VR Dueling - Final Report
A Beginning to Multiplayer VR

ROBIN SCHMIT, University of Washington

Fig. 1. For my project, | investigated multiplayer solutions for VR game development in Unity. Using Photon 2, | built a room in Unity that multiple clients
could log into simultaneously. Each client appears as a ball to themselves and others, and carries a blaster that was intended to be the core of gameplay.

I wanted to try developing a multiplayer game for VR, in order to create
something fun with only the essentials of a game. In order to do this, I started
with existing tutorials for multiplayer development in Unity using Photon
and for singleplayer VR game development. I was ultimately unsuccessful
in creating an actual game, though I did get multiplayer VR working over
a network. I reached a point where I have the knowledge to create a more
up-to-date, helpful tutorial on the subject than the ones I followed.

Author’s address: Robin Schmit, schmirob@cs.washington.edu, University of Washing-
ton.

1 INTRODUCTION

Multiplayer games are extremely popular on all gaming platforms,
and that includes VR. Once I decided that I wanted to try VR game
development, I realized that investigating multiplayer would both be
a unique challenge and be potentially more satisfying to play given
my own abilities. One of the cores of interesting 3D single-player
games is satisfying visuals, which require substantial artistic work
on the development side. Multiplayer games, on the other hand,
can more easily get away with simplified visuals in favor of clean
gameplay.

Multiplayer VR also offers unique opportunities to players, who
can take ridiculous actions in VR that can then be riffed on by other

2« Robin Schmit

players in a way not possible in standard multiplayer games. Many
traditional multiplayer games offer taunts, emotes, or other actions
that have no in-game purpose and serve only to joke around with
other players. Multiplayer VR doesn’t have to write the functionality
for such behaviors, and other players can interact with whatever a
player decides to do.

The necessary parts of game development in VR are a game en-
gine, a way to handle HMD and controller input, and a network
solution. I used Unity 2019, SteamVR SDK, and Photon 2, respec-
tively. In order to familiarize myself with these systems, I looked for
introduction-level tutorials. I used two of these, one for singleplayer
SteamVR and one for using Photon in VR.

Unfortunately, these two tutorials were somewhat out of date,
especially the Photon one. This means that it is currently quite
challenging to go from no development experience to a functioning
multiplayer VR game. This paper will document the challenges
involved, ideally making the initial learning process easier for others
in the future.

1.1 Contributions

o I created a scene in Unity of a closed room into which players
load.

o I added local blaster functionality. The blaster spawns at-
tached to the player’s right controller and fires a projectile
on trigger input.

o I successfully loaded two players into the same room from
different executables, and they were able to see each other’s
avatar without being able to control it.

2 EXISTING TUTORIALS

Our First Social VR App [1] is one of the only existing video tutorials
on using Photon in Unity for VR, and it is a tutorial for the original
Photon, now referred to as Photon Classic. It covers creating a net-
work handler to load players into the same Unity scene, and also
discusses audio solutions. Combining this with the up-to-date Pho-
ton 2 tutorial[2] that exists on their website but does not cover the
details of Unity integration gets almost all the way to a functioning
multiplayer scene.

Blaster Weapon for SteamVR 2.0 [3] gives an introduction to
building a singleplayer VR shooter using SteamVR SDK 2.0. It’s
relatively up to date, since SteamVR SDK is currently at version
2.5. It doesn’t cover creating enemies for a game, but it covers
creating a weapon, using it to fire projectiles, and detecting when
those projectiles hit other objects. These are very useful things to
cover for introductory shooter gameplay, but generalizing them to
multiplayer using Photon is surprisingly challenging.

3 METHOD

In order to create any introductory multiplayer VR application, there
are three distinct necessary components: a game engine (and de-
velopment environment), a device handler, and a network handler.
Each of these already exists in several different forms, the chal-
lenge comes in integrating them successfully. In order to achieve
this, having a general understanding of each component is vital.
Without such an understanding, it is nigh-impossible to step away

from examples in any way. Now, the place to integrate the above
components is the game engine/development environment. This
is the system designed for the developer to create and customize,
unlike prefabricated device handlers.

Additionally, having a fully-functioning development environ-
ment that allows you to fully test your application is crucial. For
multiplayer, this means having the ability to host the game and con-
nect to it from multiple devices simultaneously. Many challenging
bugs will not show up when testing with a single player, and testing
every step of development is key.

4 IMPLEMENTATION DETAILS

In order to create a multiplayer game in VR, I used Unity, SteamVR
SDK 2.5, and Photon 2 as my engine, device handlers, and network
handler respectively. As of time of writing, these would be my recom-
mendations for introductory multiplayer VR development. Unity is
the classic introductory game engine, and Photon is the only option
for networking. Unity used to have its own networking solution, but
it is currently deprecated. SteamVR provides a hardware-agnostic
Camera Rig prefab which handles HMD and controller input per-
fectly. Many sets of prefab objects and visuals also exist on Unity
for common game objects. I used one set of blaster prefabs from VR
with Andrew [3] for my specific application, which was intended
to be a firearm dueling setup. As for hardware, I used two sets of
Windows Mixed Reality (WMR) headsets and controllers. The rela-
tive cheapness of these devices is a win, since having two HMDs for
testing purposes is a necessity, and the application will not function
without an attached VR device.

SteamVR SDK and Photon can both be installed into Unity as
plugins from the Asset Store. SteamVR SDK requires Steam and
SteamVR installed, and using SteamVR with WMR headsets requires
Windows Mixed Reality for SteamVR, available on Steam. Photon,
meanwhile, requires an account and an app on their site (both
free). The app id of that app is used in the import of Photon to
connect the Photon plugin to a server, which the Unity build will
use as its network point. Photon will also generate a file called
PhotonServerSettings, which can be configured in Unity. One thing
to make sure to do is to set your fixed region to be whatever region
Photon believes to be the region with the lowest ping for you. This
will prevent you from later discovering that your app does not
connect players on disconnected devices because they are somehow
in different regions.

Once the Unity project has everything installed, the creation of
one multiplayer scene is relatively simple. Following the Photon
2 tutorial [2] guides you through the creation of a network man-
ager script which needs to be added to the scene, as well as basic
room components for the scene. There are apparently a number of
challenges with Photon objects in multi-scene games, but I did not
reach those challenges in my project and so they are outside the
scope of this paper. The network manager handles which room a
player loads into, allowing lobby-style matchmaking (with some
extra work) or simple random matchmaking.

The final challenge for a multiplayer VR scene is projecting the
controller movements over the network, so that each player can see
the other and their movements. In Photon, the way to create objects

visible over the network is to use PhotonNetwork.Instantiate() on
GameObjects which are public variables in the scripts, and actually
chosen in Unity. This tells Photon to create a copy of the object in
each other player’s local scene. Additionally, you add a PhotonView
object and a PhotonTransformView object so that the rotations and
translations of the copied objects are synchronized to the original
object’s behavior. Note that unlike Unity’s regular Instantiate(), the
first parameter to Photon’s Instantiate should be the name of the
object rather than the object itself.

Unfortunately, PhotonNetworkInstantiating a SteamVR Camer-
aRig object is a mistake. It successfully creates another CameraRig
object on the other player’s local scene, but this has a significant
problem. The two CameraRigs in the local scene both respond to
the local player’s devices, so moving your device moves where the
other player appears to be. The traditional Photon solution to this
problem is to check in the controller input handling whether the
local object’s PhotonView.IsMine(), which is a variable that Pho-
ton objects have that says whether they were created locally or as
the copy of an object somewhere else. This would probably work
here, but it is difficult since the code handling controls is part of the
SteamVR SDK. Instead, the solution suggested by deraggi on a Unity
forum in 2016 [4] is to Photon Instantiate 3D objects (spheres in my
case) as children of the CameraRig object, which is only instantiated
locally. This (plus a short script) means that the children are moved
when the devices that control them are moved, but are not moved
by controllers that should not control them.

5 EVALUATION OF RESULTS

Overall, while I did not successfully create a multiplayer VR game,
the part that I failed to deliver was the game part, and that was
simply a function of running out of time debugging the network
part. I did successfully create a scene into which multiple users
could load and see each other’s movements approximately correctly.
Unfortunately, while the networked player avatars seemed to move
relatively correctly according to the movement of their headsets, I
never got networked projectiles working in order to really test the
latency and accuracy of Photon.

6 LIMITATIONS AND FUTURE WORK

Obviously the future of this multiplayer game development project
would be to finish developing the multiplayer game. I believe that it
would not take substantially more work in order to get gameplay
functionality: projectiles firing across the network and projectile-
player collisions having some kind of effect (score, hit point loss,
etc.).

However, this would leave one significant unsolved problem, and
solving it would require different logic for networked projectiles
than for networked players. That would be detecting projectile
collisions with player avatars. The best way to handle this would
be to detect weapon fire and to spawn projectiles locally in the
opponent’s scene, so that it could handle collision detection there.
This would likely be done with a remote procedure call. This would
make sure that if a projectile hit a player, that player would believe
that they were hit, which is important for fun.

VR Dueling - Final Report « 3

Additionally, the current scene does nothing to prevent a player
from walking through the scene walls. The way to do this in single-
player is to move the scene with the player when they try to do this.
A similar solution might work in multiplayer, but it would require
both moving the copied avatars in the local scene and not moving
the copies of your avatar in the non-local scenes.

7 CONCLUSION

This section is somewhat redundant with the abstract, but is often
included in publications. This can be a single paragraph that is
focused on emphasizing the “take home” messages of your work.
This is also a good place to frame why your work matters within
the AR/VR community and what might happen as a result of it, or
if more researchers started working on this topic.

While I was not able to create a multiplayer VR game, I was able to
create a multiplayer VR scene. This would be an excellent starting
point for any inexperienced developer interested in multiplayer
VR, as I cover the current relevant plugins while also collecting
useful past tutorials and mentioning a couple of the major potential
pitfalls. I believe that with access to this, another student could
make progress on the same project far more rapidly than I was able
to.

ACKNOWLEDGMENTS

Special thanks to Kirit Narain, whose advice on existing solutions led
me to Photon, and who helped me troubleshoot multiple persistent
issues.

[1] FusedVR (2016). From Single to Multiplayer, Creating our first
Social VR app. https://www.youtube.com/watch?v=GEi_j7JUG-4

Note that underscores have to be escaped for LaTeX, and that the
URLSs did not originally contain backslashes.

[2] Photon 2 Tutorial (2020). https://doc.photonengine.com/en-
us/pun/current/getting-started/pun-intro

[3] VR with Andrew (2019). [Unity] Blaster Weapon for SteamVR
2.0. https://www.youtube.com/watch?v=QUCPh9ZuryU

[4] deraggi (2016). Vive multiplayer problem - Unity forum.

https://forum.unity.com/threads/vive-multiplayer-problem.427730/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Existing Tutorials
	3 Method
	4 Implementation Details
	5 Evaluation of Results
	6 Limitations and Future Work
	7 Conclusion

