShortCut

Fig. 1.17. Shannon Switching Game played on a 5 × 6 grid (the top and
bottom rows have been merged to the points A and B). Shown are the
first three moves of the game, with Short moving first. Available edges
are indicated by dotted lines, and reinforced edges by thick lines. Scissors
mark the edge that Short deleted.

B

A

Fig. 1.18. A completed game of Bridg-It and the corresponding Shannon
Switching Game. In Bridg-It, the black dots are on the square lattice, and
the green dots are on the dual square lattice. Only the black dots appear
in the Shannon Switching Game.

In 1956, Oliver Gross, a mathematician at the RAND Corporation, proved

that the player who moves first in Bridg-It has a winning strategy. Several

years later, Alfred B. Lehman [?] (see also [?]), a professor of computer sci-

ence at the University of Toronto, devised a solution to the general Shannon

Switching Game.

Applying Lehman’s method to the restricted Shannon Switching Game

that is equivalent to Bridg-It, we will show that Short, if he moves first, has

a winning strategy. Our discussion will elaborate on the presentation found

in ([?]).

Before we can describe Short’s strategy, we will need a few definitions

from graph theory:
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Definition 1.2.1. A tree is a connected undirected graph without cycles.

(i) Every tree must have a leaf, a vertex of degree one.

(ii) A tree on n vertices has n− 1 edges.

(iii) A connected graph with n vertices and n− 1 edges is a tree.

(iv) A graph with no cycles, n vertices, and n− 1 edges is a tree.

The proofs of these properties of trees are left as an exercise (Ex. 1.4).

Theorem 1.2.6. In a game of Bridg-It on an L× (L+ 1) board, Short has

a winning strategy if he moves first.

Proof. Short begins by reinforcing an edge of the graph G, connecting A to

an adjacent dot, a. We identify A and a by “fusing” them into a single new

A. On the resulting graph, there are two edge-disjoint trees such that each

tree spans (contains all the nodes of) G.

B

BB

A

A

a A

Fig. 1.19. Two spanning trees — the blue one is constructed by first joining
top and bottom using the left-most vertical edges, and then adding other
vertical edges, omitting exactly one edge in each row along an imaginary
diagonal; the red tree contains the remaining edges. The two circled nodes
are identified.

Observe that the blue and red subgraphs in the 4 × 5 grid in Fig. 1.19

are such a pair of spanning trees: The blue subgraph spans every node, is

connected, and has no cycles, so it is a spanning tree by definition. The

red subgraph is connected, touches every node, and has the right number of

edges, so it is also a spanning tree by property (iii). The same construction

could be repeated on an arbitrary L× (L+ 1) grid.

Using these two spanning trees, which necessarily connect A to B, we can

define a strategy for Short.

The first move by Cut disconnects one of the spanning trees into two

components (see Fig. 1.20), Short can repair the tree as follows: Because
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B

A

Fig. 1.20. Cut separates the
blue tree into two compo-
nents.

e

A

B

Fig. 1.21. Short reinforces a
red edge to reconnect the two
components.

the other tree is also a spanning tree, it must have an edge, e, that connects

the two components (see Fig. 1.21). Short reinforces e.

If we think of a reinforced edge e as being both red and blue, then the

resulting red and blue subgraphs will still be spanning trees for G. To see

this, note that both subgraphs will be connected, and they will still have n

edges and n−1 vertices. Thus, by property (iii) they will be trees that span

every vertex of G.

Continuing in this way, Short can repair the spanning trees with a rein-

forced edge each time Cut disconnects them. Thus, Cut will never succeed

in disconnecting A from B, and Short will win.

Example 1.2.7 (Recursive Majority). Recursive Majority is played on

a complete ternary tree of height h (see Fig. 1.22). The players take turns

marking the leaves, player I with a “+” and player II with a “−.” A parent

node acquires the majority sign of its children. Because each interior (non-

leaf) has an odd number of children, its sign is determined unambiguously.

The player whose mark is assigned to the root wins.

This game always ends in a win for one of the players, so one of them has

a winning strategy.

1
2

3

1 2 3
1 2 31 2 3

Fig. 1.22. A ternary tree of height 2; the left-most leaf is denoted by 11.
Here player I wins the Recursive Majority game.



1.2 Partisan games 43

To describe our analysis, we will need to give each node of the tree a

name: Label each of the three branches emanating from a single node in

the following way: 1 denotes the left-most edge, 2 denotes the middle edge

and 3, the right-most edge. Using these labels, we can identify each node

below the root with the “zip-code” of the path from the root that leads to

it. For instance, the left-most edge is denoted by 11 . . . 1, a word of length h

consisting entirely of ones.

A strategy-stealing argument implies that the first player to move has the

advantage. We can describe his winning strategy explicitly: On his first

move, player I marks the leaf 11 . . . 1 with a plus. For the remaining even

number of leaves, he uses the following algorithm to pair them: The partner

of the left-most unpaired leaf is found by moving up through the tree to

the first common ancestor of the unpaired leaf with the leaf 11 . . . 1, moving

one branch to the right, and then retracing the equivalent path back down

(see Fig. 1.23). Formally, letting 1k be shorthand for a string of ones of

fixed length k ≥ 0 and letting w stand for an arbitrary fixed word of length

h− k − 1, player I pairs the leaves by the following map: 1k2w 7→ 1k3w.

2

1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 3

1
2

3 1

2
3 1

2

3

Fig. 1.23. Red marks the left-most leaf and its path. Some sample pair-
mates are marked with the same shade of green or blue.

Once the pairs have been identified, for every leaf marked with a “−” by

player II, player I marks its mate with a “+”.

We can show by induction on h that player I is guaranteed to be the

winner in the left subtree of depth h− 1.

As for the other two subtrees of the same depth, whenever player II wins

in one, player I wins the other because each leaf in one of those subtrees is

paired with the corresponding leaf in the other. Hence, player I is guaranteed

to win two of the three subtrees, thus determining the sign of the root. A

rigorous proof of this statement is left to Exercise 1.5.
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Exercises

1.1 In the game of Chomp, what is the Sprague-Grundy function of the

2× 3 rectangular piece of chocolate?

1.2 Recall the game of Y , shown in Fig. 1.14. Blue puts down blue

hexagons, and Yellow puts down yellow hexagons. This exercise

is to prove that the first player has a winning strategy by using

the idea of strategy stealing that was used to solve the game of

Chomp. The first step is to show that from any position, one of

the players has a winning strategy. In the second step, assume that

the second player has a winning strategy, and derive a contradiction.

1.3 Consider the reduction of a Y board to a smaller one described in

section 1.2.1. Show that if there is a Y of blue hexagons connecting

the three sides of the smaller board, then there was a corresponding

blue Y connecting the sides of the larger board.

1.4 Prove the following statements. Hint: use induction.

(a) Every tree must have a leaf — a vertex of degree one.

(b) A tree on n vertices has n− 1 edges.

(c) A connected graph with n vertices and n− 1 edges is a tree.

(d) A graph with no cycles, n vertices and n− 1 edges is a tree.

1.5 For the game of Recursive majority on a ternary tree of depth h,

use induction on the depth to prove that the strategy described in

Example 1.2.7 is indeed a winning strategy for player I.

1.6 Consider a game of Nim with four piles, of sizes 9, 10, 11, 12.

(a) Is this position a win for the next player or the previous player

(assuming optimal play)? Describe the winning first move.

(b) Consider the same initial position, but suppose that each player

is allowed to remove at most 9 chips in a single move (other rules

of Nim remain in force). Is this an N- or P-position?

1.7 Consider a game where there are two piles of chips. On a players

turn, he may remove between 1 and 4 chips from the first pile, or

else remove between 1 and 5 chips from the second pile. The person,

who takes the last chip wins. Determine for which m,n ∈ N it is
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the case that (m,n) ∈ P.

1.8 For the game of Moore’s Nim, the proof of Lemma 1.1.5 gave a

procedure which, for N-position x, finds a y which is P-position

and for which it is legal to move to y. Give an example of a legal

move from an N-position to a P-position which is not of the form

described by the procedure.

1.9 In the game of Nimble, a finite number of coins are placed on a row

of slots of finite length. Several coins can occupy a given slot. In any

given turn, a player may move one of the coins to the left, by any

number of places. The game ends when all the coins are at the left-

most slot. Determine which of the starting positions are P-positions.

1.10 Recall that the subtraction game with subtraction set {a1, . . . , am}
is that game in which a position consists of a pile of chips, and

in which a legal move is to remove ai chips from the pile, for

some i ∈ {1, . . . ,m}. Find the Sprague-Grundy function for the

subtraction game with subtraction set {1, 2, 4}.

1.11 Let G1 be the subtraction game with subtraction set S1 = {1, 3, 4},
G2 be the subtraction game with S2 = {2, 4, 6}, and G3 be the

subtraction game with S3 = {1, 2, . . . , 20}. Who has a winning

strategy from the starting position (100, 100, 100) in G1 +G2 +G3?

1.12 (a) Find a direct proof that equivalence for games is a transitive

relation.

(b) Show that it is reflexive and symmetric and conclude that it is

indeed an equivalence relation.

1.13 Prove that the sum of two progressively bounded impartial combi-

natorial games is a P-position if and only if the games are equivalent.

1.14 Show that if G1 and G2 are equivalent, and G3 is a third game,

then G1 +G3 and G2 +G3 are equivalent.

1.15 By using the properties of mex, show that a position x is in P if

and only if g(x) = 0. This is the content of Lemma 1.1.2 and the

proof is outlined in the text.
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1.16 Consider the game which is played with piles of chips like Nim, but

with the additional move allowed of breaking one pile of size k > 0

into two nonempty piles of sizes i > 0 and k − i > 0. Show that

the Sprague-Grundy function g for this game, when evaluated at

positions with a single pile, satisfies g(3) = 4. Find g(1000), that is,

g evaluated at a position with a single pile of size 1000.

Given a position consisting of piles of sizes 13, 24, and 17, how

would you play?

1.17 Yet another relative of Nim is played with the additional rule that

the number of chips taken in one move can only be 1, 3 or 4. Show

that the Sprague-Grundy function g for this game, when evaluated

at positions with a single pile, is periodic: g(n+ p) = g(n) for some

fixed p and all n. Find g(75), that is, g evaluated at a position with

a single pile of size 75.

Given a position consisting of piles of sizes 13, 24, and 17, how

would you play?

1.18 Consider the game of up-and-down rooks played on a standard chess-

board. Player I has a set of white rooks initially located at level 1,

while player II has a set of black rooks at level 8. The players take

turns moving their rooks up and down until one of the players has

no more moves, at which point the other player wins. This game is

not progressively bounded. Yet an optimal strategy exists and can

be obtained by relating this game to a Nim with 8 piles.

h

a b c d e f g h

a b c d e f g

1.19 Two players take turns placing dominos on an n×1 board of squares,
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where each domino covers two squares, and dominos cannot overlap.

The last player to play wins.

(a) Find the Sprague-Grundy function for n ≤ 12.

(b) Where would you place the first domino when n = 11?

(c) Show that for n even and positive, the first player can guarantee

a win.
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Two-person zero-sum games

In the previous chapter, we studied games that are deterministic; nothing is

left to chance. In the next two chapters, we will shift our attention to the

games in which the players, in essence, move simultaneously, and thus do

not have full knowledge of the consequences of their choices. As we will see,

chance plays a key role in such games.

In this chapter, we will restrict our attention to two-person zero-sum

games, in which one player loses what the other gains in every outcome.

The central theorem for this class of games says that even if each player’s

strategy is known to the other, there is an amount that one player can

guarantee as his expected gain, and the other, as his maximum expected

loss. This amount is known as the value of the game.

2.1 Preliminaries

Let’s start with a very simple example:

Example 2.1.1 (Pick-a-hand, a betting game). There are two players,

a chooser (player I), and a hider (player II). The hider has two gold coins

in his back pocket. At the beginning of a turn, he puts his hands behind his

back and either takes out one coin and holds it in his left hand, or takes out

both and holds them in his right hand. The chooser picks a hand and wins

any coins the hider has hidden there. She may get nothing (if the hand is

empty), or she might win one coin, or two.

We can record all possible outcomes in the form of a payoff matrix,

whose rows are indexed by player I’s possible choices, and whose columns

are indexed by player II’s choices. Each matrix entry ai,j is the amount

that player II loses to player I when I plays i and II plays j. We call this

description of a game its normal or strategic form.

48
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hider

L1 R2

ch
o
o
se

r

L 1 0

R 0 2

Suppose that hider seeks to minimize his losses by placing one coin in

his left hand, ensuring that the most he will lose is that coin. This is a

reasonable strategy if he could be certain that chooser has no inkling of

what he will choose to do. But suppose chooser learns or reasons out his

strategy. Then he loses a coin when his best hope is to lose nothing. Thus,

if hider thinks chooser might guess or learn that he will play L1, he has an

incentive to play R2 instead. Clearly, the success of the strategy L1 (or R2)

depends on how much information chooser has. All that hider can guarantee

is a maximum loss of one coin.

Similarly, chooser might try to maximize her gain by picking R, hoping

to win two coins. If hider guesses or discovers chooser’s strategy, however,

then he can ensure that she doesn’t win anything. Again, without knowing

how much hider knows, chooser cannot assure that she will win anything by

playing.

Ideally, we would like to find a strategy whose success does not depend

on how much information the other player has. The way to achieve this is

by introducing some uncertainty into the players’ choices. A strategy with

uncertainty — that is, a strategy in which a player assigns to each possible

move some fixed probability of playing it — is known as a mixed strategy.

A mixed strategy in which a particular move is played with probability one

is known as a pure strategy.

Suppose that chooser decides to follow a mixed strategy of choosing R

with probability p and L with probability 1 − p. If hider were to play the

pure strategy R2 (hide two coins in his right hand) his expected loss would

be 2p. If he were to play L1 (hide one coin in his left hand), then his ex-

pected loss would be 1 − p. Thus, if he somehow learned p, he would play

the strategy corresponding to the minimum of 2p and 1 − p. Expecting

this, chooser would maximize her gains by choosing p so as to maximize

min{2p, 1− p}.

Note that this maximum occurs at p = 1/3, the point at which the two

lines cross:
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Thus, by following the mixed strategy of choosing R with probability

1/3 and L with probability 2/3, chooser assures an expected payoff of 2/3,

regardless of whether hider knows her strategy. How can hider minimize his

expected loss?

Hider will play R2 with some probability q and L1 with probability 1− q.
The payoff for chooser is 2q if she picks R, and 1 − q if she picks L. If she

knows q, she will choose the strategy corresponding to the maximum of the

two values. If hider, in turn, knows chooser’s plan, he will choose q = 1/3

to minimize this maximum, guaranteeing that his expected payout is 2/3

(because 2/3 = 2q = 1− q).
Thus, chooser can assure an expected gain of 2/3 and hider can assure an

expected loss of no more than 2/3, regardless of what either knows of the

other’s strategy. Note that, in contrast to the situation when the players are

limited to pure strategies, the assured amounts are equal. Von Neumann’s

minimax theorem, which we will prove in the next section, says that this is

always the case in any two-person, zero-sum game.

Clearly, without some extra incentive, it is not in hider’s interest to play

Pick-a-hand because he can only lose by playing. Thus, we can imagine that

chooser pays hider to entice him into joining the game. In this case, 2/3

is the maximum amount that chooser should pay him in order to gain his

participation.

Let’s look at another example.

Example 2.1.2 (Another Betting Game). A game has the following

payoff matrix:

player II

L R

p
la

ye
r

I

T 0 2

B 5 1

Suppose player I plays T with probability p and B with probability 1− p,
and player II plays L with probability q and R with probability 1− q.



2.1 Preliminaries 51

Reasoning from player I’s perspective, note that her expected payoff is

2(1 − q) for playing the pure strategy T , and 4q + 1 for playing the pure

strategy B. Thus, if she knows q, she will pick the strategy corresponding

to the maximum of 2(1 − q) and 4q + 1. Player II can choose q = 1/6 so

as to minimize this maximum, and the expected amount player II will pay

player I is 5/3.
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4q + 1

2− 2q

5/3
2

1

If player II instead chose a higher value of q, say q = 1/3, and player I

knows this, then player I can play pure strategy B to get an expected payoff

of 4q + 1 = 7/3 > 5/3. Similarly, if player II instead chose a smaller value

of q, say q = 1/12, and player I knows this, then player I can play pure

strategy T to get an expected payoff of 2(1− q) = 11/6 > 5/3.

From player II’s perspective, his expected loss is 5(1 − p) if he plays the

pure strategy L and 1+p if he plays the pure strategy R, and he will aim to

minimize this expected payout. In order to maximize this minimum, player I

will choose p = 2/3, which again yields an expected gain of 5/3.
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5− 5p

p = 2/3

Now, let’s set up a formal framework for our theory.

For an arbitrary two-person zero-sum game with m × n payoff matrix

A = (ai,j)
i=1,...,m
j=1,...,n , a mixed strategy for player I corresponds to a vector

(x1, . . . , xm) where xi represents the probability of playing pure strategy i.

The set of mixed strategies for player I is denoted by

∆m =

{
x ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}
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(since the probabilities are nonnegative and add up to 1), and the set of

mixed strategies for player II by

∆n =

y ∈ Rn : yj ≥ 0,
n∑
j=1

yj = 1

 .

Observe that in this vector notation, pure strategies are represented by

the standard basis vectors.

If player I follows a mixed strategy x, and player II follows a mixed strat-

egy y, then with probability xiyj player I plays i and player II plays j,

resulting in payoff ai,j to player I. Thus the expected payoff to player I is∑
i,j xiai,jyj = xTAy.

We refer to Ay as the payoff vector for player I corresponding to the

mixed strategy y for player II. The elements of this vector represent the

expected payoffs to player I corresponding to each of his pure strategies.

Similarly, xTA is the payout vector for player II corresponding to the

mixed strategy x for player I. The elements of this vector represent the

expected payouts for each of player II’s pure strategies.

We say that a vector w ∈ Rd dominates another vector u ∈ Rd if wi ≥ ui
for all i = 1, . . . , d. We write w ≥ u.

Next we formally define what it means for a strategy to be optimal for

each player:

Definition 2.1.1. A mixed strategy x̃ ∈ ∆m is optimal for player I if

min
y∈∆n

x̃TAy = max
x∈∆m

min
y∈∆n

xTAy.

Similarly, a mixed strategy ỹ ∈ ∆n is optimal for player II if

max
x∈∆m

xTAỹ = min
y∈∆n

max
x∈∆m

xTAy.

Notice that in the definiton of an optimal strategy for player I, we give

player II the advantage of knowing what strategy player I will play. Simi-

larly, in the definition of an optimal strategy for player II, player I has the

advantage of knowing how player II will play. A priori the expected payoffs

could be different depending on which player has the advantage of knowing

how the other will play. But as we shall see in the next section, these two

expected payoffs are the equal at every two-person zero-sum game.

2.2 Von Neumann’s minimax theorem

In this section, we will prove that every two-person, zero-sum game has a

value. That is, in any two-person zero-sum game, the expected payoff for
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an optimal strategy for player I equals the expected payout for an optimal

strategy of player II. Our proof will rely on a basic theorem from convex

geometry.

Definition 2.2.1. A set K ⊆ Rd is convex if, for any two points a,b ∈ K,

the line segment that connects them,

{pa + (1− p)b : p ∈ [0, 1]},

also lies in K.

Our proof will make use of the following result about convex sets:

Theorem 2.2.1 (The Separating Hyperplane Theorem). Suppose that

K ⊆ Rd is closed and convex. If 0 /∈ K, then there exists z ∈ Rd and c ∈ R
such that

0 < c < zTv

for all v ∈ K.

Here 0 denotes the vector of all 0’s, and zT v is the usual dot product∑
i zivi. The theorem says that there is a hyperplane (a line in the plane,

or, more generally, an affine Rd−1-subspace in Rd) that separates 0 from K.

In particular, on any continuous path from 0 to K, there is some point that

lies on this hyperplane. The separating hyperplane is given by
{
x ∈ Rd :

zTx = c
}

. The point 0 lies in the half-space
{
x ∈ Rd : zTx < c

}
, while the

convex body K lies in the complementary half-space
{
x ∈ Rd : zTx > c

}
.

0

K

line

Fig. 2.1. Hyperplane separating the closed convex body K from 0.

Recall first that the (Euclidean) norm of v is the (Euclidean) distance

between 0 and v, and is denoted by ‖v‖. Thus ‖v‖ =
√

vTv. A subset of a
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metric space is closed if it contains all its limit points, and bounded if it is

contained inside a ball of some finite radius R. In what follows, the metric

is the Euclidean metric.

Proof of Theorem 2.2.1. If we pick R so that the ball of radius R centered

at 0 intersects K, the function v 7→ ‖v‖, considered as a map from K∩{x ∈
Rd : ‖x‖ ≤ R} to [0,∞), is continuous, with a domain that is nonempty,

closed and bounded (see Figure 2.2). Thus the map attains its infimum at

some point z in K. For this z ∈ K we have

‖z‖ = inf
v∈K
‖v‖.

R

0

z

K

v

Fig. 2.2. Intersecting K with a ball to get a nonempty closed bounded
domain.

Let v ∈ K. Because K is convex, for any ε ∈ (0, 1), we have that εv +

(1− ε)z ∈ K. Since z has the minimal norm of any point in K,

‖z‖2 ≤ ‖εv + (1− ε)z‖2.

Multiplying this out,

zT z ≤
(
εvT + (1− ε)zT

)(
εv + (1− ε)z

)
zT z ≤ ε2vTv + (1− ε)2zT z + 2ε(1− ε)zTv.

Rearranging terms we get

ε2(2zTv − vTv − zT z) ≤ 2ε(zTv − zT z).

Canceling an ε, and letting ε approach 0, we find

0 ≤ zTv − zT z,
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which means

‖z‖2 ≤ zTv.

Since z ∈ K and 0 /∈ K, the norm ‖z‖ > 0. Choosing c = 1
2‖z‖

2, we get

0 < c < zTv for each v ∈ K.

We will also need the following simple lemma:

Lemma 2.2.1. Let X and Y be closed and bounded sets in Rd. Let f :

X × Y → R be continuous. Then

max
x∈X

min
y∈Y

f(x,y) ≤ min
y∈Y

max
x∈X

f(x,y).

Proof. Let (x∗,y∗) ∈ X × Y . Clearly we have f(x∗,y∗) ≤ supx∈X f(x,y∗)

and infy∈Y f(x∗,y) ≤ f(x∗,y∗), which gives us

inf
y∈Y

f(x∗,y) ≤ sup
x∈X

f(x,y∗).

Because the inequality holds for any x∗ ∈ X, it holds for supx∗∈X of the

quantity on the left. Similarly, because the inequality holds for all y∗ ∈ Y ,

it must hold for the infy∗∈Y of the quantity on the right. We have:

sup
x∈X

inf
y∈Y

f(x,y) ≤ inf
y∈Y

sup
x∈X

f(x,y).

Because f is continuous and X and Y are closed and bounded, the minima

and maxima are achieved and we have proved the lemma.

We can now prove:

Theorem 2.2.2 (Von Neumann’s Minimax Theorem). Let A be an

m × n payoff matrix, and let ∆m = {x ∈ Rm : x ≥ 0,
∑

i xi = 1} and

∆n = {y ∈ Rn : y ≥ 0,
∑

j yj = 1}. Then

max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy.

This quantity is called the value of the two-person zero-sum game with

payoff matrix A.

By x ≥ 0 we mean simply that in each coordinate x is at least as large

as 0, i.e., that each coordinate is nonnegative. This condition together with∑
i xi = 1 ensure that x is a probability distribution.

Proof. The inequality

max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy
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follows immediately from the lemma because f(x,y) = xTAy is a continuous

function in both variables and ∆m ⊂ Rm, ∆n ⊂ Rn are closed and bounded.

For the other inequality, suppose towards a contradiction that

max
x∈∆m

min
y∈∆n

xTAy < λ < min
y∈∆n

max
x∈∆m

xTAy.

Define a new game with payoff matrix Â given by âi,j = ai,j − λ. For this

game, we have

max
x∈∆m

min
y∈∆n

xT Ây < 0 < min
y∈∆n

max
x∈∆m

xT Ây. (2.1)

Each mixed strategy y ∈ ∆n for player II yields a payoff vector Ây ∈ Rm.

Let K denote the set of all vectors which dominate the payoff vectors Ây,

that is,

K =
{
Ây + v : y ∈ ∆n, v ∈ Rm,v ≥ 0

}
.

It is easy to see that K is convex and closed: this follows immediately

from the fact that ∆n, the set of probability vectors corresponding to mixed

strategies y for player II, is closed bounded and convex, and the fact that

{v ∈ Rm,v ≥ 0} is closed and convex. Also, K cannot contain the 0 vector,

because if 0 were in K, there would be some mixed strategy y ∈ ∆n such

that Ây ≤ 0, whence for any x ∈ ∆m we have xT Ây ≤ 0, which would

contradict the right-hand side of (2.1).

Thus K satisfies the conditions of the separating hyperplane theorem

(Theorem 2.2.1), which gives us z ∈ Rm and c > 0 such that c < zTw for

all w ∈ K. That is,

zT (Ây + v) > c > 0 for all y ∈ ∆n and v ≥ 0. (2.2)

If zj < 0 for some j, we could choose v ∈ Rm so that zT Ây +
∑

i zivi
would be negative for some y ∈ ∆n (let vi = 0 for i 6= j and vj →∞), which

would contradict (2.2). Thus z ≥ 0.

The same condition (2.2) gives us that not all of the zi can be zero. This

implies that s =
∑m

i=1 zi is strictly positive, so that x̃ = 1
s (z1, . . . , zm)T =

z/s ∈ ∆m, with x̃T Ây > c/s > 0 for all y ∈ ∆n.

In other words, x̃ is a mixed strategy for player I that gives a positive

expected payoff against any mixed strategy of player II. This contradicts

the left hand inequality of (2.1).

Note that the above proof merely shows that the value always exists; it

doesn’t give a way of finding it. Finding the value of a zero-sum game
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involves solving a linear program, which typically requires a computer for

all but the simplest of payoff matrices. In many cases, however, the payoff

matrix of a game can be simplified enough to solve it “by hand”. In the next

two sections of the chapter, we will look at some techniques for simplifying

a payoff matrix.

p.57, the displayed matrix is not aligned, the zero-s do not form a diagonal.

2.3 The technique of domination

Domination is a technique for reducing the size of a game’s payoff matrix,

enabling it to be more easily analyzed. Consider the following example.

Example 2.3.1 (Plus One). Each player chooses a number from {1, 2, . . . , n}
and writes it down on a piece of paper; then the players compare the two

numbers. If the numbers differ by one, the player with the higher number

wins $1 from the other player. If the players’ choices differ by two or more,

the player with the higher number pays $2 to the other player. In the event

of a tie, no money changes hands.

The payoff matrix for the game is:

player II

1 2 3 4 5 6 · · · n

p
la

ye
r

I

1 0 −1 2 2 2 2 · · · 2

2 1 0 −1 2 2 2 · · · 2

3 −2 1 0 −1 2 2 · · · 2

4 −2 −2 1 0 −1 2 · · · 2

5 −2 −2 −2 1 0 −1 2 2
...

...
...

. . .
...

n− 1 −2 −2 · · · 1 0 −1

n −2 −2 · · · 1 0

In general, if each element of row i1 of a payoff matrix is at least as big as

the corresponding element in row i2, that is, if ai1,j ≥ ai2,j for each j, then,

for the purpose of determining the value of the game, we may erase row i2.

Similarly, there is a notion of domination for player II: If ai,j1 ≤ ai,j2 for

each i, then we can eliminate column j2 without affecting the value of the

game.

Why is it okay to do this? Assuming that ai,j1 ≤ ai,j2 for each i, if player II

changes a mixed strategy y to another z by letting zj1 = yj1 + yj2 , zj2 = 0
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and z` = y` for all ` 6= j1, j2, then

xTAy =
∑
i,`

xiai,`y` ≥
∑
i,`

xiai,`z` = xTAz,

because xi(ai,j1yj + ai,j2yj2) ≥ xiai,j1(zj + zj2). Therefore, strategy z, in

which she didn’t use column j2, is at least as good for player II as y.

In our example, we may eliminate each row and column indexed by four

or greater (the reader should verify this) to obtain:

player II

1 2 3

p
la

ye
r

I 1 0 −1 2

2 1 0 −1

3 −2 1 0

To analyze the reduced game, let x = (x1, x2, x3) correspond to a mixed

strategy for player I. The expected payments made by player II for each of

her pure strategies 1, 2 and 3 are(
x2 − 2x3,−x1 + x3, 2x1 − x2

)
. (2.3)

Player II will try to minimize her expected payment. Player I will choose

(x1, x2, x3) so as to maximize the minimum.

For player I’s optimal strategy (x1, x2, x3), each component of the payoff

vector in (2.3) must be at least the value of the game. For this game, the

payoff matrix is antisymmetric, so the value must be 0. Thus x2 ≥ 2x3,

x3 ≥ x1, and 2x1 ≥ x2. If any one of these inequalities were strict, then

combining them we could deduce x2 > x2, a contradiction, so in fact each

of them is an equality. Since the xi’s add up to 1, we find that the optimal

strategy for each player is (1/4, 1/2, 1/4).

Remark. It can of course happen in a game that none of the rows dominates

another one, but there are two rows, v, w, whose convex combination pv +

(1 − p)w for some p ∈ (0, 1) does dominate some other rows. In this case

the dominated rows can still be eliminated.

2.4 The use of symmetry

Another way of simplifying the analysis of a game is via the technique of

symmetry. We illustrate a symmetry argument in the following example:

A submarine is located on two adjacent squares of a three-by-three grid.

A bomber (player I), who cannot see the submerged craft, hovers overhead

and drops a bomb on one of the nine squares. He wins $1 if he hits the
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Example 2.4.1 (Submarine Salvo).

S

B

S

Fig. 2.3.

submarine and $0 if he misses it. There are nine pure strategies for the

bomber, and twelve for the submarine so the payoff matrix for the game is

quite large, but by using symmetry arguments, we can greatly simplify the

analysis.

Note that there are three types of essentially equivalent moves that the

bomber can make: He can drop a bomb in the center, in the center of one of

the sides, or in a corner. Similarly, there are two types of positions that the

submarine can assume: taking up the center square, or taking up a corner

square.

Using these equivalences, we may write down a more manageable payoff

matrix:

submarine

center corner

b
o
m

b
er corner 0 1/4

midside 1/4 1/4

middle 1 0

Note that the values for the new payoff matrix are a little different than in

the standard payoff matrix. This is because when the bomber (player I) and

submarine are both playing corner there is only a one-in-four chance that

there will be a hit. In fact, the pure strategy of corner for the bomber in

this reduced game corresponds to the mixed strategy of bombing each corner

with 1/4 probability in the original game. We have a similar situation for

each of the pure strategies in the reduced game.
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We can use domination to simplify the matrix even further. This is be-

cause for the bomber, the strategy midside dominates that of corner (be-

cause the sub, when touching a corner, must also be touching a midside).

This observation reduces the matrix to:

submarine

center corner

b
om

b
er

midside 1/4 1/4

middle 1 0

Now note that for the submarine, corner dominates center, and thus we

obtain the reduced matrix:

submarine

corner

b
om

b
er

midside 1/4

middle 0

The bomber picks the better alternative — technically, another application

of domination — and picks midside over middle. The value of the game is

1/4, the bomb drops on one of the four mid-sides with probability 1/4 for

each, and the submarine hides in one of the eight possible locations (pairs

of adjacent squares) that exclude the center, choosing any given one with a

probability of 1/8.

Mathematically, we can think of the symmetry argument as follows. Sup-

pose that we have two maps, π1, a permutation (a relabelling) of the possible

moves of player I, and π2 a permutation of the possible moves of player II,

for which the payoffs ai,j satisfy

aπ1(i),π2(j) = ai,j . (2.4)

If this is so, then there are optimal strategies for player I that give equal

weight to π1(i) and i for each i. Similarly, there exists a mixed strategy for

player II that is optimal and assigns the same weight to the moves π2(j)

and j for each j.

2.5 Resistor networks and troll games

In this section we will analyze a zero-sum game played on a road network

connecting two cities, A and B. The analysis of this game is related to

networks of resistors, where the roads correspond to resistors.

Recall that if two points are connected by a resistor with resistance R,

and there is a voltage drop of V across the two points, then the current that
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flows through the resistor is V/R. The conductance is the reciprocal of

the resistance. When the pair of points are connected by a pair of resistors

with resistances R1 and R2 arranged in series (see the top of Figure 2.4),

the effective resistance between the nodes is R1 +R2, because the current

that flows through the resistors is V/(R1 + R2). When the resistors are

arranged in parallel (see the bottom of Figure 2.4), it is the conductances

that add, i.e., the effective conductance between the nodes is 1/R1 + 1/R2,

i.e., the effective resistance is

1

1/R1 + 1/R2
=

R1R2

R1 +R2
.

1/(1/a+1/b)

b

a

ba a+b

Fig. 2.4. In a network consisting of two resistors with resistances R1 and
R2 in series (shown on top), the effective resistance is R1 +R2. When the
resistors are in parallel, the effective conductance is 1/R1 + 1/R2, so the
effective resistance is 1/(1/R1 + 1/R2) = R1R2/(R1 +R2).

These series and parallel rules for computing the effective resistance can

be used in sequence to compute the effective resistance of more complicated

networks, as illustrated in Figure 2.5. If the effective resistance between

1
1

1

1

1 1/2

1

1

3/2 3/5

Fig. 2.5. A resistor network, with resistances all equaling to 1, has an
effective resistance of 3/5. Here the parallel rule was used first, then the
series rule, and then the parallel rule again.
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two points can be computed by repeated application of the series rule and

parallel rule, then the network is called a series-parallel network. Many

networks are series-parallel, such as the one shown in Figure 2.6, but some

networks are not series-parallel, such as the complete graph on four vertices.

Fig. 2.6. A series-parallel graph, i.e., a graph for which the effective resis-
tance can be computed by repeated application of the series and parallel
rules.

For the troll game, we restrict our attention to series-parallel road net-

works. Given such a network, consider the following game:

Example 2.5.1 (Troll and Traveler). A troll and a traveler will each

choose a route along which to travel from city A to city B and then they

will disclose their routes. Each road has an associated toll. In each case

where the troll and the traveler have chosen the same road, the traveler

pays the toll to the troll.

This is of course a zero-sum game. As we shall see, there is an elegant

and general way to solve this type of a game on series-parallel networks.

We may interpret the road network as an electrical circuit, and the tolls as

resistances.

We claim that optimal strategies for both players are the same: Under an

optimal strategy, a player planning his route, upon reaching a fork in the

road, should move along any of the edges emanating from the fork with a

probability proportional to the conductance of that edge.

To see why this strategy is optimal we will need some new terminology:

Definition 2.5.1. Given two zero-sum games G1 and G2 with values v1

and v2, their series sum-game corresponds to playing G1 and then G2.
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The series sum-game has the value v1 + v2. In a parallel sum-game, each

player chooses either G1 or G2 to play. If each picks the same game, then

it is that game which is played. If they differ, then no game is played, and

the payoff is zero.

We may write a big payoff matrix for the parallel sum-game as follows:

player II

moves of G1 moves of G2

p
la

ye
r

I

moves of G1 G1 0

moves of G2 0 G2

If the two players play G1 and G2 optimally, the payoff matrix is effectively:

player II

play in G1 play in G2

p
la

ye
r

I

play in G1 v1 0

play in G2 0 v2

If both payoffs v1 and v2 are positive, the optimal strategy for each player

consists of playing G1 with probability v2/(v1 +v2), and G2 with probability

v1/(v1+v2). (This is also the optimal strategy if v1 and v2 are both negative,

but if they have opposite signs, say v1 < 0 < v2, then player I should play

in G2 and II should play in G1, resulting in a payoff of 0.) Assuming both

v1 and v2 are positive, the expected payoff of the parallel sum-game is

v1v2

v1 + v2
=

1

1/v1 + 1/v2
,

which is the effective resistance of an electrical network with two edges

arranged in parallel that have resistances v1 and v2. This explains the form

of the optimal strategy in troll-traveler games on series-parallel networks.

The troll-and-traveler game could be played on a more general (not nec-

essarily series-parallel) network with two distinguished points A and B. On

general networks, we get a similarly elegant solution when we define the

game in the following way: If the troll and the traveler traverse an edge

in the opposite directions, then the troll pays the cost of the road to the

traveler. Then the value of the game turns out to be the effective resistance

between A and B.

2.6 Hide-and-seek games

Hide-and-seek games form another class of two-person zero-sum games that

we will analyze.
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Example 2.6.1 (Hide-and-seek Game). The game is played on a matrix

whose entries are 0’s and 1’s. Player II chooses a 1 somewhere in the matrix,

and hides there. Player I chooses a row or a column and wins a payoff of 1

if the line that he picks contains the location chosen by player II.

To analyze this game, we will need Hall’s marriage theorem, an important

result that comes up in many places in graph theory.

Suppose that each member of a group B of boys is acquainted with some

subset of a group G of girls. Under what circumstances can we find a pairing

of boys to girls so that each boy is matched with a girl with whom he is

acquainted?

Clearly, there is no hope of finding such a matching unless for each subset

B′ of the boys, the collection G′ of all girls with whom the boys in B′ are

acquainted is at least as large as B′. What Hall’s theorem says is that this

condition is not only necessary but sufficient: As long as the above condition

holds, it is always possible to find a matching.

Theorem 2.6.1 (Hall’s marriage theorem). Suppose that B is a finite

set of boys and G is a finite set of girls. Let f(b) denote the set of girls

with whom boy b is acquainted. For a subset B′ ⊆ B of the boys, let f(B′)

denote the set of girls with whom some boy in B′ is acquainted, i.e., f(B′) =

∪b∈B′f(b). There is a matching between the boys and the girls such that each

boy is paired with a girl with whom he is acquainted if and only if for each

B′ ⊆ B we have |f(B′)| ≥ |B′|.

Fig. 2.7. Illustration of Hall’s marriage theorem.

Proof. As we stated above, the condition is clearly necessary for there to

be a matching. We will prove that the condition is also sufficient by using

induction on the number of boys.

The base case when |B| = 1 (or even |B| = 0) is easy.
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Suppose |f(B′)| > |B′| for each nonempty B′ ( B. Then we can just

match an arbitrary boy to any girl he knows. The set of remaining boys and

the set of remaining girls still satisfy the condition in the statement of the

theorem, so by the inductive hypothesis, we match them up. (Of course this

approach does not work for the example in Figure 2.7: there are three sets

of boys B′ for which |f(B′)| 6> |B′|, and indeed, if the third boy is paired

with the first girl, there is no way to match the remaining boys and girls.)

Otherwise, there is some nonempty set B′ ( B satisfying |f(B′)| = |B′|.
(In the example in Figure 2.7, B′ could be the first two boys, or the second

boy, or the fourth boy.) Since |B′| < |B|, we can use the inductive hypothesis

to match up the set of boys B′ and the set of girls f(B′) with whom they

are acquainted. Let A be a set of unmatched boys, i.e., A ⊆ B \ B′. Then

|f(A∪B′)| = |f(B′)|+|f(A)\f(B′)| and |f(A∪B′)| ≥ |A∪B′| = |A|+|B′| =
|A| + |f(B′)|, so |f(A) \ f(B′)| ≥ |A|. Thus each set of unmatched boys

is acquainted with at least as many unmatched girls. Since |B \ B′| <
|B|, we can again use the inductive hypothesis to match up the remaining

unmatched boys and girls. This completes the induction step.

Using Hall’s theorem, we can prove another useful result. Given a matrix

whose entries consist of 0’s and 1’s, two 1’s are said to be independent if

no row or column contains them both. A cover of the matrix is a collection

of rows and columns whose union contains each of the 1’s.

Lemma 2.6.1 (König’s lemma). Given an n ×m matrix whose entries

consist of 0’s and 1’s, the maximal size of a set of independent 1’s is equal

to the minimal size of a cover.

Proof. Consider a maximal independent set of 1’s (of size k), and a minimal

cover consisting of ` lines. That k ≤ ` is easy: each 1 in the independent set

is covered by a line, and no two are covered by the same line.

For the other direction we make use of Hall’s lemma. Suppose that among

these ` lines, there are r rows and c columns. In applying Hall’s lemma, the

rows in the cover are the boys, and the columns not in the cover are the

girls. A boy (row) knows a girl (column) if their intersection contains a 1.

Suppose that j boys (rows in the cover) collectively know s girls (columns

not in the cover). We could replace these j rows by these s columns to

obtain a new cover. If the cover is minimal, then it must be that s ≥ j.

By Hall’s lemma, we can match up the r rows in the cover with r of the

columns outside the cover so that each row knows its matched column.

Similarly, we match up the c columns in the cover with c of the rows

outside the cover so that each column knows its matched row.
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Each of the intersections of the above ` = r + c pairs of matched rows

and columns contains a 1, and these 1’s are independent, hence k ≥ `. This

completes the proof.

We now use König’s lemma to analyze Hide-and-seek. Recall that in Hide-

and-seek, player II chooses a 1 somewhere in the matrix, and hides there,

and player I chooses a row or a column and wins a payoff of 1 if the line that

he picks contains the location chosen by player II. One strategy for player II

is to pick a maximal independent set of 1’s, and then hide in a uniformly

chosen element of it. Let k be the size of the maximal set of independent

1’s. No matter what row or column player I picks, it contains at most one

1 of the independent set, and player II hid there with probability 1/k, so

he is found with probability at most 1/k. One strategy for player I consists

of picking uniformly at random one of the lines of a minimal cover of the

matrix. No matter where player II hides, at least one line from the cover

will find him, so he is found with probability at least 1 over the size of

the minimal cover. Thus König’s lemma shows that this is, in fact, a joint

optimal strategy, and that the value of the game is k−1, where k is the size

of the maximal set of independent 1’s.

2.7 General hide-and-seek games

We now analyze a more general version of the game of hide-and-seek.

Example 2.7.1 (Generalized Hide-and-seek). A matrix of values (bi,j)n×n
is given. Player II chooses a location (i, j) at which to hide. Player I chooses

a row or a column of the matrix. He wins a payment of bi,j if the line he has

chosen contains the hiding place of his opponent. We assume that bi,j > 0

for all i, j.

First, we propose a strategy for player II, later checking that it is optimal.

Player II first chooses a fixed permutation π of the set {1, . . . , n} and then

hides at location (i, πi) with a probability pi that he chooses. For example, if

n = 5, and the fixed permutation π is 3, 1, 4, 2, 5, then the following matrix

gives the probability of player II hiding in different places:

0 0 p1 0 0

p2 0 0 0 0

0 0 0 p3 0

0 p4 0 0 0

0 0 0 0 p5
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Given a permutation π, the optimal choice for pi is pi = di,πi/Dπ, where

di,j = b−1
i,j

and

Dπ =
n∑
i=1

di,πi ,

because it is this choice that equalizes the expected payments. For the

fixed strategy, player I may choose to select row i (for an expected payoff of

pibi,π(i)) or column j (for an expected payoff of pjbπ−1(j),j), so the expected

payoff of the game is then

max

(
max
i
pibi,π(i),max

j
pπ−1(j)bπ−1(j),j

)
= max

(
max
i

1

Dπ
,max

j

1

Dπ

)
=

1

Dπ
.

Thus, if player II is going to use a strategy that consists of picking a

permutation π∗ and then doing as described, the right permutation to pick

is one that maximizes Dπ. We will in fact show that doing this is an optimal

strategy, not just in the restricted class of those involving permutations in

this way, but over all possible strategies.

To find an optimal strategy for player I, we need an analogue of König’s

lemma. In this context, a covering of the matrix D = (di,j)n×n will be a

pair of vectors u = (u1, . . . , un) and w = (w1, . . . , wn), with non-negative

components, such that ui + wj ≥ di,j for each pair (i, j). The analogue of

the König lemma is

Lemma 2.7.1. Consider a minimal covering (u∗,w∗) of D = (di,j)n×n
(i.e., one for which

∑n
i=1

(
ui + wi

)
is minimal). Then

n∑
i=1

(
u∗i + w∗i

)
= max

π
Dπ. (2.5)

Proof. Note that a minimal covering exists, because the continuous map

(u,w) 7→
n∑
i=1

(
ui + wi

)
,

defined on the closed and bounded set{
(u,w) : 0 ≤ ui, wi ≤M, and ui + wj ≥ di,j

}
,

where M = maxi,j di,j , does indeed attain its infimum.

Note also that we may assume that mini u
∗
i > 0.
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That the left-hand-side of (2.5) is at least the right-hand-side is straight-

forward. Indeed, for any π, we have that u∗i +w∗πi ≥ di,πi . Summing over i,

we obtain this inequality.

Showing the other inequality is harder, and requires Hall’s marriage lemma,

or something similar. We need a definition of “knowing” to use Hall’s theo-

rem. We say that row i knows column j if

u∗i + w∗j = di,j .

Let’s check Hall’s condition. Suppose that k rows i1, . . . , ik know between

them only ` < k columns j1, . . . , j`. Define ũ from u∗ by reducing these rows

by a small amount ε > 0. Leave the other rows unchanged. The condition

that ε must satisfy is in fact that

0 < ε ≤ min
i
u∗i

and also

ε ≤ min
{
ui + wj − di,j : (i, j) such that ui + wj > di,j

}
.

Similarly, define w̃ from w∗ by adding ε to the ` columns known by the k

rows. Leave the other columns unchanged. That is, for the columns that

are changing,

w̃ji = w∗ji + ε for i ∈ {1, . . . , `}.

We claim that (ũ, w̃) is a covering of the matrix. At places where the

equality di,j = u∗i + w∗j holds, we have that di,j = ũi + w̃j , by construction.

In places where di,j < u∗i + w∗j , then

ũi + w̃j ≥ u∗i − ε+ w∗j > di,j ,

the latter inequality is by the assumption on the value of ε.

The covering (ũ, w̃) has a strictly smaller sum of components than does

(u∗,w∗), contradicting the fact that this latter covering is minimal.

We have checked that Hall’s condition holds. Hall’s theorem provides a

matching of columns and rows. This is a permutation π∗ such that, for

each i, we have that

u∗i + w∗π∗i = di,π∗i ,

from which it follows that
n∑
i=1

u∗i +

n∑
i=1

w∗i = Dπ∗ ≤ max
π

Dπ.

This gives the other inequality required to prove the lemma.
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The lemma and the proof give us a pair of optimal strategies for the

players. Player I chooses row i with probability u∗i /Dπ∗ , and column j with

probability w∗j/Dπ∗ . Against this strategy, if player II chooses some (i, j),

then the payoff will be

u∗i + v∗j
Dπ∗

bi,j ≥
di,jbi,j
Dπ∗

= D−1
π∗ .

We deduce that the permutation strategy for player II described before the

lemma is indeed optimal.

Example 2.7.2. Consider the Hide-and-seek game with payoff matrix B

given by [
1 1/2

1/3 1/5

]
.

This means that the matrix D is equal to[
1 2

3 5

]
.

To determine a minimal cover of the matrix D, consider first a cover

that has all of its mass on the rows: u = (2, 5) and v = (0, 0). Note that

rows 1 and 2 know only column 2, according to the definition of “knowing”

introduced in the analysis of this game. Modifying the vectors u and v

according to the rule given in this analysis, we obtain updated vectors,

u = (1, 4) and v = (0, 1), whose sum is 6, equal to the expression maxπDπ

(obtained by choosing the permutation π = id).

An optimal strategy for the hider is to play p(1, 1) = 1/6 and p(2, 2) =

5/6. An optimal strategy for the seeker consists of playing q(row1) = 1/6,

q(row2) = 2/3 and q(col2) = 1/6. The value of the game is 1/6.

2.8 The bomber and battleship game

Example 2.8.1 (Bomber and Battleship). In this family of games, a

battleship is initially located at the origin in Z. At any given time step in

{0, 1, . . .}, the ship moves either left or right to a new site where it remains

until the next time step. The bomber (player I), who can see the current

location of the battleship (player II), drops one bomb at some time j over

some site in Z. The bomb arrives at time j + 2, and destroys the battleship

if it hits it. (The battleship cannot see the bomber or its bomb in time to

change course.) For the game Gn, the bomber has enough fuel to drop its

bomb at any time j ∈ {0, 1, . . . , n}. What is the value of the game?
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The answer depends on n. The value of Gn can only increase with larger

n, because the bomber has more choices for when to drop the bomb. For

each n the value for the bomber is at least 1/3, since the bomber could pick

a uniformly random site in {−2, 0, 2} to bomb, and no matter where the

battleship goes, there is at least a 1/3 chance that the bomb will hit it.

The value of G0 is in fact 1/3, because the battleship may play the fol-

lowing strategy to ensure that it has a 1/3 probability of being at any of

the sites −2, 0, or 2 at time 2: It moves left or right with equal probability

at the first time step, and then turns with probability of 1/3 or goes on

in the same direction with probability 2/3. No matter what the bomber

does, there is only a 1/3 chance that the battleship is where the bomb was

dropped, so the value of G0 is at most 1/3 (and hence equal to 1/3).

The battleship may also manoevre to ensure that the expected payoff for

G1 is also at most 1/3. What it can do is follow its above strategy for G0

for its first two moves, and then at time step 2, if it is at location 0 then

it continues in the same direction, if it is at location 2 or −2 then it turns

with probability 1/2. If the bomber drops its bomb at time 0, then by our

analysis of G0, the battleship will be where the bomb lands with probability

1/3. If the bomber drops its bomb at time 1, it sees the battleship’s first

move, and then drops the bomb. Suppose the battleship moved to 1 on its

first move. It moves to 0 and then on to −1 with probability 1/3 × 1. It

moves to 2 and then on to 3 with probability 2/3 × 1/2, or on to 1 with

probability 2/3× 1/2. It is at each location with probability no more than

1/3, so the expected payoff for the bomber is no more than 1/3 no matter

what it does. Similarly, if the battleship’s first move was to location −1, the

expected payoff for the bomber is no more than 1/3. Hence the value of G1

is also 1/3.

It is impossible for the battleship to pursue this strategy to obtain a value

of 1/3 for the game G2. Indeed, v(G2) > 1/3.

We now describe a strategy for the game that is due to the mathematician

Rufus Isaacs. Isaacs’ strategy is not optimal in any given game Gn, but it

does have the merit of having the same limiting value, as n→∞, as optimal

play. The strategy is quite simple: on the first move, go in either direction

with probability 1/2, and from then on, turn with probability of 1− a, and

keep going with probability of a.

We now choose a to optimize the probability of evasion for the battleship.

Its probabilities of arrival at sites −2, 0, or 2 at time 2 are a2, 1 − a and

a(1−a). We have to choose a so that max{a2, 1−a} is minimal. This value is

achieved when a2 = 1−a, whose solution in (0, 1) is given by a = 2/(1+
√

5).
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Fig. 2.8. The bomber drops its bomb where it hopes the battleship will be
two time units later. The battleship does not see the bomb coming, and
randomizes its path to avoid the bomb. (The length of each arrow is 2.)

The payoff for the bomber against this strategy is at most 1−a. We have

proved that the value v(Gn) of the game Gn is at most 1− a, for each n.

Consider the zero-sum game whose payoff matrix is given by:

battleship

b
om

b
er

1 0 8

2 3 −1

To solve this game, first, we search for saddle points — a value in the matrix

that is maximal in its column and minimal in its row. None exist in this

case. Nor are there any evident dominations of rows or columns.

Suppose then that player I plays the mixed strategy (p, 1− p). If there is

an optimal strategy for player II in which she plays each of her three pure

strategies with positive probability, then

2− p = 3− 3p = 9p− 1.

No solution exists, so we consider now mixed strategies for player II in which

one pure strategy is never played. If the third column has no weight, then

2 − p = 3 − 3p implies that p = 1/2. However, the entry 2 in the matrix

becomes a saddle point in the 2× 2 matrix formed by eliminating the third

column, which is not consistent with p = 1/2.

Consider instead strategies supported on columns 1 and 3. The equality
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2− p = 9p− 1 yields p = 3/10, giving payoffs of(
17

10
,
21

10
,
17

10

)
for the three strategies of player II.

If player II plays column 1 with probability q and column 3 otherwise,

then player I sees the payoff vector (8 − 7q, 3q − 1). These quantities are

equal when q = 9/10, so that player I sees the payoff vector (17/10, 17/10).

Thus, the value of the game is 17/10.

Exercises

2.1 Find the value of the following zero-sum game. Find some optimal

strategies for each of the players.

player II

p
la

ye
r

I 8 3 4 1

4 7 1 6

0 3 8 5

2.2 Find the value of the zero-sum game given by the following payoff

matrix, and determine optimal strategies for both players. 0 9 1 1

5 0 6 7

2 4 3 3


2.3 Player II is moving an important item in one of three cars, labeled 1,

2, and 3. Player I will drop a bomb on one of the cars of his choosing.

He has no chance of destroying the item if he bombs the wrong car.

If he chooses the right car, then his probability of destroying the

item depends on that car. The probabilities for cars 1, 2, and 3 are

equal to 3/4, 1/4, and 1/2.

Write the 3×3 payoff matrix for the game, and find some optimal

winning strategies for each of the players.

2.4 Recall the bomber and battleship game from section 2.8. Set up the

payoff matrix and find the value of the game G2.

2.5 Consider the following two-person zero-sum game. Both players si-

multaneously call out one of the numbers {2, 3}. Player 1 wins if

the sum of the numbers called is odd and player 2 wins if their sum
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is even. The loser pays the winner the product of the two numbers

called (in dollars). Find the payoff matrix, the value of the game,

and an optimal strategy for each player.

2.6 There are two roads that leave city A and head towards city B. One

goes there directly. The other branches into two new roads, each of

which arrives in city B. A traveler and a troll each choose paths

from city A to city B. The traveler will pay the troll a toll equal to

the number of common roads that they traverse. Set up the payoff

matrix, find the value of the game, and find some optimal mixed

strategies.

2.7 Company I opens one restaurant and company II opens two. Each

company decides in which of three locations each of its restaurants

will be opened. The three locations are on the line, at Central and

at Left and Right, with the distance between Left and Central, and

between Central and Right, equal to half a mile. A customer is

located at an unknown location according to a uniform random vari-

able within one mile each way of Central (so that he is within one

mile of Central, and has an even probability of appearing in any part

of this two-mile stretch). He walks to whichever of Left, Central, or

Right is the nearest, and then into one of the restaurants there, cho-

sen uniformly at random. The payoff to company I is the probability

that the customer visits a company I restaurant.

Solve the game: that is, find its value, and some optimal mixed

strategies for the companies.

2.8 Bob has a concession at Yankee Stadium. He can sell 500 umbrellas

at $10 each if it rains. (The umbrellas cost him $5 each.) If it shines,

he can sell only 100 umbrellas at $10 each and 1000 sunglasses at $5

each. (The sunglasses cost him $2 each.) He has $2500 to invest in

one day, but everything that isn’t sold is trampled by the fans and

is a total loss.

This is a game against nature. Nature has two strategies: rain and

shine. Bob also has two strategies: buy for rain or buy for shine.

Find the optimal strategy for Bob assuming that the probability

for rain is 50%.

2.9 The number picking game. Two players I and II pick a positive

integer each. If the two numbers are the same, no money changes
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hands. If the players’ choices differ by 1 the player with the lower

number pays $1 to the opponent. If the difference is at least 2 the

player with the higher number pays $2 to the opponent. Find the

value of this zero-sum game and determine optimal strategies for

both players. (Hint: use domination.)

2.10 A zebra has four possible locations to cross the Zambezi river, call

them a, b, c, and d, arranged from north to south. A crocodile can

wait (undetected) at one of these locations. If the zebra and the

crocodile choose the same location, the payoff to the crocodile (that

is, the chance it will catch the zebra) is 1. The payoff to the crocodile

is 1/2 if they choose adjacent locations, and 0 in the remaining cases,

when the locations chosen are distinct and non-adjacent.

(a) Write the payoff matrix for this zero-sum game in normal form.

(b) Can you reduce this game to a 2× 2 game?

(c) Find the value of the game (to the crocodile) and optimal strate-

gies for both.

2.11 A recursive zero-sum game. An inspector can inspect a facility

on just one occasion, on one of the days 1, . . . , n. The worker at the

facility can cheat or be honest on any given day. The payoff to the

inspector is 1 if he inspects while the worker is cheating. The payoff

is −1 if the worker cheats and is not caught. The payoff is also −1

if the inspector inspects but the worker did not cheat, and there is

at least one day left. This leads to the following matrices Γn for

the game with n days: the matrix Γ1 is shown on the left, and the

matrix Γn is shown on the right.

worker

cheat honest

in
sp

ec
to

r

inspect 1 0

wait −1 0

worker

cheat honest

in
sp

ec
to

r

inspect 1 −1

wait −1 Γn−1

Find the optimal strategies and the value of Γn.
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General-sum games

We now turn to discussing the theory of general-sum games. Such a

game is given in strategic form by two matrices A and B, whose entries

give the payoffs to the two players for each pair of pure strategies that they

might play. Usually there is no joint optimal strategy for the players, but

there still exists a generalization of the Von Neumann minimax, the so-

called Nash equilibrium. These equilibria give the strategies that “rational”

players could follow. However, there are often several Nash equilibria, and

in choosing one of them, some degree of cooperation between the players

may be optimal. Moreover, a pair of strategies based on cooperation might

be better for both players than any of the Nash equilibria. We begin with

two examples.

3.1 Some examples

Example 3.1.1 (The prisoner’s dilemma). Two suspects are held and

questioned by police who ask each of them to confess. The charge is serious,

but the evidence held by the police is poor. If one confesses and the other

is silent, then the confessor goes free, and the other prisoner is sentenced

to ten years. If both confess, they will each spend eight years in prison. If

both remain silent, the sentence is one year to each, for some minor crime

that the police are able to prove. Writing the negative payoff as the number

of years spent in prison, we obtain the following payoff matrix:

prisoner II

silent confess

p
ri

so
n

er
I

silent (−1,−1) (−10, 0)

confess (0,−10) (−8,−8)

75
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Fig. 3.1. Two prisoners considering whether to confess or remain silent.

The payoff matrices for players I and II are the 2 × 2 matrices given by

the collection of first, or second, entries in each of the vectors in the above

matrix.

If the players only play one round, then a domination argument shows

that each should confess: the outcome he secures by confessing is preferable

to the alternative of remaining silent, whatever the behavior of the other

player. However, if they both follow this reasoning, the outcome is much

worse for each player than the one achieved by both remaining silent. In a

once-only game, the “globally” preferable outcome of each remaining silent

could only occur were each player to suppress the desire to achieve the best

outcome in selfish terms. In games with repeated play ending at a known

time, the same applies, by an argument of backward induction. In games

with repeated play ending at a random time, however, the globally preferable

solution may arise even with selfish play.

Example 3.1.2 (The battle of the sexes). The wife wants to head to

the opera, but the husband yearns instead to spend an evening watching

baseball. Neither is satisfied by an evening without the other. In numbers,

player I being the wife and II the husband, here is the scenario:

husband

opera baseball

w
if

e opera (4,1) (0,0)

baseball (0,0) (1,4)

One might naturally come up with two modifications of Von Neumann’s
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minimax theorem. The first one is that the players do not suppose any

rationality about their partner, so they just want to assure a payoff as-

suming the worst-case scenario. Player I can guarantee a safety value of

maxx∈∆2 miny∈∆2 xTAy, where A denotes the matrix of payoffs received by

her. This gives the strategy (1/5, 4/5) for her, with an assured expected

payoff of 4/5, regardless of what player II does. The analogous strategy

for player II is (4/5, 1/5), with the same assured expected payoff of 4/5.

Note that these values are lower than what each player would get from just

agreeing to go where the other prefers.

The second possible adaptation of the minimax approach is that player I

announces her probability p of going to the opera, expecting player II to

maximize his payoff given this p. Then player I maximizes the result over p.

However, in contrast to the case of zero-sum games, the possibility of an-

nouncing a strategy and committing to it in a general-sum game might

actually raise the payoff for the announcer, and hence it becomes a question

how a model can accommodate this possibility. In our game, each player

could just announce their favorite choice, and to expect their spouse to be-

have “rationally” and agree with them. This leads to a disaster, unless one

of them manages to make this announcement before the spouse does, and

the spouse truly believes that this decision is impossible to change, and takes

the effort to act rationally.

In this example, it is quite artificial to suppose that the two players cannot

discuss, and that there are no repeated plays. Nevertheless, this example

shows clearly that a minimax approach is not suitable anymore.

3.2 Nash equilibria

We now introduce a central notion for the study of general-sum games:

Let A, B be m× n payoff-matrices, giving the strategic form of a game.

Definition 3.2.1 (Nash equilibrium). A pair of vectors (x∗,y∗) with x∗ ∈
∆m and y∗ ∈ ∆n is a Nash equilibrium if no player gains by unilaterally

deviating from it. That is,

x∗TAy∗ ≥ xTAy∗

for all x ∈ ∆m, and

x∗TBy∗ ≥ x∗TBy

for all y ∈ ∆n. The game is called symmetric if m = n and Ai,j = Bj,i
for all i, j ∈ {1, 2, . . . , n}. A pair (x,y) of strategies is called symmetric if

xi = yi for all i = 1, . . . , n.
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We will see that there always exists a Nash equilibrium; however, there

can be many of them. If x and y are unit vectors, with a 1 in some coordinate

and 0 in all the others, then the equilibrium is called pure.

In the above example of the battle of the sexes, there are two pure equi-

libria: these are BB and OO. There is also a mixed equilibrium, (4/5, 1/5)

for player I and (1/5, 4/5) for II, having the value 4/5, which is very low.

Consider a simple model, where two cheetahs are giving chase to two

antelopes. The cheetahs will catch any antelope they choose. If they choose

the same one, they must share the spoils. Otherwise, the catch is unshared.

There is a large antelope and a small one, that are worth ` and s to the

cheetahs. Here is the matrix of payoffs:

cheetah II

L S

ch
ee

ta
h

I

L (`/2, `/2) (`, s)

S (s, `) (s/2, s/2)

Fig. 3.2. Cheetahs deciding whether to chase the large or the small ante-
lope.

If the larger antelope is worth at least twice as much as the smaller (` ≥
2s), for player I the first row dominates the second. Similarly for player II,

the first column dominates the second. Hence each cheetah should just chase

the larger antelope. If s < ` < 2s, then there are two pure Nash equilibria,

(L, S) and (S, L). These pay off quite well for both cheetahs — but how

would two healthy cheetahs agree which should chase the smaller antelope?

Therefore it makes sense to look for symmetric mixed equilibria.

If the first cheetah chases the large antelope with probability p, then the

expected payoff to the second cheetah by chasing the larger antelope is

`

2
p+ (1− p)`,
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and the expected payoff arising from chasing the smaller antelope is

ps+ (1− p)s
2
.

These expected payoffs are equal when

p =
2`− s
`+ s

.

For any other value of p, the second cheetah would prefer either the pure

strategy L or the pure strategy S, and then the first cheetah would do better

by simply playing pure strategy S or pure strategy L. But if both cheetahs

chase the large antelope with probability

2`− s
`+ s

,

then neither one has an incentive to deviate from this strategy, so this a

Nash equilibrium, in fact a symmetric Nash equilibrium.

Symmetric mixed Nash equilibria are of particular interest. It has been

experimentally verified that in some biological situations, systems approach

such equilibria, presumably by mechanisms of natural selection. We explain

briefly how this might work. First of all, it is natural to consider symmetric

strategy pairs, because if the two players are drawn at random from the

same large population, then the probabilities with which they follow a par-

ticular strategy are the same. Then, among symmetric strategy pairs, Nash

equilibria play a special role. Consider the above mixed symmetric Nash

equilibrium, in which p0 = (2`− s)/(`+ s) is the probability of chasing the

large antelope. Suppose that a population of cheetahs exhibits an overall

probability p > p0 for this behavior (having too many greedy cheetahs, or

every single cheetah being slightly too greedy). Now, if a particular cheetah

is presented with a competitor chosen randomly from this population, then

chasing the small antelope has a higher expected payoff to this particular

cheetah than chasing the large one. That is, the more modest a cheetah

is, the larger advantage it has over the average cheetah. Similarly, if the

cheetah population is too modest on the average, i.e., p < p0, then the

more ambitious cheetahs have an advantage over the average. Altogether,

the population seems to be forced by evolution to chase antelopes accord-

ing to the symmetric mixed Nash equilibrium. The related notion of an

evolutionarily stable strategy is formalized in section 3.7.

Example 3.2.1 (The game of chicken). Two drivers speed head-on to-

ward each other and a collision is bound to occur unless one of them chickens

out at the last minute. If both chicken out, everything is OK (they both
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win 1). If one chickens out and the other does not, then it is a great suc-

cess for the player with iron nerves (payoff = 2) and a great disgrace for

the chicken (payoff = −1). If both players have iron nerves, disaster strikes

(both lose some big value M).

Fig. 3.3. The game of chicken.

We solve the game of chicken. Write C for the strategy of chickening

out, D for driving forward. The pure equilibria are (C,D) and (D,C). To

determine the mixed equilibria, suppose that player I plays C with prob-

ability p and D with probability 1 − p. This presents player II with ex-

pected payoffs of p × 1 + (1 − p) × (−1) = 2p − 1 if she plays C, and

p× 2 + (1− p)× (−M) = (M + 2)p−M if she plays D. We seek an equilib-

rium where player II has positive probability on each of C and D, and thus

one for which

2p− 1 = (M + 2)p−M.

That is, p = 1−1/M . The payoff for player II is 2p−1, which equals 1−2/M .

Note that, as M increases to infinity, this symmetric mixed equilibrium gets

concentrated on (C,C), and the expected payoff increases up to 1.

There is an apparent paradox here. We have a symmetric game with

payoff matrices A and B that has a unique symmetric equilibrium with

payoff γ. By replacing A and B by smaller matrices Ã and B̃, we obtain
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a payoff γ̃ > γ from a unique symmetric equilibrium. This is impossible in

zero-sum games.

However, if the decision of each player gets switched randomly with some

small but fixed probability, then letting M → ∞ does not yield total con-

centration on the strategy pair (C,C).

This is another game in which the possibility of a binding commitment

increases the payoff. If one player rips out the steering wheel and throws

it out of the car, then he makes it impossible to chicken out. If the other

player sees this and believes her eyes, then she has no other choice but to

chicken out.

In the battle of sexes and the game of chicken, making a binding com-

mitment pushes the game into a pure Nash equilibrium, and the nature of

that equilibrium strongly depends on who managed to commit first. In the

game of chicken, the payoff for the one who did not make the commitment

is lower than the payoff in the unique mixed Nash equilibrium, while it is

higher in the battle of sexes.

Example 3.2.2 (No pure equilibrium). Here is an example where there is

no pure Nash equilibrium, only a unique mixed one, and both commitment

strategy pairs have the property that the player who did not make the

commitment still gets the Nash equilibrium payoff.

player II

C D

p
la

ye
r

I

A (6,−10) (0, 10)

B (4, 1) (1, 0)

In this game, there is no pure Nash equilibrium (one of the players always

prefers another strategy, in a cyclic fashion). For mixed strategies, if player I

plays (A,B) with probabilities (p, 1 − p), and player II plays (C,D) with

probabilities (q, 1− q), then the expected payoffs are 1 + 3q − p+ 3pq for I

and 10p+ q − 21pq for II. We easily get that the unique mixed equilibrium

is p = 1/21 and q = 1/3, with payoffs 2 for I and 10/21 for II. If player

I can make a commitment, then by choosing p = 1/21 − ε for some small

ε > 0, he will make II choose q = 1, and the payoffs will be 4 + 2/21 − 2ε

for I and 10/21 + 11ε for II. If II can make a commitment, then by choosing

q = 1/3 + ε, she will make I choose p = 1, and the payoffs will be 2 + 6ε

for I and 10/3− 11ε for II.

An amusing real-life example of binding commitments comes from a cer-

tain narrow two-way street in Jerusalem. Only one car at a time can pass. If

two cars headed in opposite directions meet in the street, the driver that can
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signal to the opponent that he “has time for a face-off” will be able to force

the other to back out. Some drivers carry a newspaper with them which

they can strategically pull out to signal that they are not in any particular

rush.

3.3 Correlated equilibria

Recall the “battle of the sexes”:

husband

opera baseball

w
if

e opera (4,1) (0,0)

baseball (0,0) (1,4)

Here, there are two pure Nash equilibria: both go to the opera or both

watch baseball. What would be a good way to decide between them?

One way to do this would be to pick a joint action based on a flip of a single

coin. For example, if a coin lands head then both go to the opera, otherwise

both watch baseball. This is different from mixed strategies where each

player independently randomized over individual strategies. In contrast,

here a single coin-flip determines the strategies for both.

This idea was introduced in 1974 by Aumann ([?]) and is now called

a correlated equilibrium. It generalizes Nash equilibrium and can be,

surprisingly, easier to find in large games.

Definition 3.3.1 (Correlated Equilbrium). A joint distribution on strate-

gies for all players is called a correlated equilibrium if no player gains by

deviating unilaterally from it. More formally, in a two-player general-sum

game with m×n payoff matrices A and B, a correlated equilibrium is given

by an m × n matrix z. This matrix represents a joint density and has the

following properties:

zi,j ≥ 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

and
m∑
i=1

n∑
j=1

zi,j = 1.

We say that no player benefits from unilaterally deviating provided:

(z)iAz ≥ xTAz
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for all i ∈ {1, . . . ,m} and all x ∈ ∆m; while

zB(z)j ≥ zBy

for all j ∈ {1, . . . , n} and all y ∈ ∆n.

Observe that Nash equilibrium provides a correlated equilibrium where

the joint distribution is the product of the two independent individual dis-

tributions. In the example of the battle of the sexes, where Nash equilibrium

is of the form (4/5, 1/5) for player I and (1/5, 4/5) for player II, when play-

ers follow a Nash equilibrium they are, in effect, flipping a biased coin with

probability of heads 4/5 and tails 1/5 twice — if head-tail, both go to the

opera; tail-head, both watch baseball, etc. The joint density matrix looks

like:

husband

opera baseball

w
if

e opera 4/25 16/25

baseball 1/25 4/25

Let’s now go back to the Game of Chicken.

player II

C D

p
la

ye
r

I

C (1, 1) (−1, 2)

D (2,−1) (−100,−100)

There is no dominant strategy here and the pure equilibria are (C,D)

and (D,C) with the payoffs of (−1, 2) and (2,−1) respectively. There is a

symmetric mixed Nash equilibrium which puts probability p = 1− 1
100 on C

and 1− p = 1
100 on D, giving the expected payoff of 98

100 .

If one of the players could commit to D, say by ripping out the steering

wheel, then the other would do better to swerve and the payoffs are: 2 to

the one that committed first and 1 to the other one.

Another option would be to enter a binding agreement. They could, for

instance, use a correlated equilibrium and flip a coin between (C,D) and

(D,C). Then the expected payoff is 1.5. This is the average between the

payoff to the one that commits first and the other player. It is higher than

the expected payoff to a mixed strategy.

Finally, they could select a mediator and let her suggest a strategy to each.

Suppose that a mediator chooses (C,D), (D,C), (C,C) with probability 1
3

each. Next the mediator discloses to each player which strategy he or she

should use (but not the strategy of the opponent). At this point, the players

are free to follow or to reject the suggested strategy.
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We claim that following the mediator’s suggestion is a correlated equi-

librium. Notice that the strategies are dependent, so this is not a Nash

equilibrium.

Suppose mediator tells player I to play D, in that case he knows that

player II was told to swerve and player I does best by complying to collect

the payoff of 2. He has no incentive to deviate.

On the other hand, if the mediator tells him to play C, he is uncertain

about what player II is told, so (C,C) and (C,D) are equally likely. We

have expected payoff to following the suggestion of 1
2 −

1
2 = 0, while the

expected payoff from switching is 2 × 1
2 − 100 × 1

2 = −49, so the player is

better off following the suggestion.

Overall the expected payoff to player I when both follow the suggestion is

−1× 1
3 + 2× 1

3 + 1× 1
3 = 2

3 . This is better than they could do by following

an uncorrelated Nash equilibrium.

Surprisingly, finding a correlated equilibrium in large scale problems is

actually easier than finding a Nash equilibrium. The problem reduces to

linear programming.

In the absence of a mediator, the players could follow some external signal,

like the weather.

3.4 General-sum games with more than two players

It does not make sense to talk about zero-sum games when there are more

than two players. The notion of a Nash equilibrium for general-sum games,

however, can be used in this context. We now describe formally the set-up

of a game with k ≥ 2 players. Each player i has a set Si of pure strategies.

We are given functions Fj : S1 × S2 × · · · × Sk → R, for j ∈ {1, . . . , k}. If,

for each i ∈ {1, . . . , k}, player i uses strategy `i ∈ Si, then player j has a

payoff of Fj(`1, . . . , `k).

Example 3.4.1 (An ecology game). Three firms will either pollute a lake

in the following year, or purify it. They pay 1 unit to purify, but it is free

to pollute. If two or more pollute, then the water in the lake is useless,

and each firm must pay 3 units to obtain the water that they need from

elsewhere. If at most one firm pollutes, then the water is usable, and the

firms incur no further costs.

Assuming that firm III purifies, the cost matrix is:
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firm II

purify pollute

fi
rm

I

purify (1,1,1) (1,0,1)

pollute (0,1,1) (3,3,3+1)

If firm III pollutes, then it is:

firm II

purify pollute

fi
rm

I

purify (1,1,0) (3+1,3,3)

pollute (3,3+1,3) (3,3,3)

Fig. 3.4.

To discuss the game, we firstly introduce the notion of Nash equilibrium

in the context of games with several players:

Definition 3.4.1. A pure Nash equilibrium in a k-person game is a set

of pure strategies for each of the players,

(`∗1, . . . , `
∗
k) ∈ S1 × · · · × Sk

such that, for each j ∈ {1, . . . , k} and `j ∈ Sj ,

Fj(`
∗
1, . . . , `

∗
j−1, `j , `

∗
j+1, . . . , `

∗
k) ≤ Fj(`∗1, . . . , `∗j−1, `

∗
j , `
∗
j+1, . . . , `

∗
k).

More generally, a mixed Nash equilibrium is a collection of k probability

vectors x̃i, each of length |Si|, such that

Fj(x̃
1, . . . , x̃j−1, x, x̃j+1, . . . , x̃k) ≤ Fj(x̃1, . . . , x̃j−1, x̃j , x̃j+1, . . . , x̃k),
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for each j ∈ {1, . . . , k} and each probability vector x of length |Sj |. Here

Fj(x
1,x2, . . . ,xk) :=

∑
`1∈S1,...,`k∈Sk

x1(`1) . . .xk(`k)Fj(`1, . . . , `k).

Definition 3.4.2. A game is symmetric if, for every i0, j0 ∈ {1, . . . , k},
there is a permutation π of the set {1, . . . , k} such that π(i0) = j0 and

Fπ(i)(`π(1), . . . , `π(k)) = Fi(`1, . . . , `k).

For this definition to make sense, we are in fact requiring that the strategy

sets of the players coincide.

We will prove the following result:

Theorem 3.4.1 (Nash’s theorem). Every game has a Nash equilibrium.

Note that the equilibrium may be mixed.

Corollary 3.4.1. In a symmetric game, there is a symmetric Nash equilib-

rium.

Returning to the ecology game, note that the pure equilibria consist of

all three firms polluting, or one of the three firms polluting, and the re-

maining two purifying. We now seek mixed equilibria. Let p1, p2, p3 be the

probability that firm I, II, III purifies, respectively. If firm III purifies, then

its expected cost is p1p2 + p1(1 − p2) + p2(1 − p1) + 4(1 − p1)(1 − p2). If

it pollutes, then the cost is 3p1(1 − p2) + 3p2(1 − p1) + 3(1 − p1)(1 − p2).

If we want an equilibrium with 0 < p3 < 1, then these two expected val-

ues must coincide, which gives 1 = 3(p1 + p2 − 2p1p2). Similarly, assuming

0 < p2 < 1 we get 1 = 3(p1 + p3 − 2p1p3), and assuming 0 < p1 < 1 we get

1 = 3(p2 + p3 − 2p2p3). Subtracting the second equation from the first one

we get 0 = 3(p2 − p3)(1− 2p1). If p2 = p3, then the third equation becomes

quadratic in p2, with two solutions, p2 = p3 = (3 ±
√

3)/6, both in (0, 1).

Substituting these solutions into the first equation, both yield p1 = p2 = p3,

so there are two symmetric mixed equilibria. If, instead of p2 = p3, we

let p1 = 1/2, then the first equation becomes 1 = 3/2, which is nonsense.

This means that there is no asymmetric equilibrium with at least two mixed

strategies. It is easy to check that there is no equilibrium with two pure and

one mixed strategy. Thus we have found all Nash equilibria: one symmetric

and three asymmetric pure equilibria, and two symmetric mixed ones.

3.5 The proof of Nash’s theorem

Recall Nash’s theorem:
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Theorem 3.5.1. For any general-sum game with k ≥ 2 players, there exists

at least one Nash equilibrium.

To prove this theorem, we will use:

Theorem 3.5.2 (Brouwer’s fixed-point theorem). If K ⊆ Rd is closed,

convex and bounded, and T : K → K is continuous, then there exists x ∈ K
such that T (x) = x.

Remark. We will prove this fixed-point theorem in section 3.6.3, but observe

now that the proof is easy in case the dimension d = 1, and K is a closed

interval [a, b]. Defining f(x) = T (x) − x, note that [a, b] 3 T (a) ≥ a

implies that f(a) ≥ 0, while [a, b] 3 T (b) ≤ b implies that f(b) ≤ 0. The

intermediate value theorem assures the existence of x ∈ [a, b] for which

f(x) = 0, so T (x) = x. Note also that each of the hypotheses on K in the

theorem is required, as the following examples show:

(i) K = R (closed, convex, not bounded) with T (x) = x + 1

(ii) K = (0, 1) (bounded, convex, not closed) with T (x) = x/2

(iii) K =
{
z ∈ C : |z| ∈ [1, 2]

}
(bounded, closed, not convex) with

T (z) = −z.

Proof of Nash’s theorem using Brouwer’s theorem. Suppose that there are

two players and the game is specified by payoff matrices Am×n and Bm×n
for players I and II. Put K = ∆m×∆n and we will define a map T : K → K

from a pair of strategies for the two players to another such pair. Note firstly

that K is convex, closed and bounded. Define, for x ∈ ∆m and y ∈ ∆n,

ci = ci(x,y) = max
{
A(i)y − xTAy , 0

}
,

where A(i) denotes the ith row of the matrix A. That is, ci equals the gain

for player I obtained by switching from strategy x to pure strategy i, if this

gain is positive: otherwise, it is zero. Similarly, we define

dj = dj(x,y) = max
{
xTB(j) − xTBy , 0

}
,

where B(j) denotes the jth column of B. The quantities dj have the same

interpretation for player II as the ci do for player I. We now define the

map T ; it is given by T (x,y) =
(
x̂, ŷ

)
, where

x̂i =
xi + ci

1 +
∑m

k=1 ck

for i ∈ {1, . . . ,m}, and

ŷj =
yj + dj

1 +
∑n

k=1 dk
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for j ∈ {1, . . . , n}. The map T : K → K since

m∑
i=1

x̂i =

∑m
i=1(xi + ci)

1 +
∑m

k=1 ck
=

1 +
∑m

i=1 ci
1 +

∑m
k=1 ck)

= 1,

and x̂i ≥ 0 for all i ∈ {1, . . . ,m}, and similarly for ŷ. Note that T is

continuous, because ci and dj are. Applying Brouwer’s theorem, we find

that there exists (x,y) ∈ K for which (x,y) = (x̂, ŷ). We now claim that,

for this choice of x and y, each ci = 0 for i ∈ {1, . . . ,m}, and dj = 0 for

j ∈ {1, . . . , n}. To see this, suppose, for example, that c1 > 0. There must

exist ` ∈ {1, . . . ,m} for which x` > 0 and xTAy ≥ A(`)y. (Otherwise

xTAy =
m∑
i=1

xiA(i)y =
∑

{`:x`>0}

x`A(`)y > (
∑

{`:x`>0}

xell)x
TAy = xTAy,

which is a contradiction.) For this `, we have that c` = 0, by definition.

This implies that

x̂` =
x`

1 +
∑m

k=1 ck
< x`,

because c1 > 0. That is, the assumption that c1 > 0 has given us a contra-

diction.

We may repeat this argument for each i ∈ {1, . . . ,m}, thereby proving

that each ci = 0. Similarly, each dj = 0. We deduce that xTAy ≥ A(i)y for

all i ∈ {1, . . . ,m}. This implies that

xTAy ≥ x′
T
Ay

for all x′ ∈ ∆m. Similarly,

xTBy ≥ xTBy′

for all y′ ∈ ∆n. Thus, (x,y) is a Nash equilibrium.

For k > 2 players, we still can consider the functions

c
(j)
i (x(1), . . . ,x(k)) for i, j = 1, . . . , k,

where x(j) ∈ ∆n(j) is a mixed strategy for player j, and c
(j)
i is the gain for

player j obtained by switching from strategy x(j) to pure strategy i, if this

gain is positive. The simple notation for c
(j)
i is lost, but the proof carries

over.

We also stated that in a symmetric game, there is always a symmetric

Nash equilibrium. This also follows from the above proof, by noting that
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the map T , defined from the k-fold product ∆n × · · · ×∆n to itself, can be

restricted to the diagonal

D = {(x, . . . ,x) ∈ ∆k
n : x ∈ ∆n}.

The image of D under T is again in D, because, in a symmetric game,

c
(1)
i (x, . . . ,x) = · · · = c

(k)
i (x, . . . ,x) for all i = 1, . . . , k and x ∈ ∆n. Then,

Brouwer’s fixed-point theorem gives us a fixed point within D, which is a

symmetric Nash equilibrium.

3.6 Fixed-point theorems*

We now discuss various fixed-point theorems, beginning with a few easier

ones.

3.6.1 Easier fixed-point theorems

Theorem 3.6.1 (Banach’s fixed-point theorem). Let K be a complete

metric space. Suppose that T : K → K satisfies d(Tx, Ty) ≤ λd(x,y) for

all x,y ∈ K, with 0 < λ < 1 fixed. Then T has a unique fixed point in K.

Remark. Recall that a metric space is complete if each Cauchy sequence

therein converges to a point in the space. Consider, for example, any metric

space that is a subset of Rn together with the metric d which is the Euclidean

distance:

d(x,y) = ‖x− y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

See [?] for a discussion of general metric spaces.

Fig. 3.5. Under the transformation T a square is mapped to a smaller
square, rotated with respect to the original. When iterated repeatedly, the
map produces a sequence of nested squares. If we were to continue this
process indefinitely, a single point (fixed by T ) would emerge.

Proof. Uniqueness of the fixed point: if Tx = x and Ty = y, then

d(x,y) = d(Tx, Ty) ≤ λd(x,y).

Thus, d(x,y) = 0, so x = y.
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As for existence, given any x ∈ K, we define xn = Txn−1 for each n ≥ 1,

setting x0 = x. Set a = d(x0,x1), and note that d(xn,xn+1) ≤ λna. If

k > n, then by triangle inequality,

d(xn,xk) ≤ d(xn,xn+1) + · · ·+ d(xk−1,xk) ≤ a
(
λn + · · ·+ λk−1

)
≤ aλn

1− λ
.

This implies that
{
xn : n ∈ N

}
is a Cauchy sequence. The metric space K

is complete, whence xn → z as n→∞. Note that

d(z, Tz) ≤ d(z,xn) +d(xn,xn+1) +d(xn+1, Tz) ≤ (1 +λ)d(z,xn) +λna→ 0

as n→∞. Hence, d(Tz, z) = 0, and Tz = z.

Example 3.6.1 (A map that decreases distances but has no fixed

points). Consider the map T : R→ R given by

T (x) = x+
1

1 + exp(x)
.

Note that, if x < y, then

T (x)− x =
1

1 + exp(x)
>

1

1 + exp(y)
= T (y)− y,

implying that T (y)− T (x) < y − x. Note also that

T ′(x) = 1− exp(x)(
1 + exp(x)

)2 > 0,

so that T (y) − T (x) > 0. Thus, T decreases distances, but it has no fixed

points. This is not a counterexample to Banach’s fixed-point theorem, how-

ever, because there does not exist any λ ∈ (0, 1) for which |T (x)− T (y)| <
λ|x− y| for all x, y ∈ R.

This requirement can sometimes be relaxed, in particular for compact

metric spaces.

Remark. Recall that a metric space is compact if each sequence therein

has a subsequence that converges to a point in the space. A subset of the

Euclidean space Rd is compact if and only if it is closed and bounded. See

[?].

Theorem 3.6.2 (Compact fixed-point theorem). If X is a compact

metric space and T : X → X satisfies d(T (x), T (y)) < d(x,y) for all x 6=
y ∈ X, then T has a fixed point.
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Proof. Let f : X → R be given by f(x) = d (x, Tx). We first show that f is

continuous. By triangle inequality we have:

d (x, Tx) ≤ d(x,y) + d (y, Ty) + d (Ty, Tx) ,

so

f(x)− f(y) ≤ d(x,y) + d (Ty, Tx) ≤ 2d(x,y).

By symmetry, we also have: f(y)− f(x) ≤ 2d(x,y) and hence

|f(x)− f(y)| ≤ 2d(x,y),

which implies that f is continuous.

Since f is a continuous function and X is compact, there exists x0 ∈ X
such that

f(x0) = min
x∈X

f(x). (3.1)

If Tx0 6= x0, then f(T (x0)) = d(Tx0, T
2x0) < d(x0, Tx0) = f(x0), and we

have a contradiction to the minimizing property (3.1) of x0. This implies

that Tx0 = x0.

3.6.2 Sperner’s lemma

We now state and prove a tool to be used in the proof of Brouwer’s fixed-

point theorem.

Lemma 3.6.1 (Sperner). In d = 1: Suppose that the unit interval is subdi-

vided 0 = t0 < t1 < · · · < tn = 1, with each ti being marked zero or one. If

t0 is marked zero and tn is marked one, then the number of adjacent pairs

(tj , tj+1) with different markings is odd.

In d = 2: Subdivide a triangle into smaller triangles in such a way that

a vertex of any of the small triangles may not lie in the interior of an edge

of another. Assume that the division consists of at least one step. Label the

vertices of the small triangles 0, 1 or 2: the three vertices of the big triangle

must be labelled 0, 1, and 2; vertices of the small triangles that lie on an edge

of the big triangle must receive the label of one of the endpoints of that edge.

Then the number of small triangles with three differently labelled vertices is

odd; in particular, it is non-zero.

Remark. Sperner’s lemma holds in any dimension. In the general case d,

we replace the triangle by a d-simplex, use d + 1 labels, with analogous

restrictions on the labels used.
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Fig. 3.6. Sperner’s lemma when d = 2.

Proof. For d = 1, this is obvious (and can be proven by induction on n).

For d = 2, we will count in two ways the set Q of pairs consisting of a small

triangle and an edge on that triangle. Let A12 denote the number of 12-type

edges of small triangles that lie in the boundary of the big triangle. Let B12

be the number of such edges in the interior. Let Nabc denote the number of

small triangles where the three labels are a, b and c. Note that

N012 + 2N112 + 2N122 = A12 + 2B12,

because each side of this equation is equal to the number of pairs of triangle

and edge, where the edge is of type (12). From the case d = 1 of the lemma,

we know that A12 is odd, and hence N012 is odd, too. (In general, we may

induct on the dimension, and use the inductive hypothesis to find that this

quantity is odd.)

Corollary 3.6.1 (No-Retraction Theorem). Let K ⊆ Rd be compact and

convex, and with non-empty interior. There is no continuous map F : K →
∂K whose restriction to ∂K is the identity.

Case d = 2. First, we show that it suffices to take K = ∆, where ∆ is an

equilateral triangle. Otherwise, because K has a non-empty interior, we

may locate x ∈ K such that there exists a small triangle centered at x and

contained in K. We call this triangle ∆ for convenience. Construct a map

H : K → ∆ as follows: For each y ∈ ∂K, define H(y) to be equal to the

element of ∂∆ that the line segment from x through y intersects. Setting

H(x) = x, define H(z) for other z ∈ K by a linear interpolation of the values

H(x) and H(q), where q is the element of ∂K lying on the line segment from
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x through z. Note that ∂K is not empty since K is not empty and does not

equal Rd since bounded.

Note that, if F : K → ∂K is a retraction from K to ∂K, then H◦F ◦H−1 :

∆→ ∂∆ is a retraction of ∆. This is the reduction we claimed.

Now suppose that F∆ : ∆→ ∂∆ is a retraction of the equilateral triangle

with side length 1. Since F = F∆ is continuous on the compact ∆, it

is uniformly continuous, in particular there exists δ > 0 such that for all

x,y ∈ ∆ satisfying ‖x − y‖ < δ we have ‖F (x) − F (y)‖ <
√

3
4 . We can

assume that δ < 1.

1

0

2

Fig. 3.7. Candidate for a re-
traction.
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1

Fig. 3.8. A triangle with mul-
ticolored vertices indicates a
discontinuity.

Label the three vertices of ∆ by 0, 1, 2. Triangulate ∆ into triangles of

side length less than δ. In this subdivision, label any vertex x according to

the label of the vertex of ∆ nearest to F (x), with an arbitrary choice being

made to break ties.

By Sperner’s lemma, there exists a small triangle whose vertices are la-

belled 0, 1, 2. The condition that ‖F (x) − F (y)‖ <
√

3
4 implies that any

pair of these vertices must be mapped under F to interior points of one of

the sides of ∆, with a different side of ∆ for each pair. This is impossible,

implying that no retraction of ∆ exists.

Remark. We should note, that the Brouwer’s fixed-point theorem fails if the

convexity assumption is completely omitted. This is also true for the above

corollary. However, the main property of K that we used was not convexity;

it is enough if there is a homeomorphism (a one-to-one continuous map with

continuous inverse) between K and ∆.
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3.6.3 Brouwer’s fixed-point theorem

First proof of Brouwer’s fixed-point theorem. Recall that we are given

a continuous map T : K → K, with K a closed, convex and bounded set.

If K is contained in an affine hyperplane of Rd then, by the induction as-

sumption, T must have a fixed point. Hence, by Lemma 3.6.2 below, we

can assume that the interior of K is not empty. Suppose that T has no fixed

points. Then we can define a continuous map F : K → ∂K as follows. For

each x ∈ K, we draw a ray from T (x) through x until it meets ∂K. We set

F (x) equal to this point of intersection. If T (x) ∈ ∂K, we set F (x) equal

that intersection point of the ray with ∂K which is not equal to T (x). In

the case of the domain K =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1
}

, for instance, the

map F could have been written explicitly in terms of T :

F (x) =
T (x)− x

‖T (x)− x‖
.

With some checking, it follows that F : K → ∂K is continuous. Thus, F is

a retraction of K – but this contradicts the No-Retraction Theorem 3.6.1,

so T must have a fixed point.

Lemma 3.6.2. Let K ⊂ Rd be compact and convex. Then either K has an

interior point or K is contained in an affine hyperplane of Rd.

Proof. Without loss of generality, 0 ∈ K. If K contains d linearly inde-

pendent vectors v1, . . . , vd ∈ Rd then the convex set K contains the sim-

plex conv{0, v1, . . . , vd} which equals Aconv{0, e1, . . . , ed} for some matrix

A (A = (v1, . . . , vd)). Here {e1, . . . , ed} denotes the standard basis of Rd.
Note that

conv{0, e1, . . . , ed} = {(x1, . . . , xd) : xi ≥ 0,
d∑
i=1

xi ≤ 1},

of which ( 1
d+1 , . . . ,

1
d+1) is an interior point. Otherwise, there is a maximal

independent set v1, . . . , v`, with ` < d, in K such that K ⊂ {v1, . . . , vd}.

3.6.4 Brouwer’s fixed-point theorem via Hex

Thinking of a Hex board as a hexagonal lattice, we can construct what is

known as a dual lattice in the following way: The nodes of the dual are

the centers of the hexagons and the edges link every two neighboring nodes

(those are a unit distance apart).

Coloring the hexagons is now equivalent to coloring the nodes.

This lattice is generated by two vectors u, v ∈ R2 as shown in the left
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Fig. 3.9. Hexagonal lattice and its dual triangular lattice.

of Figure 3.10. The set of nodes can be described as {au + bv : a, b ∈ Z}.
Let’s put u = (0, 1) and v = (

√
3

2 ,
1
2). Two nodes x and y are neighbors if

‖x− y‖ = 1.

T(u)

T(v)

u

v

Fig. 3.10. Action of G on the generators of the lattice.

We can obtain a more convenient representation of this lattice by applying

a linear transformation G defined by:

G(u) =

(
−
√

2

2
,

√
2

2

)
; G(v) = (0, 1).

Fig. 3.11. Under G an equilateral triangular lattice is transformed to an
equivalent lattice.

The game of Hex can be thought of as a game on the corresponding

graph (see Fig. 3.11). There, a Hex move corresponds to coloring of one of

the nodes. A player wins if she manages to create a connected subgraph

consisting of nodes in her assigned color, which also includes at least one

node from each of the two sets of her boundary nodes.
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The fact that any colored graph contains one and only one such subgraph

is inherited from the corresponding theorem for the original Hex board.

Proof of Brouwer’s theorem using Hex. As we remarked in section 1.2.1, the

fact that there is a winner in any play of Hex is the discrete analogue of the

two-dimensional Brouwer fixed-point theorem. We now use this fact about

Hex (proved as Theorem 1.2.3) to prove Brouwer’s theorem, at least in

dimension two. This is due to David Gale.

By an argument similar to the one in the proof of the No-Retraction

Theorem, we may restrict our attention to a unit square. Consider a con-

tinuous map T : [0, 1]2 −→ [0, 1]2. Component-wise we write: T (x) =

(T1(x), T2(x)). Suppose it has no fixed points. Then define a function

f(x) = T (x)−x. The function f is never zero and continuous on a compact

set, hence ‖f‖ has a positive minimum ε > 0. In addition, as a continuous

map on a compact set, T is uniformly continuous, hence ∃ δ > 0 such that

‖x − y‖ < δ implies ‖T (x) − T (y)‖ < ε. Take such a δ with a further

requirement δ < (
√

2− 1)ε. (In particular, δ < ε√
2
.)

Consider a Hex board drawn in [0, 1]2 such that the distance between

neighboring vertices is at most δ, as shown in Fig. 3.12. Color a vertex v

on the board blue if |f1(v)| is at least ε/
√

2. If a vertex v is not blue, then

‖f(v)‖ ≥ ε implies that |f2(v)| is at least ε/
√

2; in this case, color v yellow.

We know from Hex that in this coloring, there is a winning path, say, in blue,

a

b

 [0,1]2

a

b

*

*

Fig. 3.12.

between certain boundary vertices a and b. For the vertex a∗, neighboring

a on this blue path, we have 0 < a∗1 ≤ δ. Also, the range of T is in [0, 1]2.

Hence, since |T1(a∗) − a∗1| ≥ ε/
√

2 (as a∗ is blue), and by the requirement

on δ, we necessarily have T1(a∗)− a∗1 ≥ ε/
√

2. Similarly, for the vertex b∗,

neighboring b, we have T1(b∗) − b∗1 ≤ −ε/
√

2. Examining the vertices on
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this blue path one-by-one from a∗ to b∗, we must find neighboring vertices

u and v such that T1(u)− u1 ≥ ε/
√

2 and T1(v)− v1 ≤ −ε/
√

2. Therefore,

T1(u)− T1(v) ≥ 2
ε√
2
− (v1 − u1) ≥

√
2ε− δ > ε.

However, ‖u−v‖ ≤ δ should also imply ‖T (u)−T (v)‖ < ε, a contradiction.

3.7 Evolutionary game theory

We begin by introducing a new variant of our old game of Chicken:

3.7.1 Hawks and Doves

This game is a simple model for two behaviors — one bellicose, the other

pacifistic — in the population of a single species (not the interactions be-

tween a predator and its prey).

v

v/2−cv/2−c

v/2

0

v/2

Fig. 3.13. Two players play this game, for a prize of value v > 0. They
confront each other, and each chooses (simultaneously) to fight or to flee;
these two strategies are called the “hawk” and the “dove” strategies, re-
spectively. If they both choose to fight (two hawks), then each pays a cost
c to fight, and the winner (either is equally likely) takes the prize. If a
hawk faces a dove, the dove flees, and the hawk takes the prize. If two
doves meet, they split the prize equally.

The game in Figure 3.13 has the payoff matrix
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player II

H D

p
la

ye
r

I

H (v2 − c,
v
2 − c) (v, 0)

D (0, v) (v2 ,
v
2 )

Now imagine a large population, each of whose members are hardwired

genetically either as hawks or as doves, and assume that those who do better

at this game have more offspring. It will turn out that the Nash equilibrium

is also an equilibrium for the population, in the sense that a population

composition of hawks and doves in the proportions specified by the Nash

equilibrium (it is a symmetric game, so these are the same for both play-

ers) is locally stable — small changes in composition will return it to the

equilibrium.

Next, we investigate the Nash equilibria. There are two cases, depending

on the relative values of c and v.

If c < v
2 , then simply by comparing rows, it is clear that player I always

prefers to play H (hawk), no matter what player II does. By comparing

columns, the same is true for player II. This implies that (H,H) is a pure

Nash equilibrium. Are there mixed equilibria? Suppose I plays the mixed

strategy {H : p,D : (1 − p)}. Then II’s payoff if playing H is p(v/2 − c) +

(1 − p)v, and if playing D is (1 − p)v/2. Since c < v
2 , the payoff for H is

always greater, and by symmetry, there are no mixed equilibria.

Note that in this case, Hawks and Doves is a version of Prisoner’s Dilemma.

If both players were to play D, they’d do better than at the Nash equilibrium

— but without binding commitments, they can’t get there. Suppose that

instead of playing one game of Prisoner’s Dilemma, they are to play many.

If they are to play a fixed, known, number of games, the situation does not

change. (proof: The last game is equivalent to playing one game only, so for

this game both players play H. Since both know what will happen on the

last game, the second-to-last game is also equivalent to playing one game

only, so both play H here as well. . . and so forth, by “backwards induction”.)

However, if the number of games is random, the situation can change. In

this case, the equilibrium strategy can be “tit-for-tat” — in which I play D

as long as you do, but if you play H, I counter by playing H on the next

game (only). All this, and more, is covered in a book by Axelrod, Evolution

of Cooperation, see [?].

The case c > v
2 is more interesting. This is the case that is equivalent

to Chicken. There are two pure Nash equilibria: (H,D) and (D,H); and

since the game is symmetric, there is a symmetric, mixed, Nash equilibrium.

Suppose I plays H with probability p. To be a Nash equilibrium, we need
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the payoffs for player II to play H and D to be equal:

(L) p(
v

2
− c) + (1− p)v = (1− p)v

2
(R). (3.2)

For this to be true, we need p = v
2c , which by the assumption, is less than

one. By symmetry, player II will do the same thing.

Population Dynamics for Hawks and Doves: Now suppose we have

the following dynamics in the population: throughout their lives, random

members of the population pair off and play Hawks and Doves; at the end

of each generation, members reproduce in numbers proportional to their

winnings. Let p denote the fraction of Hawks in the population. If the

population is large, then by the Law of Large Numbers, the total payoff

accumulated by the Hawks in the population, properly normalized, will be

the expected payoff of a Hawk playing against an opponent whose mixed

strategy is to play H with probability p and D with probability (1 − p) —

and so also will go the proportion of Hawks and Doves in the next generation.

If p < v
2c , then in equation (3.2), (L)>(R) — the expected payoff for a

Hawk is greater than that for a Dove, and so in the next generation, p will

increase.

On the other hand, if p > v
2c , then (L)<(R), so in the next generation,

p will decrease. This case might seem strange — in a population of hawks,

how could a few doves possibly do well? Recall that we are examining local

stability, so the proportion of doves must be significant (a single dove in a

population of hawks is not allowed); and imagine that the hawks are always

getting injured fighting each other.

Some more work needs to be done — in particular, specifying the popula-

tion dynamics more completely — to show that the mixed Nash equilibrium

is a population equilibrium, but this certainly suggests it.

Example 3.7.1 (Sex Ratios). A standard example of this in nature is

the case of sex ratios. In mostly monogamous species, a ratio close to 1 : 1

males to females seems like a good idea, but what about sea lions, in which

a single male gathers a large harem of females, while the majority of males

never reproduce? Game theory provides an explanation for this. In a stable

population, the expected number of offspring that live to adulthood per

adult individual per lifetime is 2. The number of offspring a female sea lion

produces in her life probably doesn’t vary too much from 2. However, there is

a large probability a male sea lion won’t produce any offspring, balanced by
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a small probability that he gets a harem and produces a prodigious number.

If the percentage of males in a (stable) population decreases, then since

the number of harems is fixed, the expected number of offspring per male

increases, and payoff (in terms of second-generation offspring) of producing

a male increases.

3.7.2 Evolutionarily stable strategies

Consider a symmetric, two-player game with n pure strategies each, and

payoff matrices (Ai,j = Bj,i), where Ai,j is the payoff of player I when

playing strategy i if player II plays strategy j, and Bi,j is the payoff of

player II when playing strategy i if player I plays strategy j.

Definition 3.7.1 (). A mixed strategy x in ∆n is an evolutionarily stable

strategy (ESS) if for any pure “mutant” strategy z,

(i) ztAx ≤ xtAx

(ii) if ztAx = xtAx, then ztAz < xtAz.

In the definition, we only allow the mutant strategies z to be pure strate-

gies. This definition is sometimes extended to allow any nearby (in some

sense) strategy that doesn’t differ too much from the population strategy x,

e.g., if the population only uses strategies 1, 3, and 5, then the mutants can

introduce no more than one new strategy besides 1, 3, and 5.

For motivation, suppose a population with strategy x is invaded by a small

population of strategy z, so the new composition is εz + (1 − ε)x, where ε

is small. The new payoffs will be:

εxtAz + (1− ε)xtAx (for x’s)

εztAz + (1− ε)ztAx (for z’s).

The two criterions for x to be ESS imply that, for small enough ε, the

average payoff for x will be strictly greater than that for z, so the invaders

will disappear.

Note also that criterion (i) in the definition of an ESS looks unlikely

to occur in practice, but recall that if a mixed Nash equilibrium is found

by averaging, then any mutant not introducing a new strategy will have

ztAx = xtAx.

Example 3.7.2 (Hawks and Doves). We will check that the mixed Nash

equilibrium in Hawks and Doves is an ESS when c > v
2 . Let x = v

2cH+ (1−
v
2c)D.
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• if z = (1, 0) (“H”) then ztAz = v
2 − c, which is strictly less than

xtAz = p(v2 − c) + (1− p)0.

• if z = (0, 1) (“D”) then ztAz = v
2 < xtAz = pv + (1− p)v2 .

The mixed Nash equilibrium for Hawks and Doves (when it exists) is an

ESS.

Example 3.7.3 (Rock-Paper-Scissors). The unique Nash equilibrium in

Rock-Paper-Scissors, (1
3 ,

1
3 ,

1
3), is not evolutionarily stable. Under appro-

priate notions of population dynamics, this leads to cycling: a population

with many Rocks will be taken over by Paper, which in turn will be invaded

(bloodily, no doubt) by Scissors, and so forth. These dynamics have been

observed in actual populations of organisms — in particular, in a California

lizard.

The side-blotched lizard Uta stansburiana has three distinct types of male:

orange-throats, blue-throats and yellow-striped. The orange-throats are vi-

olently aggressive, keep large harems of females and defend large territories.

The blue-throats are less aggressive, keep smaller harems and defend small

territories. The yellow-striped are very docile and look like receptive fe-

males. They do not defend territory or keep harems. Instead, they sneak

into another male’s territory and secretly copulate with the females. In 1996,

B. Sinervo and C. M. Lively published the first article in Nature describing

the regular succession in the frequencies of different types of males from

generation to generation [?].

The researchers observed a six-year cycle which started with a domina-

tion by the orange-throats. Eventually, the orange-throats have amassed

territories and harems large enough so they could no longer be guarded ef-

fectively against the sneaky yellow-striped males, who were able to secure a

majority of copulations and produce the largest number of offspring. When

the yellow-striped have become very common, however, the males of the

blue-throated variety got an edge, since they could detect and ward off the

yellow-striped, as the blue-throats have smaller territories and fewer females

to monitor. So a period when the blue-throats became dominant followed.

However, the vigorous orange-throats do comparatively well against blue-

throats, since they can challenge them and acquire their harems and territo-

ries, thus propagating themselves. In this manner the population frequencies

eventually returned to the original ones, and the cycle began anew.

Example 3.7.4 (Congestion Game). Consider the following symmetric

game as played by two drivers, both trying to get from Here to There (or, two

computers routing messages along cables of different bandwidths). There
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Fig. 3.14. The three types of male of the lizard Uta stansburiana. Pic-
ture courtesy of Barry Sinervo; see http://bio.research.ucsc.edu/

~barrylab.

are two routes from Here to There; one is wider, and therefore faster, but

congestion will slow them down if both take the same route. Denote the

wide route W and the narrower route N . The payoff matrix is:

Payoffs: Payoffs:Payoffs:

3 4522 3

Fig. 3.15.

player II

W N

p
la

ye
r

I

W (3, 3) (5, 4)

N (4, 5) (2, 2)

There are two pure Nash equilibria: (W,N) and (N,W ).

If player I chooses W with probability p, II’s payoff for choosing W is

3p + 5(1 − p), and for choosing N is 4p + 2(1 − p). Equating these, we get

http://bio.research.ucsc.edu/~barrylab
http://bio.research.ucsc.edu/~barrylab
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that the symmetric Nash equilibrium is when both players take the wide

route with probability p = 3
4 .

Is this a stable equilibrium? Let x = (.75, .25) be our equilibrium strategy.

We already checked that xtAx = ztAx for all pure strategies z, we need only

check that xtAz > ztAz. For z = (1, 0), xtAz = 3.25 > ztAz = 3, and for

z = (0, 1), xtAz = 4.25 < ztAz = 2, implying that x is evolutionarily stable.

Remark. For the above game to make sense in a population setting, one

could suppose that only two randomly chosen drivers may travel at once

— although one might also imagine that a driver’s payoff on a day when

a proportion x of the population are taking the wide route is proportional

to her expected payoff when facing a single opponent who chooses W with

probability x.

The symmetric Nash equilibrium may represent a stable partition of the

population — in this case implying that if driver preferences are such that

on an average day, one-quarter of the population of drivers prefer the narrow

route, then any significant shift in driver preferences will leave those who

changed going slower than they had before.

To be true in general, the statement above should read “any small but

significant shift in driver preferences will leave those who changed going

slower than they had before”. The fact that it is a Nash equilibrium means

that the choice of route to a single driver does not matter (if the population

is large). However, since the strategy is evolutionarily stable, if enough

drivers change their preferences so that they begin to interact with each

other, they will go slower than those who did not change, on average. In

this case, there is only one evolutionarily stable strategy, and this is true

no matter the size of the perturbation. In general, there may be more than

one, and a large enough change in strategy may move the population to a

different ESS.

This is another game where binding commitments will change the outcome

— and in this case, both players will come out better off!

Example 3.7.5 (A symmetric game). If in the above game, the payoff

matrix was instead

player II

W N

p
la

ye
r

I

W (4, 4) (5, 3)

N (3, 5) (2, 2)

then the only Nash equilibrium is (W,W ), which is also evolutionarily stable.

This is an example of the following general fact: In a symmetric game,
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if aii > ai,j for all j 6= i, then pure strategy i is an evolutionarily stable

strategy. This is clear, since if I plays i, then II’s best response is also the

pure strategy i.

Example 3.7.6 (Unstable mixed Nash equilibrium). In this game,

player II

A B
p

la
ye

r
I

A (10, 10) (0, 0)

B (0, 0) (5, 5)

both pure strategies (A,A) and (B,B) are evolutionarily stable, while the

mixed Nash equilibrium is not.

Remark. In this game, if a large enough population of mutant As invades

a population of Bs, then the “stable” population will in fact shift to being

entirely composed of As. Another situation that would remove the stability

of (B,B) is if mutants were allowed to preferentially self-interact.

3.8 Signaling and asymmetric information

Example 3.8.1 (Lions and antelopes). In the games we have considered

so far, both players are assumed to have access to the same information

about the rules of the game. This is not always a valid assumption.

Antelopes have been observed to jump energetically when a lion nearby

seems liable to hunt them. Why do they expend energy in this way? One

theory was that the antelopes are signaling danger to others at some dis-

tance, in a community-spirited gesture. However, the antelopes have been

observed doing this all alone. The currently accepted theory is that the

signal is intended for the lion, to indicate that the antelope is in good health

and is unlikely to be caught in a chase. This is the idea behind signaling.

Consider the situation of an antelope catching sight of a lion in the dis-

tance. Suppose there are two kinds of antelope, healthy (H) and weak (W );

and that a lion has no chance to catch a healthy antelope — but will expend

a lot of energy trying — and will be able to catch a weak one. This can be

modelled as a combination of two simple games (AH and AW ), depending

on whether the antelope is healthy or weak, in which the antelope has only

one strategy (to run if pursued), but the lion has the choice of chasing (C)
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Fig. 3.16. Lone antelope stotting to indicate its good health.

or ignoring (I).

AH =

antelope

run-if-chased

li
on chase (−1,−1)

ignore (0, 0)

AW =

antelope

run-if-chased
li

on chase (5,−1000)

ignore (0, 0)

The lion does not know which game they are playing — and if 20% of the

antelopes are weak, then the lion can expect a payoff of (.8)(−1)+(.2)(5) = .2

by chasing. However, the antelope does know, and if a healthy antelope can

convey that information to the lion by jumping very high, both will be better

off — the antelope much more than the lion!

Remark. In this, and many other cases, the act of signaling itself costs

something, but less than the expected gain, and there are many examples

proposed in biology of such costly signaling.

3.8.1 Examples of signaling (and not)

Example 3.8.2 (A randomized game). For another example, consider

the zero-sum two-player game in which the game to be played is randomized

by a fair coin toss. If heads is tossed, the payoff matrix is given by AH , and

if tails is tossed, it is given by AT .

AH =

player II

L R

p
la

ye
r

I

L 4 1

R 3 0

AT =

player II

L R

p
la

ye
r

I

L 1 3

R 2 5
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If the players don’t know the outcome of the coin flip before playing, they

are merely playing the game given by the average matrix, 1
2A

H+ 1
2A

T , which

has a payoff of 2.5. If both players know the outcome of the coin flip, then

(since AH has a payoff of 1 and AT has a payoff of 2) the payoff is 1.5 —

player II has been able to use the additional information to reduce her losses.

But now suppose that only I is told the result of the coin toss, but I must

reveal her move first. If I goes with the simple strategy of picking the best

row in whichever game is being played, but II realizes this and counters,

then I has a payoff of only 1.5, less than the payoff if she ignores the extra

information!

This demonstrates that sometimes the best strategy is to ignore the extra

information, and play as if it were unknown. This is illustrated by the

following (not entirely verified) story. During World War II, the English had

used the Enigma machine to decode the German’s communications. They

intercepted the information that the Germans planned to bomb Coventry,

a smallish city without many military targets. Since Coventry was such

a strange target, the English realized that to prepare Coventry for attack

would reveal that they had broken the German code, information which they

valued more than the higher casualties in Coventry, and chose to not warn

Coventry of the impending attack.

Example 3.8.3 (A simultaneous randomized game). Again, the game

is chosen by a fair coin toss, the result of which is told to player I, but the

players now make simultaneous moves, and a second game, with the same

matrix, is played before any payoffs are revealed.

AH =

player II

L R

p
la

ye
r

I

L −1 0

R 0 0

AT =

player II

L R

p
la

ye
r

I

L 0 0

R 0 −1

Without the extra information, each player will play (L,R) with proba-

bilities (1
2 ,

1
2), and the value of the game to I (for the two rounds) is −1

2 .

However, once I knows which game is being played, she can simply choose

the row with all zeros, and lose nothing, regardless of whether II knows the

coin toss as well.

Now consider the same story, but with matrices

AH =

player II

L R

p
la

ye
r

I

L 1 0

R 0 0

AT =

player II

L R

p
la

ye
r

I

L 0 0

R 0 1
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Again, without information the value to I is 1
2 . In the second round, I will

clearly play the optimal row. The question remains of what I should do in

the first round.

Player I has a simple strategy that will get her 3
4 — this is to ignore the

coin flip on the first round (and choose L with probability 1
2), but then on

the second round to choose the row with a 1 in it. In fact, this is the value

of the game. If II chooses L with probability 1
2 on the first round, but on

the second round does the following: If I played L on the first round, then

choose L or R with probability 1
2 each; and if I played R on the first round,

choose R, then I is restricted to a win of at most 3
4 . This can be shown by

checking each of I’s four pure strategies (recalling that I will always play the

optimal row on the second round).

3.8.2 The collapsing used car market

Economist George Akerlof won the Nobel prize for analyzing how a used car

market can break down in the presence of asymmetric information. This

is an extremely simplified version. Suppose that there are cars of only two

types: good cars (G) and lemons (L), and that both are at first indistin-

guishable to the buyer, who only discovers what kind of car he bought after

a few weeks, when the lemons break down. Suppose that a good car is worth

$9000 to all sellers and $12000 to all buyers, while a lemon is worth only

$3000 to sellers, and $6000 to buyers. The fraction p of cars on the market

that are lemons is known to all, as are the above values, but only the seller

knows whether the car being sold is a lemon. The maximum amount that a

rational buyer will pay for a car is 6000p+ 12000(1− p) = f(p), and a seller

who advertises a car at f(p)− ε will sell it.

However, if p > 1
2 , then f(p) < $9000, and sellers with good cars won’t sell

them — the market is not good, and they’ll keep driving them — and p will

increase, f(p) will decrease, and soon only lemons are left on the market. In

this case, asymmetric information hurts everyone.

3.9 Some further examples

Fish being sold at the market is fresh with probability 2/3 and old other-

wise, and the customer knows this. The seller knows whether the particular

fish on sale now is fresh or old. The customer asks the fish-seller whether

the fish is fresh, the seller answers, and then the customer decides to buy

the fish, or to leave without buying it. The price asked for the fish is $12.

It is worth $15 to the customer if fresh, and nothing if it is old. The seller
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Fig. 3.17. The seller, who knows the type of the car, may misrepresent it
to the buyer, who doesn’t know the type. (Drawing courtesy of Ranjit
Samra.)

Example 3.9.1 (The fish-selling game).

Fig. 3.18. The seller knows whether the fish is fresh, the customer only
knows the probability.

bought the fish for $6, and if it remains unsold, then he can sell it to another

seller for the same $6 if it is fresh, and he has to throw it out if it is old.

http://rojaysoriginalart.com
http://rojaysoriginalart.com
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On the other hand, if the fish is old, the seller claims it to be fresh, and the

customer buys it, then the seller loses $R in reputation.

The tree of all possible scenarios, with the net payoffs shown as (seller,

customer), is depicted in the figure. This is called the Kuhn tree of the

game.

(6−R, −12)

F O

"F" "F" "O"

B L B L B L

(6, 3) (−6, 0) (6, −12)(0, 0) (−6, 0)

Fig. 3.19. The Kuhn tree for the fish-selling game.

The seller clearly should not say “old” if the fish is fresh, hence we should

examine two possible pure strategies for him: “FF” means he always says

“fresh”; “FO” means he always tells the truth. For the customer, there are

four ways to react to what he might hear. Hearing “old” means that the

fish is indeed old, so it is clear that he should leave in this case. Thus two

rational strategies remain: BL means he buys the fish if he hears “fresh”

and leaves if he hears “old”; LL means he just always leaves. Here are

the expected payoffs for the two players, with randomness coming from the

actual condition of the fish. (Recall that the fish is fresh with probability

2/3 and old otherwise.)

customer

BL LL

se
ll

er “FF” (6−R/3,−2) (−2, 0)

“FO” (2, 2) (−2, 0)

We see that if losing reputation does not cost too much in dollars, i.e.,

if R < 12, then there is only one pure Nash equilibrium: “FF” against

LL. However, if R ≥ 12, then the (“FO”, BL) pair also becomes a pure

equilibrium, and the payoff for this pair is much higher than the payoff for

the other equilibrium.
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3.10 Potential games

We now discuss a collection of games called potential games, which are k-

players general-sum games that have a special feature. Let Fi(s1, s2, . . . , sk)

denote the payoff to player i if the players adopt the pure strategies s1, s2, . . . , sk,

respectively. In a potential game, there is a function ψ : S1 × · · · × Sk → R,

defined on the product of the players’ strategy spaces, such that

Fi
(
s1, . . . , si−1, s̃i, si+1, . . . , sk

)
− Fi

(
s1, . . . , sk

)
= ψ

(
s1, . . . , si−1, s̃i, si+1, . . . , sk

)
− ψ

(
s1, . . . , sk

)
, (3.3)

for each i. We assume that each Si is finite. We call the function ψ the

potential function associated with the game.

Example 3.10.1 (A simultaneous congestion game). In this sort of

game, the cost of using each road depends on the number of users of the

road. In the game depicted in the figure, for road 1 connecting A to B, it

is C(1, i) if there are i users, with i ∈ {1, 2}. Note that the cost paid by a

given driver depends only on the number of users, not on which user she is.

Road 4

Road 2

R
o
a
d

 1

R
o
a
d

 3

C(4,2)

A

C(1,1)

D

CB

C(3,1)

Fig. 3.20. Red car is travel-
ling from A to C via D; yellow
— from B to D via A.

Road 4

Road 2

R
o
a
d

 1

R
o
a
d

 3

A D

CB

C(4,1)

C(2,1)

C(3,2)

Fig. 3.21. Red car is travel-
ling from A to C via D; yellow
— from B to D via C.

More generally, for k drivers and R roads, we may define R-valued map

C on the product space of the road-index set and the set {1, . . . , k}, so that

C(j, uj) is equal to the cost incurred by any driver using road j in the case

that the total number of drivers using this road is equal to uj . Note that

the strategy vector s = (s1, s2, . . . , sk) determines the usage of each road.

That is, it determines ui(s) for each i ∈ {1, . . . R}, where

ui(s) =
∣∣∣{j ∈ {1, . . . , k} : player j uses road i under strategy sj

}∣∣∣.
In the case of the game depicted in the figure, we suppose that two drivers,
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I (red) and II (yellow), have to travel from A to C, or from B to D, respec-

tively.

In general, we set

ψ
(
s1, . . . , sk

)
= −

R∑
r=1

ur(s)∑
`=1

C(r, `).

We claim that ψ is a potential function for such a game. We show why this

is so in the specific example. Suppose that driver II, using roads 1 and 4,

makes a decision to use roads 2 and 3 instead. What will be the effect on

her cost? The answer is a change of(
C
(
2, u2(s) + 1

)
+ C

(
3, u3(s) + 1

))
−
(
C
(
1, u1(s)

)
+ C

(
4, u4(s)

))
.

How did the potential function change as a result of her decision? We find

that, in fact,

ψ(s)− ψ(s̃) = C
(
2, u2(s) + 1

)
+C

(
3, u3(s) + 1

)
−C

(
1, u1(s)

)
−C

(
4, u4(s)

)
where s̃ denotes the new joint strategy (after her decision), and s denotes

the previous one. Noting that payoff is the negation of cost, we find that the

change in payoff is equal to the change in the value of ψ. To show that ψ is

indeed a potential function, it would be necessary to reprise this argument

in the case of a general change in strategy by one of the players.

Now, we have the following result due to Monderer and Shapley ([?]) and

Rosenthal [?]:

Theorem 3.10.1. Every potential game has a Nash equilibrium in pure

strategies.

Proof. By the finiteness of the set S1 × · · · × Sk, there exists some s that

maximizes ψ(s). Note that for this s the expression in (3.3) is at most zero,

for any i ∈ {1, . . . , k} and any choice of s̃i. This implies that s is a Nash

equilibrium.

It is interesting to note that the very natural idea of looking for a Nash

equilibrium by minimizing
∑R

r=1 urC(r, ur) does not work.

Exercises

3.1 The game of chicken. Two drivers are headed for a collision. If

both swerve, or Chicken Out, then the payoff to each is 1. If one

swerves, and the other displays Iron Will, then the payoffs are −1
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and 2 respectively to the players. If both display Iron Will, then a

collision occurs, and the payoff is −a to each of them, where a > 2.

This makes the payoff matrix

driver II

CO IW

d
ri

ve
r

I

CO (1, 1) (−1, 2)

IW (2,−1) (−a,−a)

Find all the pure and mixed Nash equilibria.

3.2 Modify the game of chicken as follows. There is p ∈ (0, 1) such that,

when a player plays CO, the move is changed to IW with probability

p. Write the matrix for the modified game, and show that, in this

case, the effect of increasing the value of a changes from the original

version.

3.3 Two smart students form a study group in some Math Class where

homeworks are handed in jointly by each study group. In the last

homework of the semester, each of the two students can choose to

either work (“W”) or defect (“D”). If at least one of them solves the

homework that week (chooses “W”), then they will both receive 10

points. But solving the homework incurs an effort worth −7 points

for a student doing it alone and an effort worth −2 points for each

student if both students work together. Assume that the students do

not communicate prior to deciding whether they will work or defect.

Write this situation as a matrix game and determine all Nash equi-

libria.

3.4 Find all Nash equilibria and determine which of the symmetric equi-

libria are evolutionarily stable in the following games.

player II

A B

p
la

ye
r

I

A (4, 4) (2, 5)

B (5, 2) (3, 3)

player II

A B

p
la

ye
r

I

A (4, 4) (3, 2)

B (2, 3) (5, 5)

3.5 Give an example of a two-player zero-sum game where there are no

pure Nash equilibria. Can you give an example where all the entries

of the payoff matrix are different?
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3.6 A recursive zero-sum game. Player I, the Inspector, can inspect

a facility on just one occasion, on one of the days 1, . . . , N . Player II

can cheat, or wait, on any given day. The payoff to I if 1 if I inspects

while II is cheating. On any given day, the payoff is −1 if II cheats

and is not caught. It is also −1 if I inspects but II did not cheat, and

there is at least one day left. This leads to the following matrices Γn
for the game with n days: the matrix Γ1 is given by

player II

Ch Wa

p
la

ye
r

I
In 1 0

Wa −1 0

The matrix Γn is given by

player II

Ch Wa

p
la

ye
r

I

In 1 −1

Wa −1 Γn−1

Final optimal strategies, and the value of Γn.

3.7 Two cheetahs and three antelopes: Two cheetahs each chase

one of three antelopes. If they catch the same one, they have to

share. The antelopes are Large, Small and Tiny, and their values to

the cheetahs are `, s and t. Write the 3 × 3 matrix for this game.

Assume that t < s < ` < 2s, and that

`

2

(2l − s
s+ `

)
+ s
(2s− `
s+ `

)
< t.

Find the pure equilibria, and the symmetric mixed equilibria.

3.8 Three firms (players I, II, and III) put three items on the market

and advertise them either on morning or evening TV. A firm ad-

vertises exactly once per day. If more than one firm advertises at

the same time, their profits are zero. If exactly one firm advertises

in the morning, its profit is $200K. If exactly one firm advertises in

the evening, its profit is $300K. Firms must make their advertising

decisions simultaneously. Find a symmetric mixed Nash equilibrium.

3.9 The fish-selling game revisited: A seller sells fish. The fish is

fresh with a probability of 2/3. Whether a given piece of fish is fresh

is known to the seller, but the customer knows only the probability.
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The customer asks, “is this fish fresh?”, and the seller answers, yes

or no. The customer then buys the fish, or leaves the store, without

buying it. The payoff to the seller is 6 for selling the fish, and 6 for

being truthful. The payoff to the customer is 3 for buying fresh fish,

−1 for leaving if the fish is fresh, 0 for leaving is the fish is old, and

−8 for buying an old fish.

3.10 The welfare game: John has no job and might try to get one.

Or, he may prefer to take it easy. The government would like to aid

John if he is looking for a job, but not if he stays idle. Denoting by

T , trying to find work, and by NT , not doing so, and by A, aiding

John, and by NA, not doing so, the payoff for each of the parties is

given by:

jobless John

try not try

go
ve

rn
m

en
t

aid (3,2) (−1, 3)

no aid (−1, 1) (0,0)

Find the Nash equilibria.

3.11 Show that, in a symmetric game, with A = BT , there is a symmetric

Nash equilibrium. One approach is to use the set D =
{

(x, x) : x ∈
∆n

}
in place of K in the proof of Nash’s theorem.

3.12 The game of Hawks and Doves. Find the Nash equilibria in the

game of Hawks and Doves whose payoffs are given by the matrix:

player II

D H

p
la

ye
r

I

D (1,1) (0,3)

H (3,0) (−4,−4)

3.13 A sequential congestion game: Six drivers will travel from A to

D, each going via either B or C. The cost in traveling a given road

depends on the number of drivers k that have gone before (including

the current driver). These costs are displayed in the figure. Each

driver moves from A toD in a way that minimizes his or her own cost.

Find the total cost. Then consider the variant where a superhighway

that leads from A to C is built, whose cost for any driver is 1. Find

the total cost in this case also.
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A C

B D
k + 12

k + 12

5k + 1 5k + 1

3.14 A simultaneous congestion game: There are two drivers, one

who will travel from A to C, the other, from B to D. Each road in

the second figure has been marked (x, y), where x is the cost to any

driver who travels the road alone, and y is the cost to each driver

who travels the road along with the other. Note that the roads are

traveled simultaneously, in the sense that a road is traveled by both

drivers if they each use it at some time during their journey. Write

the game in matrix form, and find all of the pure Nash equilibria.

A D

B C
(1,2)

(1,5)

(3,6) (2,4)

3.15 Sperner’s lemma may be generalized to higher dimensions. In the

case of d = 3, a simplex with four vertices (think of a pyramid) may

be divided up into smaller ones. We insist that on each face of one of

the small simplices, there are no edges or vertices of another. Label

the four vertices of the big simplex 1, 2, 3, 4. Label those vertices of

the small simplices on the boundary of the big one in such a way

that each such vertex receives a label of one of the vertices of the

big simplex that lies on the same face of the big simplex. Prove that

there is a small simplex whose vertices receive distinct labels.
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Coalitions and Shapley value

The topic we now turn to is that of games involving coalitions. Suppose

we have a group of k > 2 players. Each seeks a part of a given prize, but

may achieve that prize only by joining forces with some of the other players.

The players have varying influence — but how much power does each have?

This is a pretty general summary. We describe the theory in the context of

an example.

4.1 The Shapley value and the glove market

We discuss an example, mentioned in the introduction. A customer enters

a shop seeking to buy a pair of gloves. In the store are the three players.

Player I has a left glove and players II and III each have a right glove.

The customer will make a payment of $100 for a pair of gloves. In their

negotiations prior to the purchase, how much can each player realistically

demand of the payment made by the customer?

To resolve this question, we introduce a characteristic function v, de-

fined on subsets of the player set. By an abuse of notation, we will write

v12 in place of v({1, 2}), and so on. The function v will take the values 0 or

1, and will take the value 1 precisely when the subset of players in question

are able between them to effect their aim. In this case, this means that the

subset includes one player with a left glove, and one with a right one — so

that, between them, they may offer the customer a pair of gloves. Thus, the

values are

v123 = v12 = v13 = 1,

and the value is 0 on every other subset of {1, 2, 3}. Note that v is a {0, 1}-
valued monotone function: if S ⊆ T , then vS ≤ vT . Such a function is

always superadditive: v(S ∪ T ) ≥ v(S) + v(T ) if S and T are disjoint.

116
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Fig. 4.1.

In general, a characteristic function is just a superadditive function with

v(∅) = 0. Shapley was searching for a value function ψi, i ∈ {1, . . . , k}, such

that ψi(v) would be the arbitration value (now called Shapley value)

for player i in a game whose characteristic function is v. Shapley analyzed

this problem by introducing the following axioms:

(i) Symmetry: if v
(
S ∪ {i}

)
= v
(
S ∪ {j}

)
for all S with i, j /∈ S, then

ψi(v) = ψj(v).

(ii) No power / no value: if v
(
S∪{i}

)
= v(S) for all S, then ψi(v) = 0.

(iii) Additivity: ψi(v + u) = ψi(v) + ψi(u).

(iv) Efficiency:
∑k

i=1 ψi(v) = v
(
{1, . . . , k}

)
.

The second one is also called the “dummy” axiom. The third axiom is the

most problematic: it assumes that for any of the players, there is no effect

of earlier games on later ones.

Theorem 4.1.1 (Shapley). There exists a unique solution for ψ.

A simpler example first: For a fixed subset S ⊆ {1, . . . , n}, consider the

S-veto game, in which the effective coalitions are those that contain each

member of S. This game has characteristic function wS , given by wS(T ) = 1

if and only if S ⊆ T . It is easy to find the unique function that is a Shapley

value. Firstly, the “dummy” axiom gives that

ψi
(
wS
)

= 0 if i /∈ S.

Then, for i, j ∈ S, the “symmetry” axiom gives ψi(wS) = ψj(wS). This and
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the “efficiency” axiom imply

ψi
(
wS
)

=
1

|S|
if i ∈ S,

and we have determined the Shapley value (without using the additivity

axiom). Moreover, we have that ψi(cwS) = c ψi(wS) for any c ∈ [0,∞).

Now, note that the glove market game has the same payoffs as w12 +w13,

except for the case of the set {1, 2, 3}. In fact, we have that

w12 + w13 = v + w123.

In particular, the “additivity” axiom gives

ψi(w12) + ψi(w13) = ψi(v) + ψi(w123).

If i = 1, then 1/2 + 1/2 = ψ1(v) + 1/3, while, if i = 3, then 0 + 1/2 =

ψ3(v) + 1/3. Hence ψ1(v) = 2/3 and ψ2(v) = ψ3(v) = 1/6. This means that

player I has two-thirds of the arbitration value, while players II and III have

one-third between them.

Example: the four stockholders. Four people own stock in ACME.

Player i holds i units of stock, for each i ∈ {1, 2, 3, 4}. Six shares are needed

to pass a resolution at the board meeting. How much is the position of each

player worth in the sense of Shapley value? Note that

1 = v1234 = v24 = v34,

while v = 1 on any 3-tuple, and v = 0 in each other case.

We will assume that the value v may be written in the form

v =
∑
S 6=∅

cSwS .

Later (in the proof of Theorem 4.2.1), we will see that there always exists

such a way of writing v. For now, however, we assume this, and compute

the coefficients cS . Note first that

0 = v1 = c1

(we write c1 for c{1}, and so on). Similarly,

0 = c2 = c3 = c4.

Also,

0 = v12 = c1 + c2 + c12,
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implying that c12 = 0. Similarly,

c13 = c14 = c23 = 0.

Next,

1 = v24 = c2 + c4 + c24 = 0 + 0 + c24,

implying that c24 = 1. Similarly, c34 = 1. We have that

1 = v123 = c123,

while

1 = v124 = c24 + c124 = 1 + c124,

implying that c124 = 0. Similarly, c134 = 0, and

1 = v234 = c24 + c34 + c234 = 1 + 1 + c234,

implying that c234 = −1. We also have

1 = v1234 = c24 + c34 + c123 + c124 + c134 + c234 + c1234

= 1 + 1 + 1 + 0 + 0− 1 + c1234,

implying that c1234 = −1. Thus,

v = w24 + w34 + w123 − w234 − w1234,

whence

ψ1(v) = 1/3− 1/4 = 1/12,

and

ψ2(v) = 1/2 + 1/3− 1/3− 1/4 = 1/4,

while ψ3(v) = 1/4, by symmetry with player 2. Finally, ψ4(v) = 5/12. It

is interesting to note that the person with 2 shares and the person with 3

shares have equal power.

4.2 Probabilistic interpretation of Shapley value

Suppose that the players arrive at the board meeting in a uniform random

order. Then there exists a moment when, with the arrival of the next stock-

holder, the coalition already present in the board-room becomes effective.

The Shapley value of a given player is the probability of that player being

the one to make the existing coalition effective. We will now prove this

assertion.
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Recall that we are given v(S) for all sets S ⊆ [n] := {1, . . . , n}, with

v(∅) = 0, and v(S ∪ T ) ≥ v(S) + v(T ) if S, T ⊆ [n] are disjoint.

Theorem 4.2.1. Shapley’s four axioms uniquely determine the functions

φi. Moreover, we have the random arrival formula:

ψi(v) =
1

n!

n∑
k=1

∑
π∈Sn:π(k)=i

(
v
(
π(1), . . . , π(k)

)
− v
(
π(1), . . . , π(k − 1)

))
Remark. Note that this formula indeed specifies the probability just men-

tioned.

Proof. Recall the game for which wS(T ) = 1 if S ⊆ T , and wS(T ) = 0 in

the other case. We showed that ψi(wS) = 1/|S| if i ∈ S, and ψi(wS) = 0

otherwise. Our aim is, given v, to find coefficients
{
cS
}
S⊆[n],S 6=∅ such that

v =
∑

∅6=S⊆[n]

cSwS . (4.1)

Firstly, we will assume (4.1), and determine the values of
{
cS
}

. Applying

(4.1) to the singleton {i}:

v
(
{i}
)

=
∑

∅6=S⊆[n]

cSwS
(
{i}
)

= c{i}wi(i) = ci, (4.2)

where we may write ci in place of c{i}. More generally, suppose that we have

determined cS for all S with |S| < `. We want to determine cS̃ for some S̃

with |S̃| = `. We have that

v(S̃) =
∑

∅6=S⊆[n]

cSwS
(
S̃
)

=
∑

S⊆S̃,|S|<`

cS + cS̃ . (4.3)

This determines cS̃ . Now let us verify that (4.1) does indeed hold. Define

the coefficients {cS} via (4.2) and (4.3), inductively for sets S̃ of size ` > 1;

that is,

cS̃ = v(S̃) −
∑

S⊆S̃:|S|<`

cS .

However, once (4.2) and (4.3) are satisfied, (4.1) also holds (something that

should be checked by induction). We now find that

ψi(v) = ψi

( ∑
∅6=S⊆[n]

cSwS

)
=

∑
∅6=S⊆[n]

ψi
(
cSwS

)
=

∑
S⊆[n],i∈S

cS
|S|

.

This completes the proof of the first statement made in the theorem.
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As for the second statement: for each permutation π with π(k) = i, we

define

φi(v, π) = v
(
π(1), . . . , π(k)

)
− v
(
π(1), . . . , π(k − 1)

)
,

and

Ψi(v) =
1

n!

∑
{π:π(k)=i}

φi(v, π).

Our goal is to show that Ψi(v) satisfies all four axioms.

For a given π, note that φi(v, π) satisfies the “dummy” and “efficiency”

axioms. It also satisfies the “additivity” axiom, but not the “symmetry”

axiom. We now show that averaging produces a new object that is already

symmetric — that is, that {Ψi(v)} satisfies this axiom. To this end, suppose

that i and j are such that

v
(
S ∪ {i}

)
= v
(
S ∪ {j}

)
for all S ⊆ [n] with S ∩ {i, j} = ∅. For every permutation π, define π∗ that

switches the locations of i and j. That is, if π(k) = i and π(`) = j, then

π∗(k) = j and π∗(`) = i, with π∗(r) = π(r) with r 6= k, `. We claim that

φi(v, π) = φj(v, π
∗).

Suppose that π(k) = i and π(`) = j. Note that φi(v, π) contains the term

v
(
π(1), . . . , π(k)

)
− v
(
π(1), . . . , π(k − 1)

)
,

whereas φi(v, π
∗) contains the corresponding term

v
(
π∗(1), . . . , π∗(k)

)
− v
(
π∗(1), . . . , π∗(k − 1)

)
.

We find that

Ψi(v) =
1

n!

∑
π∈Sn

φi(v, π) =
1

n!

∑
π∈Sn

φj(v, π
∗)

=
1

n!

∑
π∗∈Sn

φj(v, π
∗) = Ψj(v),

where in the second equality, we used the fact that the map π 7→ π∗ is a

one-to-one map from Sn to itself, for which π∗∗ = π. Therefore, Ψi(v) is

indeed the unique Shapley value.
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4.3 Two more examples

A fish without intrinsic value. A seller has a fish having no intrinsic

value to him, i.e., he values it at $0. A buyer values the fish at $10. We

find the Shapley value: suppose that the buyer pays $x for the fish, with

0 < x ≤ 10. Writing S and B for the seller and buyer, we have that v(S) = 0,

v(B) = 0, with v(S,B) = (10− x) + x, so that ψS(v) = ψB(v) = 5.

A potential problem with using the Shapley value in this case is the pos-

sibility that the buyer underreports his desire for the fish to the party that

arbitrates the transaction.

Many right gloves. Find the Shapley values for the following variant of

the glove game. There are n = r+2 players. Players 1 and 2 have left gloves.

The remaining players each have a right glove. Note that V (S) is equal to

the maximal number of proper and disjoint pairs of gloves. In other words,

v(S) is equal to the minimum of the number of left, and of right, gloves held

by members of S. Note that ψ1(v) = ψ2(v), and ψr(v) = ψ3(v), for each

r ≥ 3. Note also that

2ψ1(v) + rψ3(v) = 2,

provided that r ≥ 2. For which permutations does the third player add

value to the coalition already formed? The answer is the following orders:

13, 23, {1, 2}3, {1, 2, j}3,

where j is any value in {4, . . . , n}, and where the curly brackets mean that

each of the resulting orders is to be included. The number of permutations

corresponding to these possibilities is: r!, r!, 2(r−1)!, and 6(r−1) · (r−2)!.

This gives that

ψ3(v) =
2r! + 8(r − 1)!

(r + 2)!
.

That is,

ψ3(v) =
2r + 8

(r + 2)(r + 1)r
.

Exercises

4.1 The glove market revisited. A proper pair of gloves consists of

a left glove and a right glove. There are n players. Player 1 has two

left gloves, while each of the other n− 1 players has one right glove.

The payoff v(S) for a coalition S is the number of proper pairs that

can be formed from the gloves owned by the members of S.
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(a) For n = 3, determine v(S) for each of the 7 nonempty sets

S ⊂ {1, 2, 3}. Then find the Shapley value ϕi(v) for each of the

players i = 1, 2, 3.

(b) For a general n, find the Shapley value ϕi(v) for each of the n

players i = 1, 2, . . . , n.



5

Mechanism design

So far we have studied how different players should play a given game. The

goal of mechanism design is to construct a mechanism (a game) through

which the participants interact with one another (“play the game”), so that

when the participants act in their own self interest (“play strategically”), the

resulting “game play” has desireable properties. For example, an auctioneer

will wish to set up the rules of an auction so that the players will play against

one another and drive up the price. Another example is cake cutting, where

the participants wish to divy up a cake so that everyone feels like he or she

received a fair share of the best parts of the cake. Zero-knowledge proofs

are another example: here one of the participants (Alice) has a secret, and

wishes to prove that to another participant (Bob) that she knows the secret,

but without giving the secret away. If Alice follows the protocol, she is

assured that her secret is safe, and if Bob follows the protocol, he is assured

that Alice knows the secret.

5.1 Auctions

We will introduce a few of the basic types of auctions. The set-up for game

theoretic analysis is as follows: There is a seller, known as the principal,

some number of buyers, known as the agents, and a single item (for sim-

plicity) to be sold, of value v∗ to the principal, and of value vi to agent i.

Frequently, the principal has a reserve price vres: She will not sell the

item, unless the final price is at least the reservation price. The following

are some of the basic types of auction:

Definition 5.1.1 (English Auction). In an English auction,

• agents make increasing bids,

124
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• when there are no more bids, the highest bidder gets the item at the

price he bids, if that price is at least vres.

Definition 5.1.2 (Dutch Auction). The Dutch auction works in the other

direction: in a Dutch auction,

• the principal gives a sequence of decreasing prices,

• the first agent to say “stop” gets the item at the price bid, if this is

at least vres.

Definition 5.1.3 (Sealed-bid, First-price Auction). This type of auc-

tion is the hardest to analyze. Here,

• buyers bid in sealed envelopes,

• the highest bidder gets the item at the price bid, if this is at least

vres.

Definition 5.1.4 (Vickrey Auction). This is a sealed-bid, second-price

auction. In the Vickrey auction,

• buyers bid in sealed envelopes,

• the highest bidder gets the item at the next-highest bid, if this is at

least vres.

Why would a seller ever choose to run a Vickrey auction, when they could

have a sealed-bid, first-price auction? Intuitively, the rules of the Vickrey

auction will encourage the agents to bid higher than they would in a first-

price auction. A Vickrey auction has the further theoretical advantage:

Theorem 5.1.1. In a Vickrey auction, it is a pure Nash equilibrium for

each agent to bid his or her value vi.

To make sense out of this, we need to specify that if agent i buys the item

for ψi, the payoff is vi − ψi for agent i, and 0 for all other agents. The role

the principal plays is in choosing the rules of the game — she is not a player

in the game.

It is clear that in the Vickrey auction, if the agents are following this

Nash equilibrium strategy, then the item will sell for the value of the second-

highest bidder. This turns out to also be true in the English and the Dutch

auctions. In both cases, we need to assume that the bids move in a contin-

uous fashion (or by infinitesimal increments), and that ties are dealt with

in a reasonable fashion. In the Dutch auction, we also need to assume that

the agents know each other’s values.
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This implies that in the English and Vickrey auctions, agents can be-

have optimally knowing only their own valuation, whereas in the Dutch and

sealed-bid first-price auctions, they need to guess the others’ valuations.

We now prove the theorem.

Proof. To show that agent i bidding their value vi is a pure Nash equilibrium,

we need to show that each agent can’t gain by bidding differently. Assume,

for simplicity, that there are no ties.

Suppose that agent i changes his bid to hi > vi. This changes his payoff

only if this causes him to get the item, i.e., if there is a j 6= i such that

vi < vj < hi, and hi > vk for all other k. In this case, he pays vj , his new

payoff is vi − vj < 0, as opposed to the payoff of zero he achieved, before

switching.

Now suppose that agent i changes his bid to `i < vi. This changes his

payoff only if he was previously going to get the item, and bidding `i would

cause him not to get it, i.e., vi > vk for all k 6= i, and there exists a vj such

that `i < vj < vi. In this case, his payoff changes from vi − vj > 0 to zero.

In both cases, he ends up either the same, or worse off.

Note: Revenue equivalence theorem. More discussion.

Remark. The above pre-supposes that people know their values for the items

in the auction. In practice this isn’t always the case. The internet auction

site eBay uses a second price auction, so that people can bid their “true

value”. Nonetheless, many people increase their bids when someone else

bids higher than their “true value”. Having some knowledge of other people’s

values can influence how much a person values an item. Learning how much

other people value an item influences how much a given person values an

item, and this is an important consideration when setting up an auction.

5.2 Keeping the meteorologist honest

The employer of a weatherman is determined that he should provide a good

prediction of the weather for the following day. The weatherman’s instru-

ments are good, and he can, with sufficient effort, tune them to obtain the

correct value for the probability of rain on the next day. There are many

days, and on the ith day the true probability of rain is called pi. On the

evening of the (i− 1)th day, the weatherman submits his estimate p̂i for the

probability of rain on the following day, the ith one. Which scheme should

we adopt to reward or penalize the weatherman for his predictions, so that
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he is motivated to correctly determine pi (that is, to declare p̂i = pi)? The

employer does not know what pi is because he has no access to technical

equipment, but he does know the p̂i values that the weatherman provides,

and he knows whether or not it is raining on each day.

One suggestion is to pay the weatherman on the ith day the amount p̂i
(or some dollar multiple of that amount) if it rains, and 1 − p̂i if it shines.

If p̂i = pi = 0.6, then the payoff is

p̂i Pr(rainy) + (1− p̂i) Pr(sunny) =p̂ipi + (1− p̂i)(1− pi)
=0.6× 0.6 + 0.4× 0.4 = 0.52.

But in this case, even if the weatherman does correctly compute that pi =

0.6, he is tempted to report the p̂i value of 1 because, by the same formula,

in this case, his earnings are 0.6.

Another idea is to pay the weatherman a fixed salary over a term, say,

one year. At the end of the term, penalize the weatherman according to

how accurate his predictions have been on the average. More concretely,

suppose for the sake of simplicity that the weatherman is only able to report

p̂i values on a scale of 1
10 , so that he has eleven choices, namely

{
k/10 : k ∈

{0, . . . , 10}
}

. When a year has gone by, the days of that year may be divided

into eleven types according to the p̂i-value that the weatherman declared.

Suppose there are nk days that the predicted value p̂i is k
n , while according

to the actual weather, rk days out of these nk days rained. Then, we give

the penalty as
10∑
k=0

(
rk
nk
− k

10

)2

.

A scheme like this seems quite reasonable, but in fact, it can be quite

disastrous. If the weather doesn’t fluctuate too much from year to year and

the weatherman knows that on average it rained on 3
10 of the days last year,

he will be able to ignore his instruments completely and still do reasonably

well.

Suppose the weatherman simply sets p̂ = 3
10 ; then n3 = 365 and nk 6=3 = 0.

In this case his penalty will be(
r3

365
− 3

10

)2

,

where r3 is simply the overall number of rainy days in a year, which is

expected to be quite close to 365 × 3
10 . By the Law of Large Numbers, as

the number of observations increases, the penalty is likely to be close to

zero.
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There is further refinement in that even if the weatherman doesn’t know

the average rainfall, he can still do quite well.

Theorem 5.2.1. Suppose the weatherman is restricted to report p̂i values

on a scale of 1
10 . Even if he knows nothing about the weather, he can devise

a strategy so that over a period of n days his penalty is, on average, within
1
20 , in each slot.

lim sup
n→∞

1

n

10∑
k=0

∣∣∣∣rk − k

10
nk

∣∣∣∣ ≤ 1

20
.

One proof of this can be found in ([?]), and an explicit strategy has been

constructed in (need ref Dean Foster). Since then, the result has been recast

as a consequence of minimax theorem (see [?]), by considering the situation

as a zero-sum game between the weatherman and a certain adversary. In

this case the adversary is the employer and the weather.

There are two players, the weatherman W and the adversary A. Each

day, A can play a mixed strategy randomizing between Rain and Shine.

The problem is to devise an optimal response for W, which consists of a

prediction for each day. Such a prediction can also be viewed as a mixed

strategy, randomizing between Rain and Shine. At the end of the term, the

weatherman W pays the adversary A a penalty as described above.

In this case, there is no need for instruments: the minimax theorem guar-

antees that there is an optimal response strategy. We can go even further

and give a specific prescription: On each day, compute a probability of rain,

conditional on what the weather had been up to now.

The above examples cast the situation in a somewhat pessimistic light

— so far we have shown that the scheme encourages the weatherman to

ignore his instruments. Is is possible to give him an incentive to tune them

up? In fact, it is possible to design a scheme whereby we decide day-by-day

how to reward the weatherman only on the basis of his declaration from the

previous evening, without encountering the kind of problem that the last

scheme had [?].

Suppose that we pay f(p̂i) to the weatherman if it rains, and f(1− p̂i) if

it shines on day i. If pi = p and p̂i = x, then the expected payment made

on day i is equal to

gp(x) := pf(x) + (1− p)f(1− x).

Our aim is to reward the weatherman if his p̂i equals pi, in other words, to

ensure that the expected payout is maximized when x = p. This means that

the function gp : [0, 1]→ R should satisfy gp(p) > gp(x) for all x ∈ [0, 1]\{p}.

http://scholar.google.com/scholar?q=Dean+Foster+weather+OR+weatherman&hl=en&lr=
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One good choice is to let f(x) = log x. In this case, the derivative of gp(x)

will be as follows.

g′p(x) = pf ′(x) + (1− p)f ′(1− x) =
p

x
− 1− p

1− x
.

The derivative is positive if x < p, and negative if x > p. So the maximizer

of gp(x) is at x = p.

5.3 Secret sharing

In the introduction, we talked about the problem of sharing a secret between

two people. Suppose we do not trust either of them entirely, but want the

secret to be known to each of them, provided that they co-operate. More

generally, we can ask the same question about n people.

Think of this in a computing context: Suppose that the secret is a pass-

word that is represented as an integer S that lies between 0 and some large

value, for example, 0 ≤ S < M = 1015.

We might take the password and split it in n chunks, giving one chunk to

each of the players. However, this would force the length of the password to

be high, if none of the chunks are to be guessed by repeated tries. Moreover,

as more players put together their chunks, the size of the unknown chunk

goes down, making it more likely to be guessed by repeated trials.

A more ambitious goal is to split the secret S among n people in such

a way that all of them together can reconstruct S, but no coalition of size

` < n has any information about S. We need to clarify what we mean when

we say that a coalition has no information about S:

Definition 5.3.1. Let A = {i1, . . . , i`} ⊂ {1, . . . , n} be any subset of

size ` < n. We say that a coalition of ` people holding a random vector

(Xi1 , . . . , Xi`) has no information about a secret S provided (Xi1 , . . . , Xi`)

is a random vector on {0, . . . ,M − 1}`, whose distribution is independent of

S, that is

Pr(Xi1 = x1, . . . , Xi` = x`|S = s)

does not depend upon s.

The simplest way to ensure that the distribution of (Xi1 , . . . , Xi`) does

not depend upon S is to make its distribution uniformly random. Recall

that a random variable X has a uniform distribution on a space of size N ,

denoted by Ω, provided each of the N possible outcomes is equally likely:

Pr(X = x) =
1

N
∀ x ∈ Ω .
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In the case of an `-dimensional vector with elements in {0, . . . ,M − 1}, we

have Ω = {0, . . . ,M − 1}`, of size 1/M `.

5.3.1 A simple secret sharing method

The following scheme allows the secret holder to split a secret S ∈ {0, . . . ,M−
1} among n individuals in such a way that any coalition of size ` < n has

no information about S: The secret holder, produces a random (n − 1)-

dimensional vector (X1, X2, . . . , Xn−1), whose distribution is uniform on

{0, . . . ,M − 1}n−1. She gives the number Xi to the ith person for 1 ≤ i ≤
n− 1, and the number

Xn =

(
S −

n−1∑
i=1

Xi

)
mod M (5.1)

to the last person. Notice that with this definition, Xn is also a uniformly

random variable on {0, . . . ,M − 1}, you will prove this in Ex. 5.2.

It is enough to show that any coalition of size n − 1 has no useful infor-

mation. For {i1, . . . , in−1} = {1, . . . , n − 1}, the coalition of the first n − 1

people, this is clear from the definition. What about those that include the

last one? To proceed further we’ll need an elementary lemma, whose proof

is left as an Ex. 5.1:

Lemma 5.3.1. Let Ω be a finite set of size N . Let T be a one-to-one

and onto function from Ω to itself. If a random variable X has a uniform

distribution over Ω, then so does Y = T (X).

Consider a coalition that omits the jth person: A = {1, . . . , j − 1, j +

1, . . . , n}. Let Tj((X1, . . . , Xn−1)) = (X1, . . . , Xj−1, Xj+1, . . . , Xn), where

Xn is defined by Eq. (5.1). This map is one-to-one and onto for each j since

we can explicitly define its inverse:

T−1
j ((Z1, . . . , Zj−1, Zj+1, . . . Zn)T ) = (Z1, . . . , Zj−1, Zj , Zj+1, . . . , Zn−1)T ,

where Zj = S −
∑

1≤i 6=j≤n−1 Zi.

So if a coalition (that does not include all players) puts together all its

available information, it still has only a uniformly random vector. Since

they could generate a uniformly random vector themselves without knowing

anything about S, the coalition has the same chance of guessing the secret S

as if it had no information at all.

All together, however, the players can add the values they had been given,

reduce the answer mod M , and obtain the secret S.
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5.3.2 Polynomial method

The following method, devised by Adi Shamir [?], can also be used to split

the secret among n players. It has an interesting advantage: using this

method we can share a secret between n individual in such a way that any

coalition of at least m individuals can recover it, while a group of a smaller

size cannot. This could be useful if a certain action required a quorum of m

individuals, less than the total number of people in the group.

Let p be a prime number such that 0 ≤ S < p and n < p. We define a

polynomial of order m− 1:

F (z) =

m−1∑
i=0

Aiz
i mod p,

where A0 = S and (A1, . . . , Am−1) is a uniform random vector on {0, . . . , p−
1}m−1.

Let z1, . . . , zn be distinct numbers in {1, . . . p − 1}. To split the secret

we give the jth person the number F (zj) (together with zj , p, and m). We

claim that

Theorem 5.3.1. A coalition of size m or bigger can reconstruct the secret S,

but a coalition of size ` < m has no useful information:

Pr(F (z1) = x1, . . . , F (z`) = x`|S) =
1

p`
, xi ∈ {0, . . . , p− 1}.

Proof. Again it’s enough to consider the case ` = m− 1. We will show that

for any fixed distinct non-zero integers z1, . . . , zm ∈ {0, . . . , p− 1},

T ((A0, . . . , Am−1)) = (F (z1), . . . , F (zm))

is an invertible linear map on {0, . . . , p− 1}m, and hence m people together

can recover all the coefficients of F , including A0 = S.

Let’s construct these maps explicitly:

T

 A0
...

Am−1

 =


∑m−1

i=0 Aiz
i
1 mod p

...∑m−1
i=0 Aiz

i
m mod p

 .

We see that T is a linear transformation on {0, . . . , p− 1}m that is equiv-

alent to multiplying on the left with the following m×m matrix M , known
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as the Vandermonde matrix:

M =


1 z1 . . . zm−1

1

1 z2 . . . zm−1
2

...
...

. . .
...

1 zm−1 . . . zm−1
m−1

1 zm . . . zm−1
m

 .

You will prove in Ex. 5.3 that

det(M) =
∏

1≤i<j≤m
(zj − zi).

Recall that the numbers {0, . . . , p− 1} (recall that p is a prime) together

with addition and multiplication (mod p) form a finite field. (Recall that

a field is a set S with operations called + and × which are associative

and commutative, for which multiplication distributes over addition, which

contains an additive identity called 0 and a multiplicative identity called 1,

for which each element has an additive inverse, and each non-zero element

contains a multiplicative inverse. Because multiplicative inverses of non-zero

elements are defined, there are no zero divisors, i.e., a pair of elements whose

product is zero.)

Since the zi’s are all distinct and p is a prime number, the Vandermonde

determinant detM is non-zero modulo p, so the transformation is invertible.

This shows that any coalition of m people can recover the secret S. Al-

most the same argument shows that any coalition of m− 1 people have no

information about S. Let the m− 1 people be z1, . . . , zm−1, and let zm = 0.

We have shown that the map

T ((A0, . . . , Am−1)) = (F (z1), . . . , F (zm−1), A0 = F (zm))

is invertible. Thus, for any fixed value of A0, the map

T ((A1, . . . , Am−1)) = (F (z1), . . . , F (zm−1))

is invertible. Since A1, . . . , Am−1 are uniformly random and independent

of A0 = S, it follows that (F (z1), . . . , F (zm−1) is uniformly random and

independent of S.

The proof is complete, however, it is quite instructive to construct the

inverse map T−1 explicitly. We use the method of Lagrange interpolation

to reconstruct the polynomial:

F (z) =
m∑
j=1

F (zj)
∏

1≤i≤m
i 6=j

z − zi
zj − zi

mod p.
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Once we expand the right-hand side and bring it to the standard form,

(A0, . . . , Am−1) will appear as the coefficients of the corresponding powers

of the indeterminate z. Evaluating at z = 0 gives back the secret.

5.4 Private computation

An applied physics professor at Harvard posed the following problem to his

fellow faculty during tea hour: Suppose that all the faculty members would

like to know the average salary in their department, how can they compute

it without revealing the individual salaries? Since there was no disinterested

third party who could be trusted by all the faculty members, they hit upon

the following scheme:

All the faculty members gathered around a table. A designated first per-

son picked a very large integer M (which he kept private), added his salary

to that number, and passed the result to his neighbor on the right. She,

in turn, added her salary and passed the result to her right. The intention

was that the total should eventually return to the designated first person,

who would then subtract M , compute and reveal the average. Before the

physicists could finish the computation, a Nobel laureate, who was flanked

by two junior faculty, refused to participate when he realized that the two

could collude to find out his salary.

Luckily, the physicists shared their tea-room with computer scientists who,

after some thought, proposed the following ingenious scheme that is closely

related to the secret sharing method described in section 5.3.1: A very large

integer M is picked and announced to the entire faculty, consisting of n

individuals. An individual with salary si generates n − 1 random numbers

Xi,1, . . . , Xi,n−1, uniformly distributed in the set {0, 1, 2, . . . ,M − 1}, and

produces Xi,n, such that Xi,1+· · ·+Xi,n = si mod M . He then forwards Xi,j

to the jth faculty member. In this manner each person receives n uniform

random numbers mod M , adds them up and reports the result. These are

tallied mod M and divided by n.

Here a coalition of n − 1 faculty could deduce the last professor’s salary,

if for no other reason than that they know their own salaries and also the

average salary. This holds for any scheme that the faculty adopt. Similarly,

for any scheme for computing the average salary, a coalition of n− j faculty

could deduce the sum of the salaries of the remaining j faculty. You will

show in Ex. 5.5 that the above scheme leaks no additional information about

the salaries.
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5.5 Cake cutting

Recall from the introduction the problem of cutting a cake with several

different toppings. The game has two or more players, each with a particular

preference regarding which parts of the cake they would most like to have.

We assume that the cake has no indivisible constituents.

If there are just two players, there is a well-known method for dividing the

cake: One splits it into two halves, and the other chooses which he would

like. Each obtains at least one-half of the cake, as measured according to

his own preferences. But what if there are three or more players? This can

still be done, but requires some new notions.

Let’s denote the cake by Ω. Then F denotes the algebra of measurable

subsets of Ω. Roughly speaking, these are all the subsets into which the

cake can be subdivided by repeated cutting.

Definition 5.5.1 (Algebra of sets). More formally, we say that a collec-

tion F of subsets of Ω forms an algebra if:

(i) ∅ ∈ F ;

(ii) if A ∈ F then Ac ∈ F ;

(iii) if A,B ∈ F then A ∪B ∈ F .

The sets in F are called measurable.

We will need a tool to measure the “desirability” of any possible piece of

the cake for any given individual.

Definition 5.5.2. A non-negative real-valued set function µ defined on F
is called a finite measure if:

(i) µ(∅) = 0 and µ(Ω) = M <∞;

(ii) if A,B ∈ F and A ∩B = ∅ then µ(A ∪B) = µ(A) + µ(B).

The triple (Ω,F , µ) is called a finite measure space.

In addition we will require that the measure space should have the in-

termediate value property: For every measurable set A ∈ F and any real

number β ∈ (0, µ(A)), there is a measurable set B ∈ F such that B ⊂ A

and µ(B) = β. This ensures that there are no indivisible elements in the

cake (we exclude hard nuts that cannot be cut into two).

Now let µj be the measure on the cake which reflects the preferences of

the jth person. Notice that each person gives a personal value to the whole

cake. For each person, however, the value of the “empty slice” is 0, and the

value of any slice is bigger than or equal to that of any of its parts.
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Our task is to divide the cake into K slices {A∗1, . . . , A∗K}, such that for

each individual i,

µi(A
∗
i ) ≥

µi(Ω)

K
.

In this case, we say that the division is fair. Notice that this notion addresses

fairness from the point of view of each individual: She is assured a slice that

is at least 1
K of her particular valuation of the cake.

The following algorithm provides such a subdivision: The first person is

asked to mark a slice A1 such that µ1(A1) = µ1(Ω)
K , and this slice becomes

the “current proposal”. Each person j in turn looks at the current proposed

slice of cake A, and if µj(A) > µj(Ω)/K, person j proposes a smaller slice of

cake Aj ⊂ A such that µj(Aj) = µj(Ω)/K, which then becomes the current

proposal, and otherwise person j passes on the slice. After each person has

had a chance to propose a smaller slice, the proposed slice of cake is cut

and goes to the person k who proposed it (call the slice A∗k). This person is

happy because µk(A
∗
k) = µk(Ω)/K. Let Ω̃ = Ω \A∗k be the rest of the cake.

Notice that for each of the remaining K − 1 individuals µj(A
∗
k) ≤ µj(Ω)/K,

and hence for the remainder of the cake

µj(Ω̃) ≥ µj(Ω)
(

1− 1

K

)
= µj(Ω)

K − 1

K
.

We can repeat the process on Ω̃ with the remaining K − 1 individuals. By

induction, each person m obtains a slice A∗m with

µm(A∗m) ≥ µm(Ω̃)
1

K − 1
≥ µm(Ω)

K
.

This is true if each person j carries out the instructions faithfully. After

all, since we do not know his measure µj , we cannot judge whether he had

marked off a fair slice at every stage of the game. However, since everyone’s

measure has the intermediate property, a person who chooses to comply, can

ensure that she gets her fair share.

5.6 Zero-knowledge proofs

Determining whether or not a graph is 3-colorable, i.e., whether or not it

is possible to color the vertices red, green, and blue, so that each edge

in the graph connects vertices with different colors, is a classic NP-hard

problem. Solving 3-colorability for general graphs is at least as hard as

factoring integers, solving the traveling salesman problem, or solving any

of a number of other hard problems. We describe a simple zero-knowledge
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proof of 3-colorability, which means that any of these other problems also

has a zero-knowledge proof.

Suppose that Alice knows a 3-coloring of a graph G, and wishes to prove

to Bob that the graph is 3-colorable, but does not wish to reveal the 3-

coloring. What she can do is randomly permute the 3 colors red, green, and

blue, and then write down the new color of each vertex in a sealed envelope,

and place the envelopes on a table. Bob then picks a random edge (u, v) of

the graph, and Alice then gives the envelopes for u and v to Bob, who opens

them and checks that the colors are different. If the graph G has E edges,

this protocol is then repeated tE times, where t might be 20.

There are three things to check: (1) completeness: if Alice knows a 3-

coloring, she can convince Bob, (2) soundness: if Alice does not know a

3-coloring, Bob catches her with high probability, and (3) zero-knowledge:

Bob learns nothing about the 3-coloring other than that it exists.

Completeness here is trivial: if Alice knows a 3-coloring, and follows the

protocol, then when Bob opens the two envelopes, he will always see different

colors.

Soundness is straightforward too: If Alice does not put the values of a 3-

coloring in the envelopes, then there is at least one edge of the graph whose

endpoints have the same color. With probability 1/E Bob will pick that

edge, and discover that Alice was cheating. Since this protocol is repeated

tE times, the probability that Alice is about to cheat is at most (1−1/E)tE <

e−t. For t = 20, this probability is about 2× 10−9.

Zero-knowledge: Suppose Alice knows a 3-coloring and follows the proto-

col, can Bob learn anything about the 3-coloring about it? Because Alice

randomly permuted the labels of the colors, for any edge that Bob selects,

each of the 6 possible 2-colorings of that edge are equally likely. At the end

of the protocol, Bob sees tE random 2-colorings of edges. But Bob was per-

fectly able to randomly 2-color these edges on his own without Alice’s help.

Therefore, this communication from Alice did not reveal anything about her

3-coloring.

In a computer implementation, rather than use envelopes, Alice would use

some cryptography to conceal the colors of the vertices but commit to their

values. With a cryptographic implementation, the zero-knowledge property

is not perfect zero-knowledge, but relies on Bob not being able to break the

cryptosystem.
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5.7 Remote coin tossing

Suppose, while speaking on the phone, two people would like to make a

decision that depends on an outcome of a coin toss. How can they imitate

such a set-up?

The standard way to do this before search-engines was for one of them

to pick an arbitrary phone number from the phone-book, announce it to

the other person and then ask him to decide whether this number is on an

even- or odd-numbered page. Once the other person announces the guess,

the first supplies the name of the person, whose phone number was used. In

this way, the parity of the page number can be checked and the correctness

of the phone number verified.

With the advent of fast search engines this has become impractical, since,

from a phone number, the name (and hence the page number) can easily

be looked up. A modification of this scheme that is somewhat more search-

engine resistant is for one person to give a sequence of say 20 digits that

occur in the 4th position on twenty consecutive phone numbers from the

same page, and then to ask whether this page is even or odd.

If the two people have computers and email, another method can be used.

One person could randomly pick two large prime numbers, multiply them,

and mail the result to the other person. The other person guesses whether

or not the two primes have the same parity of their middle digit, at which

point the first person mails the primes. If the guess was right, the coin was

heads, otherwise it is tails.

Exercises

5.1 Let Ω be a finite set of size N . Let T be a one-to-one and onto

function from Ω to itself. Show that if a random variable X has a

uniform distribution over Ω, then so does Y = T (X).

5.2 Given a random (n−1)-dimensional vector (X1, X2, . . . , Xn−1), with

a uniform distribution on {0, . . . ,M − 1}n−1. Show that

(a) Each Xi is a uniform random variable on {0, . . . ,M − 1}.
(b) Xi’s are independent random variables.

(c) Let S ∈ {0, . . . ,M − 1} be given then

Xn =

(
S −

n−1∑
i=1

Xi

)
mod M
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is also a uniform random variable on {0, . . . ,M − 1}.

5.3 Prove that the Vandermonde matrix has the following determinant:

det


1 z1 . . . zm−1

1

1 z2 . . . zm−1
2

...
...

. . .
...

1 zm−1 . . . zm−1
m−1

1 zm . . . zm−1
m

 =
∏

1≤i<j≤m
(zj − zi).

Hint: the determinant is a multivariate polynomial. Show that the

determinant is 0 when zi = zj for i 6= j, show that the polynomial

on the right divides the determinant, show that they have the same

degree, and show that the constant factor is correct.

5.4 Evaluate the following determinant, known as a Cauchy determi-

nant:

det


1

x1−y1
1

x1−y2 . . . 1
x1−ym

1
x2−y1

1
x2−y2 . . . 1

x2−ym
...

...
. . .

...
1

xm−y1
1

xm−y2 . . . 1
xm−ym

 .
Hint: find the zeros and poles and the constant factor. It is helpful

to consider the limit xi → yj .

5.5 Show that for the scheme for computing average salary described in

section 5.4, a coalition n− j faculty learn nothing about the salaries

of the remaining j faculty beyond the sum of their salaries (which is

what they could deduce knowing the average salary of everybody).
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Social choice

As social beings, we frequently find ourselves in situations where a group

decision has to be made. Examples range from a simple decision a group of

friends makes about picking a movie for the evening, to complex and crucial

ones such as the U.S. presidential elections. Suppose that a society (group

of voters) are presented with a list of alternatives and have to choose one of

them. Can a selection be made so as to truly reflect the preferences of the

individuals? What does it mean for a social choice to be fair?

When there are only two options to choose from, a simple concept of

majority rule can be applied to yield an outcome that more than half

of the voters find satisfactory. When the vote is evenly split between the

two alternatives, an additional tie-breaking mechanism might be necessary.

As the number of options increases to three or more, simple majority often

becomes inapplicable. In order to find a unique winner, special procedures

called voting mechanisms are used. The troubling aspect is that the result

of the election will frequently depend on the particular mechanism selected.

6.1 Voting mechanisms and fairness criteria

A systematic study of voting mechanisms began in the 18th century with

the stand-off between two members of the French Academy of Sciences —

Jean-Charles, Chevalier de Borda and Marie Jean Antoine Nicolas de Car-

itat, Marquis de Condorcet. Chevalier de Borda observed that the current

method in use by the Academy often led to the election of a candidate

that was considered less desirable by the majority of the Academicians. He

proposed an alternative mechanism (discussed in § 6.2.4) which was soon

adapted. However, Marquis de Condorcet immediately demonstrated that

the new mechanism itself suffered many undesirable properties and pro-

ceeded to invent his own method based on a certain fairness criterion

139
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now known as the Condorcet criterion (discussed in § 6.2.5). Roughly

speaking, he postulated that if a candidate can defeat every other in a one-

on-one contest, he should be the overall winner. He went further yet and

discovered that his method based on pairwise contests also suffered a vul-

nerability, now known as the Condorcet paradox [?].

Since then, this pattern continued. A plethora of voting mechanisms have

been introduced to satisfy a number of desirable fairness criteria, yet each

one has been shown to contain a certain flaw or a paradox. The work of

Kenneth Arrow from 1951 has elucidated the problem. He showed that no

“fair” procedure can be devised that is free from strategic manipulation [?].

6.1.1 Arrow’s fairness criteria

The notion of “fairness” used by Arrow requires some elaboration. Consider

a finite set A = {a, b, c, . . .}, consisting of m alternatives, where m ≥ 3. For

an entity X, preference �X over A is a relationship which specifies, for

each of the
(
m
2

)
unordered pairs of alternatives, the one that is preferred by

X (with ties allowed). We write a � b whenever a is preferred to b and

a � b if a is strictly preferred to b. A preference is called transitive if

a � b and b � c implies that a � c. In this case, a preference (�)

gives a ranking p listing the sets of equivalent alternatives from the most

to the least preferred ones. Transitivity is not part of the definition of social

preference, but will be required below.

Suppose that a society consists of N individuals, each with a transitive

preference over A. A constitution is a function that associates to every N -

tuple π = (p1, . . . , pN ), of transitive preferences (called a profile) a social

preference (�S).

A “fair” constitution should have the following properties:

(i) Transitivity of social preference.

(ii) Unanimity: if for every individual preference a �i b, then a �S b
for the social preference.

(iii) Independence of irrelevant alternatives: for any profiles π1 and

π2 with fixed rankings between a and b, the social ranking of a and

b should be the same.

The first two are self-explanatory. The third one is more subtle — this

requirement ensures that there can be no “strategic misrepresentation” of

individual preferences in order to achieve a desired social preference. Sup-

pose that all individual preferences in π1 and π2 have the same rankings of

a and b, but c and d are ranked differently, where |{c, d} ∩ {a, b}| ≤ 1. If π1
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leads to a �S b and π2 leads to b �S a, then the independence of irrelevant

alternatives is violated, and the group of individuals who prefer b to a have

an incentive to conceal their true preferences between c and d in order to

achieve a desired social ranking.

A single-winner voting mechanism assigns to each alternative a numerical

score. Such a system most commonly produces a special type of constitution

— one which distinguishes a single strictly preferred alternative, and ranks

all the others as equivalent to one another. In cases when a complete social

ranking is extracted, it is again based on numerical scores and must therefore

be transitive.

Next we will discuss a few of the most popular voting mechanisms, show

how each one comes short of satisfying Arrow’s “fairness” criteria, and finally

state and prove Arrow’s Impossibility theorem.

6.2 Examples of voting mechanisms

Single-winner voting mechanisms can be characterized by the ballot type

they use. The binary methods use a simple ballot where the candidates

or the alternatives are listed and each one is either selected or not. The

ranked methods use a preference ballot where each alternative is ranked

in the order of preference. Finally, in the range or rated methods each

alternative listed on a ballot is given a score.

6.2.1 Plurality

Probably the most common mechanism is Plurality, also know as First

past the Post. A simple ballot is used.

Vote for one candidate.

Candidate A

Candidate B

Candidate C

Fig. 6.1. Under plurality only one of the alternatives can be selected.

The alternative with the most votes wins. It need not have the majority

of the votes. In the U.S., congressional elections within each congressional

district are conducted using the plurality system.
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This system has several advantages. It is particularly attractive because

of its simplicity and transparency. In parliamentary elections, it is often

praised for excluding extremists and encouraging political parties to have

broader appeal. It also gives a popular independent candidate a chance,

since ultimately people and not parties are elected. It may, however, lead to

underrepresentation of the minorities and encourage the formation of parties

based on geographic or ethnic appeal.

Another undesirable property of plurality is that the candidate that is

ultimately elected might be the least favorite for a substantial part of the

population. Suppose that there are three candidates A, B, and C, and the

voters have three different types of rankings of the candidates.

Social Preference

A

25%

A

B

C

B

C

A

45% 30%

C

B A

{B,C}

Fig. 6.2. Option A is preferred by 45% of the population, option B by 30%
and option C by 25%.

Under simple plurality, A wins the election, in spite of a strong opposition

by a majority of voters. If voters who favor C were to cast their votes for

B, their second choice, B would win by a 55% majority. This is an example

of strategic or insincere voting. The strategy of voting for a less desirable

but more popular alternative is called compromising.

This example shows that plurality violates the independence of the irrel-

evant alternatives criterion, since change in the social preference between

B and A can be accomplished without changing any individual A-B pref-

erences. Notice that the full individual rankings are never revealed in the

voting.

Social Preference

A

25%

C

B

B

{A,C}

A

B

C

B

C

A

45% 30%

Fig. 6.3. When 25% insincerely switch their votes from C to B, social
preference between A and B changes.
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6.2.2 Runoff elections

Runoff elections are also known as Plurality with Elimination. A

simple ballot is used, and the voting is carried out in rounds. After each

round, if none of the candidates achieves the majority, the candidate (or

alternative) with the fewest first place votes is eliminated, and a new round

is carried out with the remaining candidates. When only two candidates

remain in a round, the one with the most votes wins the election. For an N

candidate election, runoff elections require at most N − 1 rounds.

Notice that runoff voting changes the winner in the example above:

C is eliminated

{A,C}

A

B

B

A

Social Preference

B

C

A

C

B

A

25%

A

B

C

45% 30%
45% 55%

B

Fig. 6.4. In the first round C is eliminated. When votes are redistributed,
B gets the majority. The full voter rankings are not revealed in the process.

This method is rarely used in its full form because of the additional costs

and a lower voter turn-out associated with the multiple rounds. The most

widely used version is the top-two runoff election. When a clear winner

is not determined in the first round, a single runoff round is carried out

between the top two candidates. In the U.S., runoff elections are often used

in party primary elections and various local elections.

6.2.3 Instant runoff

With the use of the preference ballot, runoff elections can be accomplished

in one round.

Rank the candidates in the order of preference.

1 2 3

1 2 3

1 2 3

Candidate A

Candidate B

Candidate C

Fig. 6.5. In the instant runoff, voters specify their rankings of the candi-
dates.

The candidate with the least number of first votes is eliminated from

consideration, and the votes of those who put him first are redistributed to

their second favorite candidate.

This method is cheaper than a proper runoff. It also encourages voter
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turn-outs since there is only one round. Yet this method suffers from the

same weakness as plurality — it’s open to strategic manipulations. Consider

the following scenario:

C is eliminated

{A,C}

C

B

A

25%

A

B

B

A

Social Preference

A

B

C

B

45% 30%
45% 55%

A

C

B

Fig. 6.6. After C is eliminated, B gets the majority of votes.

If voters in the first group knew the distribution of preferences, they could

ensure a victory for A by getting 10% of their constituents to conceal their

true preference and insincerely move C from the bottom to the top of their

rankings. In the first round, B would be eliminated. Subsequently A would

win against C. This strategy is called push-over.

B is eliminated

25%30%
65% 35%

Social Preference

A

{B,C}

AC B C

BA B

CB A

A

C

A

AC

C

10% 35%

Fig. 6.7. A small group misrepresents their true preferences, ensuring that
B is eliminated. As a result, A wins the election.

This example shows that instant runoff violates the independence of irrel-

evant alternatives criterion, since it allows for the social preference between

A and B to be switched without changing any of the individual A-B pref-

erences.

Instant runoff is used in Australia for elections to the Federal House of

Representatives, in Fisi for the Fijian House of Representatives, to elect the

President of Ireland, and for various municipal elections in Australia, the

United States, and New Zealand.

6.2.4 Borda count

Borda count also uses the preference ballot. Under this method, given a

numbered list of N alternatives, each voter assigns to it a permutation of

{1, 2, . . . , N}, where N corresponds to the most and 1 to the least desirable

alternative. The candidate with the largest point total wins the election.

Chevalier de Borda proposed this method in 1770 when he discovered that

the plurality method then used by the French Academy of Sciences suffered
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from the paradox that we have described. The Borda method was subse-

quently used by the Academy for the next two decades.

Donald G. Saari showed that Borda count is in some sense the least prob-

lematic of all single winner mechanisms [?],[?]. Yet it is not free from the

same flaw that plagues all other single-winner methods: it too can be ma-

nipulated by strategic voting.

Consider the following example:

In an election with 100 voters 

     the Borda scores are:

206 190 204

A

C

B

B:3

C:2

A:1

A:3

45%51% 4%

A:2

C:3

C:2

B:1 B:1

B:

Social Preference

A: C:

Fig. 6.8. Alternative A has the overall majority and is the winner under
Borda count.

In this case, A has an unambiguous majority of votes and is also the winner

under the Borda count. However, if supporters of C were to insincerely

rank B above A, they could ensure a victory for C. This strategy is called

burying.

This is again a violation of the independence of the irrelevant alternatives,

since none of the individual A-C preferences had been changed.

     the Borda scores are:

In an election with 100 voters 

B:3

C:2

A:1

A:3

45%51% 4%

C:3

C:2

B:1

Social Preference

B:2

A:1

B:A: C:

B
202 194 204

C

A

Fig. 6.9. Supporters of C can bury A by moving B up in their rankings.

6.2.5 Pairwise contests

Pairwise contests, also known as Condorcet methods, are a family of

methods in which each alternative is matched one-on-one with each of the

others. A one-on-one win brings 1 point, and a tie brings half a point.

The alternative with the most total points wins. With N alternatives, this

procedure requires
(
N
2

)
stages. It can be accomplished in a single stage with

the use of the preference ballot.

Marquis de Condorcet advanced this method after he demonstrated weak-

nesses in the Borda count. He then proceeded to show a vulnerability in his

own method — a tie in the presence of a preference cycle [?].
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ScoringPairwise Contests
B

A

C

C

A

B

A C

A

C

C

B

40% 35% 25%

B

A

40%

B

35%

25%

Social Preference

C

A

75%

C

B

65%

60%

B

A

{A,B,C}

Fig. 6.10. Preference cycle: in one-on-one contests A defeats C, C defeats
B, and B defeats A.

To resolve such a situation, a variety of tie breaking mechanisms exist.

Black’s method, for instance, uses Borda count, while more sophisticated

methods run Instant Runoffs on a certain subset of the candidates.

In addition to frequently producing ties, Condorcet methods are in

turn vulnerable to strategic voting. In the following example, supporters

of C use compromising to resolve a cycle in favor of their second favorite

alternative B.

Pairwise Contests Scoring
B

A

C

A

B

A

A

C

C

B

40% 35% 25%

A

40%

25%

Social Preference

C

A

75%

60%

B

A

B

C

B

C

C

B

60% 40%

B

{A,C}

Pairwise Contests Scoring
B

A

C

A

B

A

A

C

C

B

40% 35% 25%

A

40%

25%

Social Preference

C

A

75%

60%

B

A

B

C

B

C

C

B

60% 40%

B

{A,C}

Fig. 6.11. Preference cycle (above panel): in one-on-one contests A defeats
C, C defeats B, and B defeats A. After the third group of voters compro-
mises and places B ahead of C (lower panel), B defeats C as well as A, so
B is the overall winner.

This again violates the independence of irrelevant alternatives criterion,

since B moves up relative to A in the social preference, while all individual

A-B preferences remain constant.

6.2.6 Approval voting

Recently approval voting has become very popular in certain professional

organizations. This is a procedure in which voters can vote for, or approve

of, as many candidates as they wish. An approval ballot is used where
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Vote for all acceptable candidates.

Candidate A

Candidate B

Candidate C

Fig. 6.12. Candidate A and C will receive one vote.

each approved candidate is marked off. Each approved candidate receives

one vote, and the one with the most votes wins.

It should not come as a surprise that this method is also vulnerable to

strategic voting. We give an example where a strategy equivalent to com-

promising allows supporters of C to get their second preferred candidate

elected.

Approval Voting Scoring

A

 A

 B

 C

40%

 A

 B

 C

 A

 B

 C

35% 25%

B

BA C

A

C

C

40% 35% 25%

B

AB

{A,C}

Social Preference

 A

 B

 C

40%

 A

 B

 C

 A

 B

 C

35% 25%

{B,C}

Fig. 6.13. When supporters of C also mark B as approved, the social pref-
erence between A and B changes, while all the individual AB preferences
persist.

This shows that approval voting also violates the independence of the

irrelevant alternative criterion.

6.3 Arrow’s impossibility theorem

In 1951 Kenneth Arrow formulated and proved his famous Impossibility

Theorem. He showed that the only constitution that is transitive, respects

unanimity, and is invulnerable to strategic voting is a dictatorship. A

constitution is called a dictatorship by an individual D if for any pair of

alternatives α and β,

α �S β ⇐⇒ α �D β

(see [?]). In essence, the preference of the dictator determines the social

preference.
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Theorem 6.3.1. [Arrow’s Theorem] Any constitution that respects transi-

tivity, unanimity, and independence of irrelevant alternatives is a dictator-

ship.

We present here a simplified proof of Arrow’s theorem that is due to

Geanakoplos [?]. The proof requires that we consider extremal alternatives

— those at the very top or bottom of the rankings. Fix an individual X

and an alternative β. Given a profile π, define two new profiles:

π+(X,β) such that β �X α for all α 6= β, all other preferences are as in π

π−(X,β), such thatβ ≺X α for all α 6= β, all other preferences are as in π.

Definition 6.3.1. X is said to be extremely pivotal for an alternative

β at the profile π if π+(X,β) leads to a social ranking where β �S α for

each α 6= β in A, while π−(X,β) leads to a social ranking where β ≺S α

for each α 6= β in A.

Such an individual can move an alternative β from the very bottom of the

social preference to the very top. We will show that there is an extremely

pivotal individual X who must be a genuine dictator.

Lemma 6.3.1 (Extremal Lemma). Let alternative b be chosen arbitrarily

from A. For a profile where every individual preference has the alternative

b in an extremal position (at the very top or bottom), b must occupy an

extremal position in the social preference, as well.

Proof. Suppose, toward a contradiction, that for such a profile and distinct

a, b, c, the social preference puts a �s b and b �s c. Consider a new profile

where every individual moved c strictly above a in their ranking. None of

the ab or bc rankings changes since b is in an extremal location. Hence, by

the independence of the irrelevant alternatives, in such a profile a � b and

b � c, still. By transitivity then, a � c, while unanimity implies c � a, a

contradiction.

Next we argue that there is a voter X = X(b) who is extremely pivotal

for b at a certain profile π1. Consider a profile such that each individual

preference has b at the very bottom of the ranking. By unanimity the social

ranking does the same. Now let the individuals successively move b from the

bottom to the top of their rankings. By the extremal lemma, for each one

of these profiles, b is either at the top or at the bottom of the social ranking.

Also, by unanimity, as soon as all the individuals put b at the top of their

rankings, so must the society. Hence, there must be the first individual X
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(a priori, his identity seems to depend on the order of preference switching),

whose change in preference precipitates the change in the social ranking of b.

p_spi_1

..... .....

2 Social Ranking1 X N..... .....

ba

b

c

a

d

b

a

{c,d}

c

a

d

bb

d

c

Fig. 6.14.

.....

p_spi_2

..... .....

1 2 X N Social Ranking
.....

b

a

b

d
a

{c,d}

b

c

a

d
c

a

d

b b

c

Fig. 6.15.

Denote by π1 the profile just before X has switched b to the top, and by

π2 the profile immediately after the switch.

We argue that X must be a limited dictator over any pair ac not involv-

ing b. An individual X is called a limited dictator over ac, denoted by

D(ac), if a �S c whenever a �X c and c �S a whenever c �X a. Let’s

choose one element, say a, from the pair ac. Construct a profile π3 from

π2 by letting X move a above b so that a �X b �X c, and letting all the

other individuals arbitrarily rearrange their relative rankings of a and c. By

independence of irrelevant alternatives the social ranking corresponding to

π3 would necessarily put a �S b, since all the individual ab preferences are

as in profile π1 where X put b at the bottom. Since all the individual bc

ratings are as in profile π2, where X puts b at the top, in the social ranking

we must have b �S c. Hence, by transitivity, a �S c. This means, due to

the independence of irrelevant alternatives, that the social ranking between

ac necessarily coincides with that of individual X. Hence X = D(ac) — a

dictator over ac. It remains to show that X is also a dictator over ab.

We pick another distinct alternative d and construct an extremely pivotal

voter X(d). From the argument above, such a person is a dictator over any

pair αβ not involving d, for instance ab. But X can affect the social ranking

of ab at profiles π1 and π2, hence X = X(d) = D(ab) and is thus the ab

dictator in question. This completes the proof.

Notice that the theorem does not say that the specific voting mechanism

doesn’t matter. The theorem merely asserts that dictatorship by an indi-

vidual is the only mechanism that is free from strategic manipulation. A

group in search of an acceptable voting mechanism should keep this in mind.



150 Social choice

There are many other “fairness” criteria that could and should be used to

select a “good” mechanism.

Exercises

6.1 Give an example where one of the losing candidates in a runoff elec-

tion would have a greater support than the winner in a one-on-one

contest.
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Stable matching

7.1 Introduction

Stable matching was introduced by Gale and Shapley in 1962. The problem

is described as follows.

Suppose we have n men and n women. Every man has a preference order

over the n women, while every woman also has a preference order over the

n men. A matching is a one-to-one mapping between the men and women.

A matching ψ is unstable if there exist one man and one woman who are

not matched to each other in ψ, but prefer each other to their partners in ψ.

Otherwise, the matching is called stable.

c

b

a

z

y

x

Fig. 7.1.

Let’s see an example. Suppose we have three men x, y and z, and three

women a, b and c. Their preference lists are:

x : a > b > c, y : b > c > a, z : a > c > b.

a : y > z > x, b : y > z > x, c : x > y > z.
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Then, x ←→ a, y ←→ b, z ←→ c is an unstable matching, since z and a

prefer each other to their partners.

Our questions are, whether there always exist stable matchings and how

can we find one.

7.2 Algorithms for finding stable matchings

The following algorithm which is called the men-proposing algorithm is

introduced by Gale and Shapley.

(i) Each man proposes to his most preferred woman.

(ii) Each woman evaluates her proposers and rejects all but the most

preferred one. She does not accept her preferred suitor at this stage,

but puts him on hold.

(iii) Each rejected man proposes to his next preferred woman.

(iv) Repeat step (ii) and (iii) until each woman has one proposing man.

At that point each woman accepts her proposer.

Fig. 7.2. Arrows indicate pro-
posals, cross indicates rejection.

Fig. 7.3. Stable matching is
achieved in the second stage.

Similarly, we could define a women-proposing algorithm.

Theorem 7.2.1. The men-proposing algorithm yields a stable matching.

Proof. First, the algorithm must terminate because when a man is rejected,

he never proposes to the same woman again. Thus, a trivial upper bound

for the number of rounds of the algorithm is n2.

Next we are going to show that this algorithm stops only when each

woman has exactly one proposer. Otherwise, the algorithm would stop

when one man has all n proposals rejected. But this cannot happen because

if a man j has n−1 proposals rejected, then these women all have proposers

waiting for them. Hence the nth proposal of man j cannot be rejected.
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The argument above shows that we get a matching ψ by the algorithm.

Now we prove that ψ is a stable matching. Consider a pair Bob and Alice

with ψ(Bob) 6= Alice. If Bob prefers Alice to ψ(Bob), then Bob must have

proposed to Alice earlier and was rejected. That means Alice got a better

proposal. Hence ψ−1(Alice) is a man she prefers to Bob. This proves that

ψ is a stable matching.

7.3 Properties of stable matchings

We say a woman a is attainable for a man x if there exists a stable matching

φ with φ(x) = a.

Theorem 7.3.1. Let ψ be the stable matching produced by Gale-Shapley

men-proposing algorithm. Then,

(a) For every man i, ψ(i) is the most preferred attainable woman for i.

(b) For every woman j, ψ−1(j) is the least preferred attainable man for

j.

Proof. Suppose φ is another stable matching. We prove by induction on

the round of the men-proposing algorithm producing ψ, that every man k

cannot be rejected by φ(k). So that ψ(k) is preferred by k than φ(k).

In the first round, if a man k proposes to φ(k) and is rejected, then φ(k) has

a better proposal in the first round, say, `. Since φ(k) is the most preferred

woman of ` the pair (`, φ(k)) is unstable for φ, which is a contradiction.

Suppose we have proved the argument for round 1, 2, . . . , r− 1. Consider

round r. Suppose by contradiction that k proposes to φ(k) and rejected.

Then, in this round φ(k) has better proposal, say, `. By induction hypoth-

esis, ` would have never been rejected by φ(`) in the earlier rounds. This

means ` prefers φ(k) to φ(`). So (`, φ(k)) is unstable for φ, which is a

contradiction.

Thus we proved (a). For part (b), we could use the same induction. The

detailed proof is left to the reader as an exercise.

Corollary 7.3.1. If Alice is assigned to the same man in both of the man-

proposing and the woman-proposing version of algorithms. Then, this is the

only attainable man for her.

7.4 A special preference order case

Suppose we seek stable matchings for n men and n women with preference

order determined by a matrix A = (ai,j)n×n. Where ai,j 6= ai,j′ when j 6= j′,
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and ai,j 6= ai′j when i 6= i′. If in the ith row of the matrix, we have

ai,j1 < ai,j2 < · · · < ai,jn

Then, the preference order of man i is: j1 > j2 > · · · > jn. By the same

way, if in the jth column, we have

ai1j < ai2j < · · · < ainj

Then, the preference order of woman j is: i1 > i2 > · · · > in.

In this case, there exists a unique stable matching.

Proof. By Theorem 7.3.1, we get that the men-proposing algorithm pro-

duces a stable matching which minimizes
∑

i ai,φ(i) among all the stable

matchings φ. Moreover, this stable matching reaches the unique minimum

of
∑

i ai,φ(i). Meanwhile, the women-proposing algorithm produces a stable

matching which minimizes
∑

j aψ−1(j),j among all the stable matchings ψ,

and reaches the unique minimum. Thus the stable matchings produced by

the two algorithms are exactly the same. By Corollary 7.3.1, there exists a

unique stable matching.

Exercises

7.1 There are 3 men, called a, b, c and 3 women, called x, y, z, with the

following preference lists (most preferred on left):

for a : x > y > z for x : c > b > a

for b : y > x > z for y : a > b > c

for c : y > x > z for z : c > a > b

Find the stable matchings that will be produced by the men-

proposing and by the women-proposing Gale-Shapley algorithm.
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Random-turn and auctioned-turn games

In Chapter 1 we considered combinatorial games, in which the right to move

alternates between players; and in Chapters 2 and 3 we considered matrix-

based games, in which both players (usually) declare their moves simultane-

ously, and possible randomness decides what happens next. In this chapter,

we consider some games which are combinatorial in nature, but the right

to make the next move depends on randomness or some other procedure

between the players. In a random-turn game the right to make a move is

determined by a coin-toss; in a Richman game, each player offers money to

the other player for the right to make the next move, and the player who

offers more gets to move. (At the end of the Richman game, the money has

no value.) This chapter is based on the work in [?] and [?].

8.1 Random-turn games defined

Suppose we are given a finite directed graph — a set of vertices V and a

collection of arrows leading between pairs of vertices — on which a distin-

guished subset ∂V of the vertices are called the boundary or the terminal

vertices, and each terminal vertex v has an associated payoff f(v). Vertices

in V \ ∂V are called the internal vertices. We assume that from every

node there is a path to some terminal vertex.

Play a two-player, zero-sum game as follows. Begin with a token on some

vertex. At each turn, players flip a fair coin, and the winner gets to move the

token along some directed edge. The game ends when a terminal vertex v

is reached; at this point II pays I the associated payoff f(v).

Let u(x) denote the value of the game begun at vertex x. (Note that

since there are infinitely many strategies if the graph has cycles, it should be

proved that this exists.) Suppose that from x there are edges to x1, . . . , xk.

155
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Claim:

u(x) =
1

2

(
max
i
{u(xi)}+ min

j
{u(xj)}

)
. (8.1)

More precisely, if SI denotes strategies available to player I, and SII those

available to player II, τ is the time the game ends, and Xτ is the terminal

state reached, write

uI(x) =

{
supSI

{infSII
{Ef(Xτ )}} , if τ <∞

−∞, if τ =∞.

Likewise, let

uII(x) =

{
inf SII

{
supSI

{Ef(Xτ )}
}
, if τ <∞

+∞, if τ =∞.

Then both uI and uII satisfy (8.1).

We call functions satisfying (8.1) “infinity-harmonic”. In the original pa-

per by Lazarus, Loeb, Propp, and Ullman, [?] they were called “Richman

functions”.

8.2 Random-turn selection games

Now we describe a general class of games that includes the famous game of

Hex. Random-turn Hex is the same as ordinary Hex, except that instead of

alternating turns, players toss a coin before each turn to decide who gets to

place the next stone. Although ordinary Hex is famously difficult to analyze,

the optimal strategy for random-turn Hex turns out to be very simple.

Let S be an n-element set, which will sometimes be called the board, and

let f be a function from the 2n subsets of S to R. A selection game is

played as follows: the first player selects an element of S, the second player

selects one of the remaining n−1 elements, the first player selects one of the

remaining n − 2, and so forth, until all elements have been chosen. Let S1

and S2 signify the sets chosen by the first and second players respectively.

Then player I receives a payoff of f(S1) and player II a payoff of −f(S1).

(Selection games are zero-sum.) The following are examples of selection

games:

8.2.1 Hex

Here S is the set of hexagons on a rhombus-shaped L×L hexagonal grid, and

f(S1) is 1 if S1 contains a left-right crossing, −1 otherwise. In this case, once
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S1 contains a left-right crossing or S2 contains an up-down crossing (which

precludes the possibility of S1 having a left-right crossing), the outcome is

determined and there is no need to continue the game.
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33

34
35
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37
38

Fig. 8.1. A game between a human player and a program by David Wilson
on a 15× 15 board.

We will also sometimes consider Hex played on other types of boards. In

the general setting, some hexagons are given to the first or second players

before the game has begun. One of the reasons for considering such games

is that after a number of moves are played in ordinary Hex, the remaining

game has this form.

8.2.2 Bridg-It

Bridg-It is another example of a selection game. The random-turn version is

just like regular Bridg-It, but the right to move is determined by a coin-toss.

Player I attempts to make a vertical crossing by connecting the blue dots

and player II — a horizontal crossing by bridging the red ones.
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5
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2 1
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13
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107

11

2

6

12

13

9

Fig. 8.2. The game of random-turn Bridgit and the corresponding Shan-
non’s edge-switching game; circled numbers give the order of turns.

In the corresponding Shannon’s edge-switching game, S is a set of edges

connecting the nodes on an (L + 1) × L grid with top nodes merged into

one (similarly for the bottom nodes). In this case, f(S1) is 1 if S1 contains

a top-to-bottom crossing and −1 otherwise.
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8.2.3 Surround

The famous game of “Go” is not a selection game (for one, a player can

remove an opponent’s pieces), but the game of “Surround,” in which, as in

Go, surrounding area is important, is a selection game. In this game S is

the set of n hexagons in a hexagonal grid (of any shape). At the end of

the game, each hexagon is recolored to be the color of the outermost cluster

surrounding it (if there is such a cluster). The payoff f(S1) is the number

of hexagons recolored black minus the number of hexagons recolored white.

(Another natural payoff function is f∗(S1) = sign(f(S1)).)

Fig. 8.3. A completed game of Surround before recoloring surrounded terri-
tory (on left), and after recoloring (on right). 10 black spaces were recolored
white, and 12 white spaces were recolored black, so f(S1) = 2.

8.2.4 Full-board Tic-Tac-Toe

Here S is the set of spaces in a 3 × 3 grid, and f(S1) is the number of

horizontal, vertical, or diagonal lines in S1 minus the number of horizontal,

vertical, or diagonal lines in S\S1. This is different from ordinary tic-tac-toe

in that the game does not end after the first line is completed.

8.2.5 Recursive majority

Suppose we are given a complete ternary tree of depth h. S is the set of

leaves. Players will take turns marking the leaves, player I with a + and

player II with a −. A parent node acquires the same sign as the major-

ity of its children. The player whose mark is assigned to the root wins. In

the random-turn version the sequence of moves is determined by a coin-toss.

Let S1(h) be a subset of the leaves of the complete ternary tree of depth h

(the nodes that have been marked by I). Inductively, let S1(j) be the set of

nodes at level j such that the majority of their children at level j + 1 are in
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Fig. 8.4. Random-turn tic-tac-toe played out until no new rows can be
constructed. f(S1) = 1.
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Fig. 8.5. Here player II wins; the circled numbers give the order of the
moves.

S1(j + 1). The payoff function f(S1) for the recursive three-fold majority is

−1 if S1(0) = ∅ and +1 if S1(0) = {root}.

8.2.6 Team captains

Two team captains are choosing baseball teams from a finite set S of n play-

ers for the purpose of playing a single game against each other. The payoff

f(S1) for the first captain is the probability that the players in S1 (together

with the first captain) would beat the players in S2 (together with the sec-

ond captain). The payoff function may be very complicated (depending on

which players know which positions, which players have played together be-

fore, which players get along well with which captain, etc.). Because we

have not specified the payoff function, this game is as general as the class of

selection games.

Every selection game has a random-turn variant in which at each turn a

fair coin is tossed to decide who moves next.

Consider the following questions:
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(i) What can one say about the probability distribution of S1 after a

typical game of optimally played random-turn Surround?

(ii) More generally, in a generic random-turn selection game, how does

the probability distribution of the final state depend on the payoff

function f?

(iii) Less precise: Are the teams chosen by random-turn Team captains

“good teams” in any objective sense?

The answers are surprisingly simple.

8.3 Optimal strategy for random-turn selection games

A (pure) strategy for a given player in a random-turn selection game is a

function M which maps each pair of disjoint subsets (T1, T2) of S to an

element of S. Thus, M(T1, T2) indicates the element that the player will

pick if given a turn at a time in the game when player I has thus far picked

the elements of T1 and player II — the elements of T2. Let’s denote by

T3 = S\(T1 ∪ T2) the set of available moves.

Denote by E(T1, T2) the expected payoff for player I at this stage in the

game, assuming that both players play optimally with the goal of maximiz-

ing expected payoff. As is true for all finite perfect-information, two-player

games, E is well defined, and one can compute E and the set of possi-

ble optimal strategies inductively as follows. First, if T1 ∪ T2 = S, then

E(T1, T2) = f(T1). Next, suppose that we have computed E(T1, T2) when-

ever |T3| ≤ k. Then if |T3| = k + 1, and player I has the chance to move,

player I will play optimally if and only if she chooses an s from T3 for which

E(T1 ∪ {s}, T2) is maximal. (If she chose any other s, her expected payoff

would be reduced.) Similarly, player II plays optimally if and only if she

minimizes E(T1, T2 ∪ {t}) at each stage. Hence

E(T1, T2) =
1

2
(max
s∈T3

E(T1 ∪ {s}, T2) + min
t∈T3

E(T1, T2 ∪ {t}).

We will see that the maximizing and the minimizing moves are actually the

same.

The foregoing analysis also demonstrates a well-known fundamental fact

about finite, turn-based, perfect-information games: both players have op-

timal pure strategies (i.e., strategies that do not require flipping coins),

and knowing the other player’s strategy does not give a player any advan-

tage when both players play optimally. (This contrasts with the situation in

which the players play “simultaneously” as they do in Rock-Paper-Scissors.)

We should remark that for games such as Hex the terminal position need
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not be of the form T1 ∪ T2 = S. If for some (T1, T2) for any T̃ such that

T̃ ⊃ T1 and T̃ ∩ T2 = ∅ we have that f(T̃ ) = C, then E(T1, T2) = C.

Theorem 8.3.1. The value of a random-turn selection game is the expec-

tation of f(T ) when a set T is selected randomly and uniformly among all

subsets of S. Moreover, any optimal strategy for one of the players is also

an optimal strategy for the other player.

Proof. If player II plays any optimal strategy, player I can achieve the ex-

pected payoff E[f(T )] by playing exactly the same strategy (since, when

both players play the same strategy, each element will belong to S1 with

probability 1/2, independently). Thus, the value of the game is at least

E[f(T )]. However, a symmetric argument applied with the roles of the play-

ers interchanged implies that the value is no more than E[f(T )].

Suppose that M is an optimal strategy for the first player. We have seen

that when both players use M , the expected payoff is E[f(T )] = E(∅,∅).

Since M is optimal for player I, it follows that when both players use M

player II always plays optimally (otherwise, player I would gain an advan-

tage, since she is playing optimally). This means that M(∅,∅) is an optimal

first move for player II, and therefore every optimal first move for player I

is an optimal first move for player II. Now note that the game started at

any position is equivalent to a selection game. We conclude that every op-

timal move for one of the players is an optimal move for the other, which

completes the proof.

If f is identically zero, then all strategies are optimal. However, if f is

generic (meaning that all of the values f(S1) for different subsets S1 of S

are linearly independent over Q), then the preceding argument shows that

the optimal choice of s is always unique and that it is the same for both

players. We thus have the following result:

Theorem 8.3.2. If f is generic, then there is a unique optimal strategy and

it is the same strategy for both players. Moreover, when both players play

optimally, the final S1 is equally likely to be any one of the 2n subsets of S.

Theorem 8.3.1 and Theorem 8.3.2 are in some ways quite surprising. In

the baseball team selection, for example, one has to think very hard in order

to play the game optimally, knowing that at each stage there is exactly one

correct choice and that the adversary can capitalize on any miscalculation.

Yet, despite all of that mental effort by the team captains, the final teams

look no different than they would look if at each step both captains chose

players uniformly at random.
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Also, for illustration, suppose that there are only two players who know

how to pitch and that a team without a pitcher always loses. In the alternat-

ing turn game, a captain can always wait to select a pitcher until just after

the other captain selects a pitcher. In the random-turn game, the captains

must try to select the pitchers in the opening moves, and there is an even

chance the pitchers will end up on the same team.

Theorem 8.3.1 and Theorem 8.3.2 generalize to random-turn selection

games in which the player to get the next turn is chosen using a biased

coin. If player I gets each turn with probability p, independently, then

the value of the game is E[f(T )], where T is a random subset of S for

which each element of S is in T with probability p, independently. For the

corresponding statement of the proposition to hold, the notion of “generic”

needs to be modified. For example, it suffices to assume that the values of

f are linearly independent over Q[p]. The proofs are essentially the same.

8.4 Win-or-lose selection games

We say that a game is a win-or-lose game if f(T ) takes on precisely two

values, which we may as well assume to be −1 and 1. If S1 ⊂ S and s ∈ S,

we say that s is pivotal for S1 if f(S1∪{s}) 6= f(S1 \{s}). A selection game

is monotone if f is monotone; that is, f(S1) ≥ f(S2) whenever S1 ⊃ S2.

Hex is an example of a monotone, win-or-lose game. For such games, the

optimal moves have the following simple description.

Lemma 8.4.1. In a monotone, win-or-lose, random-turn selection game,

a first move s is optimal if and only if s is an element of S that is most

likely to be pivotal for a random-uniform subset T of S. When the position

is (S1, S2), the move s in S \ (S1 ∪ S2) is optimal if and only if s is an

element of S \ (S1 ∪ S2) that is most likely to be pivotal for S1 ∪ T , where T

is a random-uniform subset of S \ (S1 ∪ S2).

The proof of the lemma is straightforward at this point and is left to the

reader.

For win-or-lose games, such as Hex, the players may stop making moves

after the winner has been determined, and it is interesting to calculate how

long a random-turn, win-or-lose, selection game will last when both players

play optimally. Suppose that the game is a monotone game and that, when

there is more than one optimal move, the players break ties in the same way.

Then we may take the point of view that the playing of the game is a (pos-

sibly randomized) decision procedure for evaluating the payoff function f

when the items are randomly allocated. Let ~x denote the allocation of the
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items, where xi = ±1 according to whether the ith item goes to the first or

second player. We may think of the xi as input variables, and the playing

of the game is one way to compute f(~x). The number of turns played is the

number of variables of ~x examined before f(~x) is computed. We may use

some inequalities from the theory of Boolean functions to bound the average

length of play.

Let Ii(f) denote the influence of the ith bit on f (i.e., the probability that

flipping xi will change the value of f(~x)). The following inequality is from

O’Donnell and Servedio [?]:

∑
i

Ii(f) = E

[∑
i

f(~x)xi

]
= E

[
f(~x)

∑
i

xi1xi examined

]

≤ (by Cauchy-Schwarz)

√√√√√E[f(~x)2]E

 ∑
i: xi examined

xi

2

=

√√√√√E

 ∑
i: xi examined

xi

2 =
√
E[# bits examined] . (8.2)

The last equality is justified by noting that E[xi xj 1xi and xj both examined] = 0

when i 6= j, which holds since conditioned on xi being examined before xj ,

conditioned on the value of xi, and conditioned on xj being examined, the

expected value of xj is zero. By (8.2) we have

E[# turns] ≥

[∑
i

Ii(f)

]2

.

We shall shortly apply this bound to the game of random-turn Recursive

Majority. An application to Hex can be found in the notes for this chapter.

8.4.1 Length of play for random-turn Recursive Majority

In order to compute the probability that flipping the sign of a given leaf

changes the overall result, we can compute the probability that flipping the

sign of a child will flip the sign of its parent along the entire path that

connects the given leaf to the root. Then, by independence, the probability

at the leaf will be the product of the probabilities at each ancestral node on

the path.

For any given node, the probability that flipping its sign will change the
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sign of the parent is just the probability that the signs of the other two

siblings are distinct.
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2
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1 3 2
1 3 2
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?

?

?

?

?

1 3

Fig. 8.6.

When none of the leaves are filled this probability is p = 1/2. This holds

all along the path to the root, so the probability that flipping the sign of

leaf i will flip the sign of the root is just Ii(f) =
(

1
2

)h
. By symmetry this is

the same for every leaf.

We now use (8.2) to produce the bound:

E[# turns] ≥

[∑
i

Ii(f)

]2

=

(
3

2

)2h

.

8.5 Richman games

Richman games were suggested by the mathematician David Richman, and

analyzed by Lazarus, Loeb, Propp, and Ullman in 1995 [?]. Begin with

a finite, directed, acyclic graph, with two distinguished terminal vertices,

labeled b and r. Player Blue tries to reach b, and player Red tries to reach

r. Call the payoff function R, and let R(b) = 0, R(r) = 1. Play as in the

random-turn game setup above, except instead of a coin flip, players bid for

the right to make the next move. The player who bids the larger amount

pays that amount to the other, and moves the token along a directed edge

of her choice. In the case of a tie, they flip a coin to see who gets to buy

the next move. In these games there is also a natural infinity-harmonic

(Richman) function, the optimal bids for each player.

Let R+(v) = maxv w R(w) and R−(v) = minv w R(w), where the max-

ima and minima are over vertices w for which there exists a directed path

leading from v to w. Extend R to the interior vertices by

R(v) =
1

2
(R+(v) +R−(v)).

Note that R is a Richman function.
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Theorem 8.5.1. Suppose Blue has $x, Red has $y, and the current position

is v. If
x

x+ y
> R(v) (8.3)

holds before Blue bids, and Blue bids [R(v)−R(u)](x+y), where v  u and

R(u) = R−(v), then the inequality (8.3) holds after the next player moves,

provided Blue moves to u if he wins the bid.

Proof. There are two cases to analyze.

Case I: Blue wins the bid. After this move, Blue has $x′ = x − [R(v) −
R(u)](x+ y) dollars. We need to show that x′

x+y > R(u).

x′

x+ y
> R(u) =

x

x+ y
− [R(v)−R(u)] > R(v)− [R(v)−R(u)] = R(u).

Case II: Red wins the bid. Now Blue has $x′ ≥ x + [R(v) − R(u)](x + y)

dollars. Note that if R(w) = R+(v), then [R(v)−R(u)] = [R(w)−R(v)].

x′

x+ y
≥ x

x+ y
+ [R(w)−R(v)] ≥ R(w),

and by definition of w, if z is Red’s choice, R(w) ≥ R(z).

Corollary 8.5.1. If (8.3) holds at the beginning of the game, Blue has a

winning strategy.

Proof. When Blue loses, R(v) = 1, but x
x+y ≤ 1.
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Corollary 8.5.2. If

x

x+ y
< R(v)

holds at the beginning of the game, Red has a winning strategy.

Proof. Recolor the vertices, and replace R with 1−R.

Remark. The above strategy is, in effect, to assume the opponent has the

critical amount of money, and apply the first strategy. There are, in fact,

many winning strategies if (8.3) holds.

Exercises

8.1 Generalize the proofs of Theorem 8.3.1 and Theorem 8.3.2 further

so as to include the following two games:

a) Restaurant selection

Two parties (with opposite food preferences) want to select a dinner

location. They begin with a map containing 2n distinct points in R2,

indicating restaurant locations. At each step, the player who wins a

coin toss may draw a straight line that divides the set of remaining

restaurants exactly in half and eliminate all the restaurants on one

side of that line. Play continues until one restaurant z remains, at

which time player I receives payoff f(z) and player II receives −f(z).

b) Balanced team captains

Suppose that the captains wish to have the final teams equal in size

(i.e., there are 2n players and we want a guarantee that each team

will have exactly n players in the end). Then instead of tossing coins,

the captains may shuffle a deck of 2n cards (say, with n red cards and

n black cards). At each step, a card is turned over and the captain

whose color is shown on the card gets to choose the next player.

8.2 Recursive Majority on b-ary trees Let b = 2r + 1, r ∈ N. Consider

the game of recursive majority on a b-ary tree of deapth h. For

each leaf, determine the probability that flipping the sign of that

leaf would change the overall result.
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8.3 Even if y is unknown, but (8.3) holds, Blue still has a winning strat-

egy, which is to bid (
1− R(u)

R(v)

)
x.

Prove this.

8.6 Additional notes on random-turn Hex

8.6.1 Odds of winning on large boards under biased play.

In the game of Hex, the propositions discussed earlier imply that the proba-

bility that player I wins is given by the probability that there is a left-right

crossing in independent Bernoulli percolation on the sites (i.e., when the

sites are independently and randomly colored black or white). One perhaps

surprising consequence of the connection to Bernoulli percolation is that,

if player I has a slight edge in the coin toss and wins the coin toss with

probability 1/2 + ε, then for any r > 0 and any ε > 0 and any δ > 0, there

is a strategy for player I that wins with probability at least 1 − δ on the

L× rL board, provided that L is sufficiently large.

We do not know if the correct move in random-turn Hex can be found

in polynomial time. On the other hand, for any fixed ε a computer can

sample O(L4ε−2 log(L4/ε)) percolation configurations (filling in the empty

hexagons at random) to estimate which empty site is most likely to be pivotal

given the current board configuration. Except with probability O(ε/L2),

the computer will pick a site that is within O(ε/L2) of being optimal. This

simple randomized strategy provably beats an optimal opponent (50− ε)%
of time.
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Fig. 8.8. Random-turn Hex on boards of size 11 × 11 and 63 × 63 under
(near) optimal play.
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Typical games under optimal play.

What can we say about how long an average game of random-turn Hex

will last, assuming that both players play optimally? (Here we assume that

the game is stopped once a winner is determined.) If the side length of

the board is L, we wish to know how the expected length of a game grows

with L (see Figure 8.8 for games on a large board). Computer simulations

on a variety of board sizes suggest that the exponent is about 1.5–1.6. As

far as rigorous bounds go, a trivial upper bound is O(L2). Since the game

does not end until a player has found a crossing, the length of the shortest

crossing in percolation is a lower bound, and empirically this distance grows

as L1.1306±0.0003 [?], where the exponent is known to be strictly larger than

1. We give a stronger lower bound:

Theorem 8.6.1. Random-turn Hex under optimal play on an order L board,

when the two players break ties in the same manner, takes at least L3/2+o(1)

time on average.

Proof. To use the O’Donnell-Servedio bound (8.2), we need to know the

influence that the sites have on whether or not there is a percolation crossing

(a path of black hexagons connecting the two opposite black sides). The

influence Ii(f) is the probability that flipping site i changes whether there is

a black crossing or a white crossing. The “4-arm exponent” for percolation

is 5/4 [?] (as predicted earlier in [?]), so Ii(f) = L−5/4+o(1) for sites i “away

from the boundary,” say in the middle ninth of the region. Thus
∑

i Ii(f) ≥
L3/4+o(1), so E[# turns] ≥ L3/2+o(1).

An optimally played game of random-turn Hex on a small board may oc-

casionally have a move that is disconnected from the other played hexagons,

as the game in Figure 8.9 shows. But this is very much the exception rather

than the rule. For moderate- to large-sized boards, it appears that in al-

most every optimally played game, the set of played hexagons remains a

connected set throughout the game (which is in sharp contrast to the usual

game of Hex). We do not have an explanation for this phenomenon, nor is

it clear to us if it persists as the board size increases beyond the reach of

simulations.

8.7 Random-turn Bridg-It

Next we consider the random-turn version of Bridg-It or the Shannon Switch-

ing Game. Just as random-turn Hex is connected to site percolation on the

triangular lattice, where the vertices of the lattice (or equivalently faces of
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Fig. 8.9. A rare occurrence — a game of random-turn Hex under (near)
optimal play with a disconnected play.

the hexagonal lattice) are independently colored black or white with prob-

ability 1/2, random-turn Bridg-It is connected to bond percolation on the

square lattice, where the edges of the square lattice are independently col-

ored black or white with probability 1/2. We don’t know the optimal strat-

egy for random-turn Bridg-It, but as with random-turn Hex, one can make

a randomized algorithm that plays near optimally. Less is known about

bond percolation than site percolation, but it is believed that the crossing

probabilities for these two processes are asymptotically the same on “nice”

domains [?], so that the probability that Cut wins in random-turn Bridg-It

is well approximated by the probability that a player wins in random-turn

Hex on a similarly shaped board.
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