
Stereoscopic Ray-Tracing for VR
Faster Image Generation through Reprojection

MICHAL PISZCZEK, University of Washington

Fig. 1. Ray-Traced left and right eye images of the same scene. The difference in perspective is most visible when looking at the reflection of the green
sphere in the white sphere. The right image was partially re-projected based on the left. Distortions resulting from the re-projection are visible as drag on the
turquoise and purple spheres at the extremes of the scene.

We explore Stereoscopic Ray-Tracing, with the aim of doing it efficiently for
the purposes of VR. Specifically, we aim to generate one of the two images
necessary for stereoscopic ray-traced rendering approximately, based on the
image already ray-traced for the other eye. For this purpose we re-implement
and evaluate an algorithm from [Adelson 1993] that re-projects pixels from
an already generated left-eye image into a right eye-image, only re-tracing
when it is necessary. Additionally, in order to implement this algorithm
and evaluate it, we develop a small CPU based ray-tracer that runs in the
browser, based on an open source project [MacWright 2019]. We show that
this re-projection algorithm significantly reduces the cost of generating one
of the two images necessary, but the quality degradation may prohibit this
method from being useful in VR. We propose Machine Learning as a tool
for future work to correct the distortions generated by re-projection.

1 INTRODUCTION
Ray-Tracing is a powerful technique for generating high-quality
realistic looking images. It works by tracing an imaginary line from
the camera through pixels in the screen, and into the scene itself
to see what objects are in the trace’s path and thus what color the
pixels should be. The depth of a ray-trace is how many times each
ray is reflected within the scene, incorporating different color and
lighting values from all the surfaces it impacts into the final pixel

Author’s address: Michal Piszczek, michalp@cs.washington.edu, University of Wash-
ington.

color [MacWright 2019]. The high cost of this technique comes
from all the reflections that must be calculated throughout the trace,
depending on the depth. Even fully obscured objects can contribute
to the final image as reflections in another object, so it is difficult to
save computation as one could through culling in rasterisation.
With respect to VR, ray-tracing offers the exciting potential for

very realistic and immersive renderings that better reflect our reality.
Unfortunately, due to the real-time nature of VR rendering and
the need to render a separate image for each eye, ray-tracing is
difficult to incorporate into VR systems. VR rendering must be
fast, responsive and consistent to present a compelling experience.
Not only can lag and dropped frames break user immersion, they
can also make one feel extremely uncomfortable. With its high
computational cost, now doubled by the need for two images, ray-
tracing makes it difficult to sustain the necessary frame rate, at
high enough a quality, to offer as consistent a VR experience as
rasterization can.
Despite the difficulty of these challenges, the promise of fully

immersive, ray-traced VR is so high that industry and academia are
rapidly pushing forward to solve them. One such example is hard-
ware vendor NVidia, who has recently developed a new platform
to aid in the acceleration of ray-tracing [V.V. Sanzharov 2019]. In



2 • Michal Piszczek

contrast, the approach we will explore to enabling efficient VR ray-
tracing is a software solution. A large part of the cost of ray-tracing
in VR comes from having to do it twice per frame, to generate the
appropriate image for each eye. A technique to make such stereo-
scopic ray-tracing more efficient through approximate generation of
one of the required images has existed for some time [Adelson 1993].
This method works by first fully ray-tracing the left eye image for a
scene, and then re-projecting a large part of those pixels into the
right eye-image such that only pixels that weren’t re-projected have
to be re-traced.
To evaluate the effectiveness of this approach, we constructed

a CPU-based ray-tracer, in Javascript, capable of running in the
browser. Our implementation was based on an existing open source
one [MacWright 2019]. We then implemented the stereoscopic ray-
tracing algorithm from [Adelson 1993] into our ray-tracer. Upon
evaluation, we noticed a marked decrease in the number of ray-
traces necessary to generate the right-eye image. Though, while
gaining in computational effectiveness, we also noticed some visual
issues with the re-projected right-eye image. Overall, we found that
out-of-the-box, this method is not suitable for VR due to the degra-
dation in image quality, and suggest future work involving Machine
Learning for image correction to make this a viable approach to VR
ray-tracing.

1.1 Contributions
Our primary contributions are:

• The development of a CPU-based, real-time stereoscopic ray-
tracer, capable of running in the browser and useful as a
platform for experimentation.

• The implementation of the efficient stereoscopic ray-tracing
algorithm from [Adelson 1993] into our ray-tracer.

• The evaluation of the algorithm from [Adelson 1993] in terms
of its potential for use in real-time VR ray-tracing.

2 RELATED WORK
Effective VR ray-tracing is not a new idea and is being approached
frommany directions, including purpose-built hardware, deep-learning,
and classical algorithms like the one we will explore.

2.1 Hardware and Deep Learning
Platforms such as NVidia’s RTX system are purpose built for ad-
vancing the state of the art with respect to ray-tracing [Vk 2019].
With a special architecture that is capable of executing ray-tracing
and deep-learning operations hyper-efficiently, these devices can
produce realistic ray-traced images in real-time faster than ever
before. The deep learning component particular allows for noisy
and lower-resolution ray-traced renderings to be enhanced, in real-
time, into much higher fidelity images. These improvements in
general ray-traced image generation help realize the dream of VR
ray-tracing, as any speed-up in generating one ray-traced image in
terms of rendering time helps doubly so when the task is to gener-
ate two ray-traced images. Simply put, such raw power moves us
significantly closer to VR ray-tracing at an acceptable frame-rate.

2.2 Classical Algorithms
Classical approaches to efficient stereoscopic ray-tracing include
the one we will be exploring in this paper [Adelson 1993]. Such
approaches aim to exploit the large degree of similarity between the
left-eye and right-eye images to effectively "cheat" the rendering
of one of them. One view (in our approach, the left-eye’s) is fully
ray-traced as normal, and is then used to approximately generate
the other view. Such an approach of course has the potential to
introduce massive savings in terms of rendering, depending on how
much of the second image can be "cheated". If such savings are
high enough, the overall cost of creating both images needed for a
stereoscopic rendering can be close to the cost of just generating
one image, effectively halving the computational cost of a frame.
This of course would help increase frame rates, enabling effective
ray-tracing for VR.

3 METHOD
To evaluate the algorithm from [Adelson 1993], we first implemented
a stereoscopic ray-tracer, and then modified it to use the algorithm
for approximate generation of the right-eye image. We then pro-
ceeded to evaluate the algorithm by qualitatively assessing the accu-
racy of the images generated by the re-projection algorithm (com-
pared to a fully ray-traced image), and by quantitatively measuring
the gains in performance.

3.1 Re-projection Algorithm
The re-projection algorithm used is taken directly from [Adelson
1993], where it is referred to as the "visible surface algorithm for
creating stereo pairs of ray-traced images". The algorithm operates
on the principle that, given the coordinates of a point in the left
eye’s projection plane, that point can be re-projected into the right
eye’s projection plane with some simple math.

We reproduced the algorithm almost exactly as it is presented in
the original paper. As in [Adelson 1993], we assume a left-handed
coordinated system with the view plane located at 𝑧 = 0. We also
assume two cameras, located at (−𝑒/2, 0,−𝑑) and (𝑒/2, 0,−𝑑) where
𝑒 is the interpupillary distance and 𝑑 is the camera’s depth offset
relative to the view plane. Then, given the point (𝑥𝑝𝑙 , 𝑦𝑝𝑙 ) in the
left eye’s projection plane, we can determine the position of this
point in the right eye’s projection plane using this equation,

𝑥𝑝𝑟 = 𝑥𝑝𝑙 + 𝑒 (𝑧𝑝/(𝑑 + 𝑧𝑝 ))

where 𝑧𝑝 is the depth of the point to be projected in the scene.
Note that the y-coordinates of a point are the same across both
views as the algorithm assumes the cameras, or "eyes" are only
horizontally displaced relative to each other. This assumption does
not appear to be limiting in terms of our desire to use this method for
VR stereoscopic ray tracing, as the two cameras in VR are typically
also only horizontally offset.

The full algorithm, reproduced from [Adelson 1993] incorporating
this re-projection equation is present on the next page. To the best
of our understanding, we implemented precisely this algorithm in
our ray-tracer.



Stereoscopic Ray-Tracing for VR • 3

Algorithm 1 Visible surface algorithm for creating stereo pairs
of ray-traced images reproduced from [Adelson 1993].

1: for each scan-line do
2: let oldx = −1
3: for each pixel 𝑖 in the left eye-image do
4: Compute intersect of ray through 𝑖 and scene, (𝑖𝑥 , 𝑖𝑦, 𝑖𝑧)
5: Calculate color C for left-eye view
6: Let 𝑗 = 𝑖𝑥 + 𝑒 (𝑖𝑧/(𝑑 + 𝑖𝑧))
7: if 𝑗 < width of screen then
8: mark j in left image as able to re-use C
9: end if
10: if 𝑗 ≥ width of screen then
11: set 𝑗 = 𝑀

12: end if
13: if 𝑗 − oldx > 1 then
14: for each pixel k in right image between oldx and j do
15: mark k in left image as unable to be re-projected
16: end for
17: end if
18: end for
19: let oldx = 𝑗

20: end for

4 IMPLEMENTATION DETAILS
In order to implement the algorithm from [Adelson 1993] we re-
quired a modifiable ray-tracer. There are plenty of open source
ray-tracers available, but many are complicated and have far more
features than necessary for our purpose of evaluating an algorithm.
The complexity of these pre-built solutions, in terms of the time
it would take a ray-tracing novice to understand them enough to
modify them, made them unattractive. Thus, we wrote our own
based heavily on the most minimal open source implementation we
could find [MacWright 2019]. Our finished ray-tracer functions as
a ray-tracer typically does, by projecting virtual rays through the
screen into the scene to calculate the colors of pixels on the screen
based on what each ray encounters as it reflects around in the scene.
The mathematics of this are well established and can be referenced
here [MacWright 2019].
As with our reference implementation, our ray-tracer is built in

Javascript, drawing its two images (one for each eye) in separate
HTML5 Canvas elements horizontally aligned on a web page. The
simplicity of this approach makes it easy to modify and portable,
running in any web browser supporting HTML5 Canvas elements.
A brief attempt was made to port the ray-tracing code into a GPU
shader, for increased performance, but it was decided that this would
unnecessarily complicate implementation of the re-projection algo-
rithm.
In terms of ray-tracing capabilities, our ray-tracer only handles

sphere intersections, and only goes to depth 3 (though it can be
configured to do more reflections). The scene is kept entirely static
except for one revolving sphere which serves to display the real-
time nature of the rendering. These simplifications were made to
ease implementation, effectively producing the minimum viable
real-time stereoscopic ray-tracer capable of taking advantage of the

Fig. 2. The re-projected right-eye image with modified colors to show the re-
projection algorithm in action. The green pixels, as well as most of the white
space, have been re-projected. Only the red regions required re-tracing.

re-projection algorithm. The two cameras in the scene (representing
a viewer’s left and right eyes) were placed far apart enough for the
difference in their perspectives to be visible across both generated
images. Additionally, unlike in our reference implementation, the
ray tracing code itself was written to surface the location of intersec-
tions to the top-level rendering loop as this information is required
by the re-projection algorithm which resides there. Finally, instru-
mentation was written to track the number of ray-traces executed
during the rendering of each image (the fully ray-traced left-eye
image and the partially re-projected right-eye image).

5 EVALUATION OF RESULTS
To evaluate the re-projection algorithm, we considered both the
computational performance achieved, as well as the quality of the
resulting images.

5.1 Performance
To measure computational performance we look at relative render-
ing costs, in terms of ray traces needed, for each image. Our instru-
mentation code reveals that, with the algorithm in place, drawing
the left-eye image takes approximately 87% of all ray-traces per
frame, and only the remaining 13% percent are used to render the
right-eye image. Clearly, the re-projected right-eye image needs
much less tracing, and is thus much cheaper to produce. Put another
way, the right eye-image costs approximately 85% less ray traces
to produce than the left-eye image, given that the left-eye image
has already been produced. The additional cost of the re-projection
algorithm itself, when compared to the number of ray-traces it saves,
is negligible.

5.2 ImageQuality
There were several noticeable issues with the re-projected right-eye
image. Firstly, objects at the extremes (such as the turquoise and
purple spheres) experienced a significant amount of drag, no longer
appearing as perfect spheres. Additionally, when the light source
was not head on, but far off to the left or right of the scene, the
boundary between re-projected and re-traced areas in the right-eye



4 • Michal Piszczek

Fig. 3. Ray-Traced left and right eye images of the same scene. The difference
in perspective is most visible when looking at the reflection of the green
sphere in the white sphere. The right image was partially re-projected based
on the left. Distortions resulting from the re-projection are visible as drag
on the turquoise and purple spheres at the extremes of the scene.

image became obvious due to the lighting differences. This is visible
most clearly on the green and turquoise spheres in the figure above.

Depending on the desired application, these errors may be admis-
sible if increased performance is more important than image quality.
The trade-off is quite favorable if that is the case, as based on our
example, the re-projected right-eye image, while costing 85% less
to compute, certainly didn’t appear to look 85% worse, subjectively
speaking. Of course, our scene is quite simple. Given more complex
scenes the image degradation may be far more acute. For VR specifi-
cally, the image degradation, even with our simple scene, may make
this method a poor choice. Such lightning errors and object drag as
visible in our figures would be very noticeably in a VR environment,
and would break immersion and possibly induce discomfort.

6 DISCUSSION OF BENEFITS AND LIMITATIONS
The benefit of this method is clearly the reduction in computation
one gains by not having to fully ray-trace one of the two images
necessary for stereoscopic rendering. The limitations of this method
lie in the quality of the re-projected image. Out-of-the-box, it is only
suitable for domains in which some visual errors are acceptable.
Due to the discomfort experienced by users in VR when scenes are
incorrectly rendered, this makes the method difficult to recommend
for that domain. But for other situations, where a big jump in per-
formance for a relatively small loss in quality is acceptable, this
method would be effective.

7 FUTURE WORK
As previously stated, the key limiting factor preventing this method
from being useful in VR ray-tracing is the degradation of image
quality in the re-projected right-eye image that results from the
approximate nature of the process. We propose that future work,
involving Machine Learning and Computer Vision could tackle
this issue. Platforms such as NVidia’s RTX already involve deep-
learning based rendering enhancements for reducing noise in ray-
traced images where the number of rays is intentionally kept low

for performance, and for up-scaling cheaper to create low resolution
renderings in general [Vk 2019]. Potentially, such post-rendering
image-correction could be applied to the re-projected right-eye
images generated by our approach to "fix-up" the visual issues re-
sulting from the re-projection. Given a large enough data set of fully
ray-traced right-eye images, and re-projected right eye images, a
model could be trained to apply corrections to the re-projections,
generating an image more like what a full trace would create while
still avoiding the cost of a full trace.

8 CONCLUSION
Overall, we find themethod from [Adelson 1993] to be quite effective
in terms of making stereoscopic ray-tracing more efficient. One of
the two images required can be produced at a fraction of the typical
cost, significantly reducing the computational load compared to
fully ray-tracing two images. Despite the performance increases,
the applicability of this method to VR ray-tracing is questionable
due to the degradation in image quality of the re-projected image.
Further work, perhaps involving Machine Learning, is needed to
explore ways of "fixing-up" the re-projected image’s quality to make
this method truly suitable for real-time VR ray-tracing.

ACKNOWLEDGMENTS
Thank you to the UWCSE 490vWinter 2020 team (Douglas Lanman,
Ethan Gordon and Kirit Narain) for the help and resources they
provided throughout this project and for a great course in general.

REFERENCES
Hodges L.F. Adelson, S.J. 1993. Stereoscopic ray-tracing. The Visual Computer 10 (1993),

127–144. https://doi.org/10.1007/BF01900903
Tom MacWright. 2019. Literate RayTracer. https://tmcw.github.io/literate-raytracer/
Anirudh Vk. 2019. NVIDIA’s Real-Time Ray Tracing Technique and AI-powered RTX

Technology Explained. (2019). https://analyticsindiamag.com/nvidias-real-time-
ray-tracing-ai-powered-rtx-explained/

V.A. Frolov A. G. Voloboy V.V. Sanzharov, A.I. Gorbonosov. 2019. Examination of
the Nvidia RTX. CEUR Workshop Proceedings (2019). http://ceur-ws.org/Vol-
2485/paper3.pdf

https://doi.org/10.1007/BF01900903
https://tmcw.github.io/literate-raytracer/
https://analyticsindiamag.com/nvidias-real-time-ray-tracing-ai-powered-rtx-explained/
https://analyticsindiamag.com/nvidias-real-time-ray-tracing-ai-powered-rtx-explained/
http://ceur-ws.org/Vol-2485/paper3.pdf
http://ceur-ws.org/Vol-2485/paper3.pdf

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Hardware and Deep Learning
	2.2 Classical Algorithms

	3 Method
	3.1 Re-projection Algorithm

	4 Implementation Details
	5 Evaluation of Results
	5.1 Performance
	5.2 Image Quality

	6 Discussion of Benefits and Limitations
	7 Future Work
	8 Conclusion
	References

