
Bird-like Flight in Virtual Reality

RORY SOIFFER and EVERETT CHENG, University of Washington

Fig. 1. Inside the game, the player stares at a forested mountainside. The player’s virtual wing is visible on the right.

We created a game about flying as a bird through a massive virtual world.
The terrain is procedurally generated and extends for over 4 km in every
direction. The game includes a physical wing attached onto the player’s arm.
The game tracks the position of this physical wing, using it to simulate air
flow and calculate realistic flight physics. This creates a unique experience
where the player has a feeling of true flight.

1 INTRODUCTION
Humans have always dreamed of flight. Compared to walking, flying
is literally a whole new dimension of freedom. Despite this, very few
virtual reality games allow the player to fly through the skies like a
bird. Our project fills this gap, creating a compelling and unique VR
experience.
There do exist some VR games that allow players to fly like a

bird. The most popular is Birdly VR (http://birdlyvr.com/), a game
that has players lie down on a large, complicated machine that has
movable wings below the player’s arms. This experience is designed
for large conventions, but not for personal use.

Authors’ address: Rory Soiffer, rorys4@cs.washington.edu; Everett Cheng, eccheng@
cs.washington.edu, University of Washington.

Our project is similar to a small-scale version of Birdly VR. Instead
of a large, complicated machine, we have a single wing built of
inexpensive and commonly available materials. We hypothesize
that having even a simple physical wing that matches the player’s
virtual wing makes the experience both more intuitive and more
engaging.

1.1 Contributions
• We created a massive procedurally-generated virtual world
for players to fly around in, with basic gameplay and interac-
tive elements.

• We built a physical wing, tracked its position in the game, and
implemented a physical simulation of the wing’s interaction
with the air.

2 RELATED WORK
We could find no existing work on creating custom VR controllers
that model bird wings. The closest existing product is Birdly VR.
It replaces the controllers entirely, instead using a large custom
machine with handles for the player to hold. It also includes physical
rotation of the player and uses a fan to simulate wind. This approach



2 • Rory Soiffer and Everett Cheng

leads to a very high quality experience, but at the cost of setup
difficulty, no portability, unusual controls, custom hardware, and
an extremely high cost.

3 METHOD

Wing controller
In building a physical wing that attaches to the player’s arm, we
followed the common technique of building the custom hardware
around an existing VR controller, which handles both positional
tracking and user input. We ensure the wing is extremely light-
weight, so as to not place a strain on the player, while also being
extremely sturdy, so that it doesn’t break if the player accidentally
hits an object in the real world. For the details on how we built the
wing, see section 4.

We implement flight physics in the game based on a real-world
model of air resistance, with a number of "cheats" to help the player.
While the game is running, the wing continually applies a drag
force to the player, using the high-velocity drag equation 𝐹𝐷 =
1
2𝐶𝐴𝑣

2, where 𝐶 is a constant, 𝐴 is the cross-sectional area, and 𝑣
is the velocity of the object relative to the air. To account for the
fact that different points on the wing may have different velocities
(as the wing may be rotating), we divide the wing into numerous
small points along its surface and compute the force for each point
separately. After tuning parameters, we set 𝐶 = 5 kg/m3.
The equation above is a realistic model of flight. However, hu-

mans are realistically completely incapable of flight. We implement
several deviations from the above model, or "cheats", to make flight
practically possible:

• We disable torque and rotation. This both makes the game
easier to control and helps avoid VR sickness. It also makes it
possible to fly with only one wing.

• We enhance the motion of the player’s arm in real life by
a factor of 15. This increases 𝑣 in the equation above by a
similar factor, which increases the force by a factor of 225.
This makes the player incredibly strong in game, capable of
moving dozens of meters in a single flap.

• We constantly apply a small forwards thrust force while the
player is in the air. This makes it much easier for the player
to glide long distances without losing altitude.

Terrain generation
In order to create a large world for the player to fly around in, we
combined several procedural terrain generation techniques. To get a
heightmap with realistic-looking mountains and valleys, we began
by using the approach from [Argudo et al. 2019]. Their synthesis
pipeline first generates a divide tree: this includes the locations and
elevations of all peaks, as well as which peaks are connected by
ridges, and the locations and elevations of the saddles lying on
each ridge. The divide tree is generated so as to match measured
real-world distributions of several orometric characteristics. Given
a divide tree, the pipeline proceeds by generating a river (or valley)
network: the Voronoi diagram on the set of peak and saddle posi-
tions is calculated, and rivers are placed along Voronoi edges which
do not run across ridges. The elevations of river source nodes are
set to values close those of nearby saddles, and then the elevations

of the rest of the river nodes are propagated from the sources by
following the direction of flow. Next, the ridge and river networks
are refined by splitting segments and randomly adjusting the po-
sitions of vertices, so as to give a natural appearance. Finally, the
heightmap is built by sampling many points and interpolating the
heights of the nearest ridge and river.

We used the code provided by the authors of [Argudo et al. 2019].
However, we had to make some changes in order to get good results.
This is because there was an issue where rivers would often be
generated very close to ridges, and then during the refinement step
parts of them would be moved through the ridges, causing large
discontinuities in the final heightmap (see Figure 2). In order to fix
this, we added a step after the refinement, where any river nodes
within a certain distance of ridges would be removed. Any river
nodes orphaned by this removal also need to be removed, so that
each river node still flows to another. Making this addition prevents
the discontinuities in the final heightmaps, as shown in Figure 2.
After generating a heightmap in this way, we further refined it

in two ways, as suggested in [Argudo et al. 2019]. First, we added
fractal noise to provide more variation and reduce its smooth, flat ap-
pearance. Then, we ran a simulation of erosion to get more realistic
landforms and mountain shapes.

From here, the next step was to texture and decorate the terrain.
We used three main textures: grass, rock, and snow. We applied
these three textures in different proportions to each location on
the terrain, depending on its height and steepness: snow at high
elevations, rock for steep slopes, and grass otherwise. Specifically,
we first compute

𝑠 = Clamp01

(
0.5 + TerrainHeight − SnowLine

SnowTransition

)
,

𝑔 = Clamp01

(
0.5 + TerrainAngle − GrassThreshold

GrassTransition

)
,

and then derive the proportions of the three materials by

SnowAmount = 𝑠 ,

GrassAmount = (1 − 𝑠) · 𝑔 ,

RockAmount = (1 − 𝑠) · (1 − 𝑔) .
(Here SnowLine, SnowTransition, GrassThreshold, and GrassTran-
sition are tunable parameters, and Clamp01 is the function 𝑥 ↦→
max(0,min(1, 𝑥)).)
For trees, we placed many instances of a few tree models ran-

domly using Poisson disc sampling across the entire terrain. At each
Poisson sample location, a tree was placed with probability equal to
GrassAmount; thus trees will not appear on high, snowy peaks, or
on the sides of steep rocky slopes.
Finally, we placed long grass objects across the terrain using

Perlin noise. The density of grass at each location (as a fraction of
the maximum possible) is

LongGrassDensity = GrassAmount ·max(0, 1− 4 ·NoiseSample2) .

Here NoiseSample is between 0 and 1. The use of a quadratic here
gives a bias where areas are likely to either have lots of grass or no
grass, not somewhere in between.



Bird-like Flight in Virtual Reality • 3

Fig. 2. Left: generated ridge/river networks and final heightmap before our changes. Right: networks and heightmap after our changes.

Since we have two different long grass sprites, we obtain Nois-
eSample using slightly different noise patterns for each. In particular,
we set

NoiseSample = 𝛼 ·CommonSample+ (1−𝛼) ·TypeSpecificSample ,

where we sample CommonSample and TypeSpecificSample from
different Perlin noise patterns (optionally using multiple octaves).

For CommonSample we use the same noise pattern for both grass
types, but for TypeSpecificSample we use different patterns. Further,
the CommonSample is weighted more heavily (eg. 𝛼 = 2/3) and
uses lower-frequency noise: this ensures that both types of grass
generally spawn in the same areas, with only small, high-frequency
variations between them.



4 • Rory Soiffer and Everett Cheng

Fig. 3. This is the wing controller. The player holds the Vive controller, rests their forearm against the pad to the upper-left, and secures the wing with the
straps. The wing extends 2 feet forward from the player’s hand, and 1 foot to the side.

4 IMPLEMENTATION DETAILS

Wing controller
We built the wing controller out of wood, 3d-printed plastic, felt,
and velcro. We use balsa wood for the skeleton of the wing because
of its light weight, sturdiness, and flexibility. The primary bone of
the wing is a single 1/2" x 1/2" x 36" piece. The 3 secondary bones
are 1/2" x 1/2" x 12" pieces. The bones are connected together with
custom-designed 3d-printed joints. The joints have 1/4" of plastic
around the outside of the wooden bones to provide strength. Each
joint is made of two pieces, for the top and bottom, as 3d printers
can’t effectively print parts with overhangs. The very low tolerance
of 3d printers let us print joints so precisely that they can hold the
bones through friction alone. We glued the joints and bones together
to be even more sure of the structural integrity.
We glued other custom 3d-printed parts to the forearm part of

the primary bone, with holes to allow velcro through. The velcro
winds through the plastic parts and around the player’s arm, where
they can adjust it to fit securely. We use three straps to provide
redundancy even if one or two give out. We then cover the straps
and the entire forearm piece with felt to increase comfort. A simi-
lar custom 3d-printed part attaches to the middle secondary bone,
where it holds the Vive controller. While the controller is secure
through friction alone, we also have space to tie the controller strap
as a failsafe in case the controller gets loose.

We then covered the entire bottom side of the wing with pieces
of felt, which we attached together with more velcro (as we didn’t
have the tools to sew the felt together properly, and glue proved
ineffective). The felt is then attached to the wooden bones with
thumbtacks. The result is very sturdy. It holds up to vigorous flap-
ping without issue, easily survives being dropped, and can hit or
push against other objects safely. It is also very light: the entire wing
weighs about as much as the Vive controller.

We ran into one major challenge while building the wing: due
to the coronavirus, all the makerspaces at UW suddenly closed,
leaving us unable to 3d print parts. Luckily, we had just barely
printed enough parts to construct one wing. Our original plan of
constructing two wings had to be scrapped.

Terrain generation
First, we used the Python code from [Argudo et al. 2019] (with
our modifications) to generate a heightmap. The divide tree was
generated using orometric data from the Swiss alps as reference,
and covers a 40.97 km× 40.97 km region. At one pixel per 10 m, this
gave a 4097 × 4097 heightmap (outputs shown in Figure 6).
For the augmentation with fractal noise and erosion simulation,

we used Houdini 1. After this, we imported our finished heightmap
into Unity using the built-in terrain system, and scaled it down by

1https://www.sidefx.com/products/houdini/



Bird-like Flight in Virtual Reality • 5

Fig. 4. This is the game world, seen from far away. The terrain is over 4 km wide in each direction. The player has freedom to fly anywhere.

a factor of 10 (otherwise it would simply be too large, and would
take players far too long to fly across).
We then added textures, trees, and grass detail objects using

Unity editor scripts. For the texturing, we set SnowLine = 3800 m,
SnowTransition = 400 m, GrassThreshold = 45 degrees, and
GrassTransition = 10 degrees (these values use the height of the
terrain before it was scaled down). We also blurred the texture
splatmaps to give smooth transitions between grass, rock and snow,
by applying a box filter of size 10 m. For tree placement, we used
Poisson samples with a radius of 15 m or 25 m (after scaling down).

5 EVALUATION OF RESULTS
The finished wing controller is both functional and stylish. In fact,
100 percent of sampled users thought the resulting design looked
cool (𝑛 = 4). The wing is very lightweight, weighing about 1 pound.
When attached to a user’s arm, it gives them an extra 2 feet of reach.
For a person with a normal armspan of 6 feet, a pair of these wings
would increase their total armspan to 10 feet.

As for the terrain, the aesthetic results are mixed. While it is
realistic enough to provide the experience of flying over a natural
landscape, it is still very simple and lacking detail. We believe the
mountain and valley shapes look more realistic than what we could
have achieved by manual sculpting. However the terrain could use a
wider variety of textures and decorations (currently the same small
textures are tiled across the terrain, which causes cliffs to look plain
and uniform).
The results for the flight physics are mostly positive. Flying in

the game is relatively easy, quite versatile, and involves a moderate

Fig. 5. This is the back of the wing controller.

amount of physical exercise. We found that experienced users were
able to easily and quickly fly to any location they chose. One poten-
tial concern is the difficulty of getting used to the flight physics for
someone new to VR. Unfortunately, the coronavirus prevented us
from running a user study.



6 • Rory Soiffer and Everett Cheng

6 FUTURE WORK
In the future, we would try to create a second wing. Our original
plan was to create a pair of wings. However, the makerspaces at
UW shut down in the middle of our project due to the coronavirus,
making it impossible to 3d-print parts. We barely had enough parts
to finish one wing. Building the second wing would be easy now
that we have the design.
Future wings could be improved in both size and quality. The

wing currently extends 2 feet past the player’s arm - a significant
distance, but still far too small for an actual wing for a human-sized
creature. We aimed low with this project to ensure that we wouldn’t
have any issues with the wing’s sturdiness. This turned out to not
be a problem at all, so in the future we would attempt to build an
even larger wing. In addition, we could try adding hinges to the
wing to allow it to fold. Birds do fold their wings as part of flapping
in real life, so this change would greatly increase the realism of the
flap motion.
We would like to improve the gameplay of the demo. There are

currently no game objectives, it’s just a sandbox environment where
the player can freely fly around and interact with drones. Adding a
more advanced combat system where you fight drones, or a time
trial system where you race a set course, would vastly improve the
game.

For the terrain, we would like to improve the texturing, as well as
add a wider variety of tree, plant and rock models. We would also
like to add rivers and streams with flowing water, as well as lakes.

7 CONCLUSION
We created a VR game where the player flies around a massive
landscape by flapping like a bird. We built a physical wing controller
to complement the game, so the players flap a wing in real life and in
the game simultaneously. We developed an enormous procedurally-
generated mountain forest landscape for the player to explore in
the game.

ACKNOWLEDGMENTS
We thank John Akers and the UW Reality Lab for technical advice
and access to the Incubator space.

We thank Kirit Narain and the UW XRA for loaning us the Vive
hardware we used for the project.

REFERENCES
Oscar Argudo, Eric Galin, Adrien Peytavie, Axel Paris, James Gain, and Eric Guérin.

2019. Orometry-Based Terrain Analysis and Synthesis. ACM Trans. Graph. 38, 6,
Article Article 199 (Nov. 2019), 12 pages. https://doi.org/10.1145/3355089.3356535

https://doi.org/10.1145/3355089.3356535


Bird-like Flight in Virtual Reality • 7

Fig. 6. Top: coarse elevation map and peak probability map provided to the divide tree synthesis code (see [Argudo et al. 2019]). Middle: the generated divide
tree. Bottom: the final heightmap after adding noise and simulating erosion.


	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	4 Implementation Details
	5 Evaluation of Results
	6 Future Work
	7 Conclusion
	References

