Inverse Kinematics and Full-body Tracking for Virtual Reality

Initial Exploration and Experimentation

TERRELL STRONG, University of Washington

Fig. 1. This image shows how the simulated trackers were positioned and oriented on an animated character in order to create data to work from. From left to
right: (1) The headset and controller tracked poses; (2) foot tracked poses, (3) chest and hips tracked poses; (4) limb tracked poses; (5) all trackers. Notably, (4)

include two trackers for each limb, one above and one below each knee/elbow.

Due to limited amounts of pose data when working in VR, understanding
the position of the entire body can be difficult, but making good estimations
in the absence of data or using additional tracking points can improve body
tracking quality and allow for heighten immersion in any given experience.
Accuracy is essential if applied to a first person model in order to display a
user’s arms, but believably would likely be enough if trying to communicate
a user’s pose to someone else in VR. This project aimed to implement a
basic body pose solver using Unity. To do this, tracking data was generated
from an animated character so that the data provided to the solver could be
either limited to traditional controller and headset tracking or expanded to
include many more tracked positions on the body and limbs. Although the
solver didn’t reach a polished state, the work is still valuable in identifying
challenges and potential future solutions.

1 INTRODUCTION

One of the most unique thing about VR is the sense of presence
that it can give users by allowing them to look around and interact
with virtual environments, but one of the things that I am interested
in is how presence works in VR. Often times the quality of visual
perception is posed as how realistic VR is, but being able the body
animations of a first-person character could contribute significantly
to immersion as well. Many experiences right now simply show
hands as a representation of the user’s virtual body because the
hands and head are often the only things being tracked, but I'd like
to explore how you could go about posing the rest of the body even
with this limited data.

This problem is difficult because the limited data creates a lot of
ambiguity, so one of the major things that will determine if a pose
is good is if it is accurate. Or rather if it’s inaccuracies are tolerable.
I didn’t address the user perception of pose accuracy, but instead

Author’s address: Terrell Strong, stront2@cs.washington.edu, University of Washing-
ton.

used simulated data in order to allow a direct compassion between
the original and generated poses.

1.1 Contributions

While working on this project much of my focus was in creating a
method of mapping general tracked data to a skeleton in order to
calculate the pose of tracked body parts more accurately. A notable
contribution in terms of my methodology was that I used simulated
tracking points and pre-made animations in order to compare my
body pose solver to a ground-truth pose. As I developed the body
tracking, I experimented with heuristics to try improving the qual-
ity of the pose when limited to traditional tracking points as well.
Overall, my contributions are:

e Timplemented a script to generate simulated tracking points
on a humanoid rig in Unity.

e I implemented the base FABRIK algorithm.

e I began implementing a body pose solver using simulated
tracking points, rating pose quality by comparing it to ground-
truth animations

2 RELATED WORK

In [Lang 2016], the methodology used for creating IK in the VR game
Dead and Buried is discussed. This article was a strong motivator
for me pursuing this project and relates closely in terms of what it
is trying to achieve. The primary difference between my work and
the article is that they worked with the constraint of using only the
headset and controller positions while I am interested in how addi-
tional tracking points can assist in posing. Additionally, designing
their IK solution with a specific application in mind allowed them
to remove some additional ambiguity since they understood what
kind of actions would be most common.



2« Terrell Strong

In [Aristidou and Lasenby 2011], an algorithm for IK is described
that generates realistic posing solutions fairly quickly. This algo-
rithm seems to be the go-to in many cases, so familiarizing my self
with it was important. Additionally, [Aristidou et al. 2016] expands
on FABRIK in order to generate poses with more complex systems
of constraints. Since this was a sort of initial exploration of IK and
body posing, I ended up using built in Unity functionality for much
of the project and focused more on how to generate pose targets
from the tracking data. I did end up re-implementing FABRIK as
a means of learning how it works and how I could apply it to the
character model that I was using.

In[Kim et al. 2018], the FABRIK algorithm is actually applied to
arm posing in VR. This is again very closely related to my project
and it’s goals. I didn’t try to re-implement the work done here, but
instead wanted to try pushing what I could do with generated data.

3 METHOD

As mentioned earlier, the way that I went about developing the body
pose solver was to get tracking data from an animated character
instead of from an actual VR headset in order to allow for easier
comparison to how well the generated pose fit the original pose.
This meant that the first step was to first map tracking points to
an animated character, then to create the solver in such a way
that it could use these tracking points in place of data form actual
controllers. Since I was using animations to generate pose data, it
was important to consider what kind of animations to use.

3.1 Selecting Animations

The animations used were sourced from Mixamo.com, so there were
a lot of choices in terms of what animations to use. To determine
which animations would be most valuable in terms of developing
and testing the body pose solver, I broke down what elements of the
body pose would be tested by any single animations and roughly
categorize animations based off of this.

e Social Gestures - Primary motion is with the arms and hands.
Because of this, determining the orientation of the elbow is
very important

e Focused Actions - Motions with the purpose of interacting

with the world. This categorization is particularly interesting

because making additional guesses and assumptions about the
users intent is reasonable and can give an edge in determining
how to pose the character

Dance - These featured lots of sweeping arm and leg move-

ments as well as significant center of mass movements. Tests

with these animations can give insight into how well the hips
and feet are being estimated as well as how well the limbs
are rotated when being swung in an arc

Crouch - Motions that have the character crouched or prone.

These are used to test how well hip height can be estimated

and how leg posing can work in cases where the player may

crouch.

Comparing the importance of each category, estimating good poses
for social gestures and focused actions are the most important,
followed by crouching motions. The dance and challenge categories
are fairly interesting because they deal a lot with how to estimate

Fig. 2. three different animations that are being posed with different body
parts being calculated using tracking points with the rest being estimated.
In all cases, the headset and controller tracking points are being used to
calculate hand and head poses. From left to right: (1) ground truth anima-
tion; (2) estimating everything; (3) calculating hips; (4) calculating feet; (5)
calculating hips, feet, and elbows.

and procedurally animate locomotion, but are the lowest priority
for now since lower body posing without additional tracking would
be focused entirely on grounding the user believably rather than
trying to imitate the ground-truth animations.

3.2 Solving Body Poses

After generating pose data, it had to be interpreted by the body
pose solver in order to create and apply a pose to a new character
model. The most notable thing about the pose solver is that it has to
have multiple ways of determining how to pose different sections of
the body dependent on what tracking data it has available to it, so
naturally the solver makes separate passes over different sections
of the body in order to construct a pose. The passes ended up being
separated into the hands, feet, torso, and knees/elbows.

4 |IMPLEMENTATION DETAILS

For this project, I worked entirely in Unity, and used the animator
component to access data about the joints in the models as well as
to manipulate the poses.

Testing the pose solver required two characters; the first was the
ground-truth character and the second was the IK character. The
pose of the ground-truth character was determined by imported
animation, and the model had the generated trackers on it in order to
simulate the controller and headset pose data that would be expected
from VR systems, as well as additional tracking points on different
segments of the body. The trackers and how they were divided can
be seen in figure 1



For generating the tracker positions, I created a script that find
a relevant bone in the ground-truth character, and instantiate a
tracker with a predefined rotational and positional offset, parent it
to the bone, and save a reference to it to be used later. It is worth
noting that if the tracker positions were instead supposed to be
driven by actual tracking data, a reference to the tracked object
could be used instead and the offset could be calibrated in order to
better reflect the user’s joint positions.

After generating the tracker positions, a separate script was used
to calculate apply poses to the IK character. The IK solver operated by
doing an ordered pass over the spine, hands, feet, elbows, and knees.
Since all trackers were generated by the previous script regardless of
if they were to be used, the IK solver had parameters that determined
if it would try to estimate the pose of a section based on the controller
and headset trackers, or if it would calculate the pose directly using
the relevant trackers. This approach of doing passes over different
sections of the body was motivated by [Lang 2016].

For the hands, feet, and hips the pose was determined by essen-
tially inverting the rotational and positional transformation from
the bones to the trackers. Determining the positions of the pole
vectors for the limbs is described below.

4.1 Elbow Pole Vector Positioning

In order to orient the arms, I tried using a heuristic based on the
rotation of the wrist to avoid rotations that would exceed the bio
mechanical limits of the wrist. Figure 3 visualizes the calculation.
The first step was to calculate the midpoint between the wrist and
its pivot to get a rough estimation of where the elbow would be if
the arm was fully extended. Next, the pole vector was positioned at
that midpoint then offset using the wrist’s local coordinate system
such that it move down and outward by the estimated length of the
forearm. From there, a final offset could be made to move the elbow
inward or outwards using an additional parameter. The motivation
of having this additional parameter was to be able to tweak the elbow
position dynamically to avoid collisions with the body, but I didn’t
get to the point where I could drive that parameter dynamically.

4.2 Experimenting with mass

One of the heuristics that I wanted to try using for determining the
behavior of the lower body was velocity, acceleration, and mass of
different sections of the body. Although it wasn’t integrated into
the pose solver, there was some progress towards this that is worth
covering. Figure 4 visualizes the following calculations.

The center of mass of the entire body is calculated as a weighted
sum of all of the different centers of mass for sections of the body
such as the arms, legs, head, and torso. The center of mass for each
of the sections was approximated as the average position of each
of its joints. For the legs, the joints used were the upper leg joint,
the knee, and the ankle, and for the legs the joints used were the
shoulder, the elbow, and the wrist. For the torso, all of the joints
of the spine were used. For the head, the position of the head joint
was taken directly. After determining the positions of each center of
mass, the proportional weight of each segment in the average person
was used, although these weights could be tweaked to change how
the body’s center of mass reacts to hand and head movements.

Inverse Kinematics and Full-body Tracking for Virtual Reality « 3

Fig. 3. Shows how the elbow pole vector is placed. The red wire sphere in
the lower right represent the pole vector. The green and blue lines shows the
positional offset from the wrist that is used to determine the initial elbow
position. The yellow triangle shows the plane created by the initial elbow
positioning, the wrist, and the estimated neck position.

Using the center of mass, the stability of the character was then
approximated by whether the center of mass ever moved from be-
tween the feet or too far forward or backward. With this calculation
as a heuristic, procedural footsteps could be taken in order to restore
balance or the hips could be moved to maintain balance.

5 EVALUATION OF RESULTS

The results weren’t amazingly accurate, but they weren’t exactly
expected to be. A lot of this was built on top of Unity’s systems, and
that caused some complications when figuring out how to do some
things effectively. Specifically, built in IK passes made it difficult to
modify the pose in some instances, so building separate IK system
from scratch seems like it would allow for more flexibility.

6 FUTURE WORK

A significant part of this project was built on top of Unity’s anima-
tion and IK systems, so the next step would be to try and create a
new and separate system so that it is easier to define multiple IK
passes as well as improve continuity between poses. Having more
control over the IK passes would allow for more experimentation
with constraints as well as allow for positional corrections to avoid
intersections of the body with itself or the environment. There’s still
a lot more experimentation that can be done with constraints, both
in how bio mechanical constraints in one area of the body can can
effect the pose in another area, as well as in how soft constraints
can be used and varied in order to achieve better posing.
Estimating and animating locomotion is another potential exten-
sion. Animations that had large lateral movements and significant
weight shifts were not expected to work particularly well here, but
extending the body pose solver to animate foot steps and attempt to
estimate the pose based on velocity, acceleration, and inertia could
create convincing motion even with a limited number of sensors
Finally, one of the ideas that I'm curious about is how machine
learning may be able to be applied to the problem. Specifically, I



4« Terrell Strong

Fig. 4. These images show how center of mass (COM) and stability are
calculated. The yellow spheres show the COM of each of the body segments,
and the cyan sphere shows the COM of the entire body. The relative size
of the spheres reflect their relative mass. The blue dot shows the COM’s
projection onto the ground, and the blue ring estimates where the weight
of the COM can be without making the character appear unstable.

imagine that it may be possible to train a network to estimate the
position of the elbow based on the position and rotation of the
shoulder and wrist instead of using heuristics like joint relaxation.

As the accuracy of the body posing improves, doing user tests
to see how the posing feels in first-person will be essential to un-
derstand how it could be applied. Currently, many VR experiences
only use hand-models from the first-person view, so body pose
tracking and animation could be used to create incrementally better
first-person models that include the arms, shoulders, and possibly
waist. Additionally, the full body pose could be useful in multi-
player contexts as long as it can generate convincing poses, but that
would require user testing to better understand what inaccuracies
are tolerable.

7 CONCLUSION

The project didn’t make any breakthroughs in terms of how body
pose solving can be done in the future, but in trying to implement a
solver I was able to better understand what kind of problems exist
and how to overcome them in a future attempt. One of the most
immediate things would be to write all of the IK passes from scratch
to give better control over constraints and ordering since that seems
to be essential after experimenting with heuristics.

ACKNOWLEDGMENTS

Thank you CSE 490V staff for all of the support throughout the
course!

REFERENCES

Andreas Aristidou, Yiorgos Chrysanthou, and Joan Lasenby. 2016. Extending FABRIK
with Model Constraints. Comput. Animat. Virtual Worlds 27, 1 (Jan. 2016), 35-57.
https://doi.org/10.1002/cav.1630

Andreas Aristidou and Joan Lasenby. 2011. FABRIK: A fast, iterative solver for the
Inverse Kinematics problem. Graph. Models 73, 5 (Sept. 2011), 243-260. https:
//doi.org/10.1016/j.gmo0d.2011.05.003

Sanghyun Kim, Junhyung Kim, Ji-Hun Bae, and Jaeheung Park. 2018.
Real-time Inverse Kinematics Technique for Controlling Redundant
Avatar Arm. https://www.researchgate.net/publication/329715304_Real-
time_Inverse_Kinematics_Technique_for_Controlling Redundant_Avatar Arm

Partel Lang. 2016. Inverse Kinematics in Dead and Buried. http://root-motion.com/
2016/06/inverse-kinematics-in-dead-and-buried/


https://doi.org/10.1002/cav.1630
https://doi.org/10.1016/j.gmod.2011.05.003
https://doi.org/10.1016/j.gmod.2011.05.003
https://www.researchgate.net/publication/329715304_Real-time_Inverse_Kinematics_Technique_for_Controlling_Redundant_Avatar_Arm
https://www.researchgate.net/publication/329715304_Real-time_Inverse_Kinematics_Technique_for_Controlling_Redundant_Avatar_Arm
http://root-motion.com/2016/06/inverse-kinematics-in-dead-and-buried/
http://root-motion.com/2016/06/inverse-kinematics-in-dead-and-buried/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	3.1 Selecting Animations
	3.2 Solving Body Poses

	4 Implementation Details
	4.1 Elbow Pole Vector Positioning
	4.2 Experimenting with mass

	5 Evaluation of Results
	6 Future Work
	7 Conclusion
	References

