
VR Volume Rendering
Ray Marching for VR Medical Imaging

NGUYEN DUC DUONG, XIAO LIANG, and JEFFERY TIAN, University of Washington

Fig. 1. Ordered from left to right. Fig. 1.1. To test out our volume rendering algorithm, we developed a program to take a 3D dataset and generate an image
that is a rendering of the volume. The first image from the left is an image outputted by the program, rendering the volume facing in the negative z direction.
Fig. 1.2-14. Application demos that does slicing, highlighting, and sampling to the volume rendered.

Volume rendering is a pivotal technology in the realm of medical imaging.
With VR being a brand new technology, there is room for medical imaging
technology to be developed for virtual reality. Our goal is to create an
experience in which radiologists and other healthcare professionals can
view an accurate representation of MRI scans with intuitive controls. In
order to reach our goal, we found an open-source volume renderer using
Unity.Wewere able to convert the renderer into a VR renderer, loading in our
own data, and modifying the shader, along with creating a suite of controls
to suit our needs to create a medical imaging virtual reality experience.

1 INTRODUCTION
3D medical imaging is a relatively new field, giving radiologists

a new way of visualizing 3D scans. Medical images are stored us-
ing the Digital Imaging and Communications in Medicine(DICOM)
standard. This stores data taken from medical scans in slices and
DICOM readers often display the images in slices, the data stored in
a specific plane of the volume [Pianykh 2012]. With more advanced
computer graphics, with technologies such as raymarching, medical
images can capture detail in separate planes, increasing the amount
of detail in each image, seeing tissue that is not completely opaque.
Implementing these computer graphic technologies with VR, medi-
cal professionals view medical data in the 3D and interact with the
volume intuitively.

In order to create the VR program we intended, we found an
open-source volume rendering project using Unity [Mattatz]. This
gave us the inspiration for how to render and create controls for our
VR experience. We then learned about raymarching by viewing the
lecture slides from Ohio State University’s computer graphics class.
With these two resources, we were able to get started on developing
two programs, the first of which tested our raymarching algorithm,

Authors’ address: Nguyen Duc Duong, nguyend2@cs.washington.edu; Xiao Liang,
lx1030@cs.washington.edu; Jeffery Tian, jefftian@cs.washington.edu, University of
Washington.

outputting figure 1.1. The second program was our final project, a
Unity-based VR game in which we implemented raymarching with
our own controls.

Upon development, ray marching was implemented, running se-
quentially on the CPU, generating volume-rendered images of an
MRI scan of a body. With this raymarching algorithm, the shader
in Unity was implemented, running raymarching for each pixel
on a separate GPU core, speeding calculations up so that it can be
displayed on a VR headset at a reasonable frame rate. In Unity, we
were then able to implement controls to provide features to view the
volume in different ways, slicing the volume according to certain
planes, highlighting certain areas in the volume, and breaking the
volume into smaller parts, shown by figures 1.2-1.4

1.1 Contributions
Our contributions to this project are:

• We found, prepared, and loaded a 3D volume, stored as a 3d
array of densities, mapping each of the densities stored in the
volume to a corresponding color and opacity.

• We implemented a shader to perform raymarching in order to
render our volume inside a VR experience, taking in the data
that was previously loaded into the program and rendering it
in stereo for VR.

• We implemented a number of different controls for the user
to use, including slicing the image, increasing the intensity
in certain areas for greater detail, and sampling the volume
in smaller parts.



2 • Nguyen Duc Duong, Xiao Liang, and Jeffery Tian

2 RELATED WORK
Volume rendering has been really popular and there are a lot

of algorithms that have certain advantages and disadvantages ac-
cording to data sets and visual effect expected, which will be dis-
cussed further more later in this report. We use one of the most
commonly accepted algorithm, Ray Marching, to implement our
volume rendering. This github repository by Mattatz implements
Volume Rendering with ray marching in Unity offers as a lot of help
in learning shading Unity and Volume Rendering in general: we
inherit mesh building, ray intersects detection, and slicing from it.
Here is a more complete comparison:

Comparison
Features VR Volume Render-

ing
unity-volume-
rendering

Object space
raymarching

Yes Yes

Shader HLSL HLSL
VR support Yes No
Manipulation MRTK support (ro-

tation, translation,
and scaling)

On-Axis Rotation

Slicing Free slicing on any
angle

On-Axis

Classification
by colors

Yes no

Data used .dat file with
color&opacity
lookup

.raw file, uti-
lizing Unity’s
AssetBuilder

UI VR Interface
with controller
mapping

Text Interface with
scroll bars

VR Volume Rendering also have additional functionalities of sam-
pling and highlighting.

3 METHOD
The core logic behind volume rendering is ray marching. Medical

scans capture the density of a volume at discrete points in the
volume. When rendering, we map certain densities to specific colors
and opacities. Once the data is stored as a 3D array of colors and
opacities, ray marching is performed from the location of the screen
in world space. Each pixel of the screen matches a ray. Each ray
travels until it has exited the bounds of the volume, integrating the
colors and opacities at sample points on the volume. Figure 2 shows
a ray from the screen. As the ray enters the volume, the location
is incremented by the direction by a magnitude of a certain step
size. These locations give sample locations. At each of these sample
locations, the colors and opacities are integrated with the following
equations [Crawfis 2011]:

color 𝑐 = 𝑐𝑠 · 𝛼𝑠 (1 − 𝛼) + 𝑐
opacity 𝛼 = 𝛼𝑠 (1 − 𝛼) + 𝛼

Once the opacity is greater than a certain threshold, the ray can be
terminated [Parent 2011]. The opacity allows for translucent tissue
to be seen but not obscure the material behind it, creating a more

Fig. 2. 2D Ray marching sample points

realistic view. In 3D, these sample locations are basic blocks in 3D,
called voxels. Since sample locations may not land on the corners

Fig. 3. 3D Ray Marching with Voxels

of voxels, as shown in Figure 3, the locations where densities are
stored in our datasets, we use trilinear interpolation of the vertices
of the voxel to get the colors and opacities at locations not on the
discrete locations in data. This gives even more accuracy in terms
of the image rendered. Once the ray tracing is done for every value
pixel in the screen, the image is generated.

4 IMPLEMENTATION DETAILS

4.1 Hardware & Software
The main application is developed and tested on a Windows per-

sonal computer that has 16GB ram, Intel Core i7, and GeForce GTX
1060. For a HMD, we used Acer Windows Mixed Reality Headset. A

https://github.com/mattatz/unity-volume-rendering


VR Volume Rendering • 3

testing program is developed in C++, and we used Unity and Visual
Studio for the application.

4.2 External Resources (Talking about MRTK and Github) -
Nguyen

A few external resources that were used for this application. For
the main volume rendering system, our application built on top of
this github repository by Mattatz implements Volume Rendering
with ray marching in Unity. We extended the original repository by
implemented new shader features like point light source, volume
plane slicing, color classification for different organs parts. We are
also using our own 3D volume data provided by Liqun Fu(*). Lastly
and most important resource is Mixed Reality Tookit(MRTK). With
the help of MRTK, we are able to incorporate VR features for our
application, allowed for better virtual experience to control and
analyze volume image.

4.3 C++ Program
In order to test our understanding of ray marching, we developed

a C++ program that would create images of the volume rendered
data. This would test loading in the data, our color mapping, and if
a ray marching is a viable way of rendering the volume. Following
the method described in Section 3 of this report, we were able to
render images such as what is shown in Figure 1.1. We set the image
to be facing the volume’s xy face and ray marched for each pixel
in the image until either the opacity reached a certain threshold
or the ray exited the volume. Running this program proved to be
particularly expensive, taking 45 seconds to render a 512x406 px
image. While this poses possible improvements in the future, which
will be mentioned in Section 7, this was enough for us to consider
implementing the algorithm, along with loading data and colors,
into our Unity program.

4.4 Application Design
In order to build a VR enable Volume Rendering application, there

are a few aspects we need to keep in mind for our design decision.
We need to be able to read in the volume data, display the data
though VR interface, support user input, and a main application to
handle all system state. We believe that using MVC design pattern
can help us build this application much more efficiently.
Our application is split up into 4 main parts: State Controller,

Volume Render Application, VR interface, and Data Reader. We will
discuss each section in more detail below.

4.5 Data Reader
Our application data reader is built to read Texture3D type that

can be then export to ".asset" type in order for us to render the
volume. Since our provided data is binary file, we first need to
convert the data into a readable format (Texture3D) in order for
the volume to be read properly. Our volume data also came with a
complementary lookup table for color and opacity. With the data
prepared, our loading process are as follow.

(1) Read the binary file into an array of type short.

Fig. 4. Design overview of the system

(2) For each short entry in the array, look up the color value and
opacity value for the current e1 and next e2 entry of the array
using the chart shown in Figure 6

(3) With entry e1 and e2, we linear interpolate the color and
opacity value, and return a color.

(4) After iterated through the data, we then create a Texture3D
from the color and export the Texture3D to .asset type and
begin our volume rendering process.

Here is the 3D volume texture that we obtained from the Data Reader.
A tri-linear interpolation method is on a access to the texture.

Fig. 5. Design overview of the system

Note that the figure above is rendered with the combination of
our shader to achieved the volume effect.

https://github.com/mattatz/unity-volume-rendering


4 • Nguyen Duc Duong, Xiao Liang, and Jeffery Tian

Fig. 6. Lookup table relating images to their opacity and colors

4.6 Application
The main application responsible for managing the state of the

system. This component ensure data volume is loaded with the
correct shader setup. Ensure for VR headset and controller to setup
correct and can interact with the volume object. At the moment,
our application support 6 different modes for user to interact with
volume object:

• Mode 1: VR Object interaction
• Mode 2: Point Light controller
• Mode 3: Plane Scanning
• Mode 4: Plane Slicing
• Mode 5: Volume Slicing
• Mode 6: Small Volume Sampling

Mode 1: VR Object interaction: This mode allows for basic VR
support from MRTK. With this mode enabled, user can control the
object on-screen through the VR controller. Some basic operation
include translation, rotation, scaling.
Mode 2: Point Light controller This mode allows for user to high-

light part of the volume with user defines intensity through vr
controller. The highlighting is done through shader. The process
includes finding the controller position and convert it to volume
object space. Then adding extra intensity constant to the render
location of the volume.
Mode 3: Plane Scanning: This mode allows the user to highlight

a certain plane section of the volume. Users can move and orient
the plane base on the controller movement. This process is done
by finding the quaternion of the controller, and an initial normal
vector for a plane. Then based on the position and orientation of
the quaternion, we can enable extra intensity for a plane section in
the volume.
Mode 4: Plane Slicing: Plane Slicing mode is a combination of the

previous Plane Scanning and new slicing feature. With this mode,
user can look through the volume based on the plane sliced from
the controller orientation. The process is done through two major
steps. First finding the plane position and orientation. Second, based
on a plane normal, we can then disable the pixel color which allows
for slicing effect.
Mode 5: Volume Slicing: Volume Slicing mode allows users to

define 6 constant values for XYZ min and max render distance.
This mode can help the user adjust volume size and allow for more
freedom for observing the volume.
Mode 6: Small Volume Sampling: Small sampling mode allows

the user to pick out part of the larger volume. The smaller volume
enables the user to have better precision for analyzing different
discrete samples of the larger volume. There are multiple ways to

implement this feature, we have tried 2 ways and each with its pros
and cons. The simple way was to clone the bigger volume with
the same mesh size. Then adjust the XYZ min-max value to create
the illusion of smaller volume. This method is simple, but we ran
into the problem where smaller volume still has the mesh size of
the big volume which obstructs the volume behind it. The second
approach was to adjust the mesh size directly which can help with
the obstruction problem.

4.7 State Controller and VR Interface
State controller and VR interface are implemented relatively sim-

ple for the moment. The component state controller allow for input
processing from the user. Controller has the mapping between user
input and the functionality for each mode we created. Right now
only right controller are mapped with the application, and certain
mode switching are done through the keyboard numbers. In the
future, we will expand on the input system and allow for full VR
control support.
VR Interface is also another relatively simple component. This

interface allow for stereo image render in VR and text display to
indicate which mode and application state.

4.8 Shader
Our shader plays the most important role in the application: it

not only implements the basic volume rendering with raycasting
but also empowers abilities such as slicing and highlighting on the
volume.
For the basic volume rendering algorithm, our shader will gener-
ate a vector ray at each fragment in the direction from the view
camera to that fragment. Because the mesh in which we render
our data is a cube, we can view it as an Axis-Align Bounding Box.
Therefore we can easily calculate a coordinate where a ray exits the
rendering body, which informs the shader when to stop a ray as
an optimization. when a ray is casting, sample points are collected
at a reasonable distance. At each sample point, an RGBA value is
returned from a 3D texture and we add it to the integral function
of the current ray. Follow this procedure, the shader has an RGBA
value returned for every fragment that we can see from a viewpoint.
Noticeably, fragments that are not in the view of the camera are not
rendered thanks to HLSL’s cull back command.
Additional functionalities are implemented by manipulating an

intensity scalar during the raycasting. This report won’t go over
every detail of each functions but will illustrate it with two high-
lighting schemes. The first one allows the VR controller to become
a point light source that highlights its surrounding volume. During
the sampling stage in raycasting, the shader calculates a distance
from the sample point to the controller’s coordinate and apply an at-
tenuation function to the light’s intensity. Changes in intensity will
be later reflected by the integral function of fragments. Highlighting
an entire plane is done in the same manner, but this time instead of
a point, a program will consistently calculate a plane equation from
a VR controller’s quaternion. Any sample point that falls within a
distance to the plane will add an intensity scalar to its ray’s integral.
Some limitations induced by the methods above, such as blocking,
will be further discussed in the later section.



VR Volume Rendering • 5

4.9 Mesh Manipulation
This section will propose and discuss an alternative to implement

user control. We have demonstrated how to take user input and
show visual effects in the shader. This is actually the most efficient
way to update the volume because although it introduces extra com-
putation to every fragment, a GPU that allows parallel processing
can still compute it very fast, and it works really well with single a
single volume. However, when there is a user interface or clones of
the volume, the user will sometimes find an object gotten blocked
by another colorless, which is, in fact, a mesh of other volumes
in the scene because in the colorless mesh rays hit no texture and
are forced to stop when exiting the mesh. This problem is particu-
larly common during slicing operation. Another limitation is that
nothing will be displayed when the camera gets into the volume as
fragments are only on the surface of a mesh.
Both of these issues can be resolve by simply changing the coordi-
nates of vertices: if there is no fragment gotten assigned null color,
there will be no blocking, and if we dynamically change the size
of the mesh when the camera gets closer to the volume, we can
make sure the camera never get inside the volume and always sees
something. We can only achieve this outside the shader where less
computation is down in parallel and create a bottle-neck. Moreover,
implementing mesh manipulation is not easy when slicing in done
not along an axis.

5 RESULT AND EVALUATION
In general, our application has a very promising result. The most

we care about is the latency issue when increasing the number of
sample points for higher rendering quality. The final product we
have can render a volume with elaborated details at averagely 50-60
fps in a short time(10 minutes). However, the frame rate will drop to
as low as 10 fps in a long run especially when a user is interacting
with the volume. This is definitely a problem considering our users
probably require a long time examination of the volume, and we
are expecting it to be addressed in the future.

It provides users several benefits. One motivation for this project
is to free users from using a mouse and keyboard to exam a volume.
With HMD and controllers, manipulation becomes intuitive and
realistic. Our visual effects we implemented also make the volume
tell more useful information to users.
Limitations exist. One failure case is that the application might

have faulty behaviors when the scale of volume mesh changes. The
effect is particularly devastating when we use the mesh manipula-
tion mechanism discussed in previous sections. This will be easy
to fix with more math once we have more time. Sadly, our volume
rendering only works for a specific format of data. To be broadly
used, we need to implement several more data interpreters in the
future. Although we saw a decent performance on our own data set,
we have not tested our application with other data that is bigger or
has more noise. This makes it far from being sophisticated.

6 FUTURE WORK
Our resultant VR experience loads a specific dataset into the pro-

gram. Our program works well with the dataset we have already
created but it is imperative that there is more flexibility in the data

the program can use in the future in order to make the program
usable for visualizing user selected data. This program is potentially
the skeleton to VR being used in medical imaging. In order to moti-
vate the transition from previously used medical imaging software,
the software must be able to pass in any scanned data, not the data
we have already loaded into the program.

Along with more widespread data being rendered, future devel-
opments call for a greater number of features. We have been able to
slice the volume and look at cross sections. Another useful feature
would be to isolate certain tissue densities in the scan so that radiol-
ogists and other medical professionals can ignore obstructing tissue,
focusing on potential tumors, or abnormal tissue growth. We are
computer scientists, so input from medical professionals about the
lacking areas in current medical imaging technology could create a
better and more useful experience.

To further improve the user experience, frame rate is an important
factor to consider in VR. Implementing a shader in Unity allowed for
the ray marching algorithm to be run in parallel on the GPU cores.
If VR is to be more widely used in medical imaging, processing
power needs to be considered. GPUs have a significant cost so our
application should have as much software optimization as possible,
so as to create a usable experience with as little processing power
as possible. One possible approach to this is to implement cache
aware programming on the CPU. Using the example of our test C++
program, the full ray was calculated for each pixel before moving on
to the next pixel. Rather than processing each ray individually, the
concepts of spatial and temporal locality can be employed, calculat-
ing slices of the image that may be brought into the cache together.
Another approach would be to optimize the program for certain
hardware. For example, creating this program using the CUDA API
to optimize for performance specifically on NVIDIA GPUs. This
could cut out background processes that Unity uses, developing the
program specifically suited for its application.

7 CONCLUSION
This paper described our implementation on VR volume render-

ing application, which allow for loading volume image, rendering
volume image using ray marching technique, and multiple user
interaction modes for full VR experience. VR has shown potential in
creating a new, immersive, and accurate view for 3D medical imag-
ing with intuitive controls, complementing with current imaging
technology.

ACKNOWLEDGMENTS
We would like to thank Douglas Lanman, Kirit Narain, and Ethan

Gordon for mentoring us through this project. We would also like
to thank Liqun Fu for providing the data we rendered along with
providing a few resources to consider when implementing our vol-
ume renderer. Another thanks to the UW Reality Labs for providing
the head mounted display with which we tested our program.

8 REFERENCES
Oleg S. Pianykh. 2010. Digital Imaging and Communications

in Medicine (DICOM): A Practical Introduction and Survival
Guide (1st. ed.). Springer Publishing Company, Incorporated.



6 • Nguyen Duc Duong, Xiao Liang, and Jeffery Tian

Mattatz. 2018. mattatz/unity-volume-rendering. (November 2018).
Retrieved February 25, 2020 fromhttps://github.com/mattatz/unity-
volume-rendering

John Pawasauskas. Volume Visualization With Ray Casting. Re

trievedMarch 3, 2020 fromhttps://web.cs.wpi.edu/matt/courses/cs
563/talks/powwie/p1/ray-cast.htm

Parent, R., 2011. Volume Rendering.


	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	4 Implementation Details
	4.1 Hardware & Software
	4.2 External Resources (Talking about MRTK and Github) - Nguyen
	4.3 C++ Program
	4.4 Application Design
	4.5 Data Reader
	4.6 Application
	4.7 State Controller and VR Interface
	4.8 Shader
	4.9 Mesh Manipulation

	5 RESULT AND EVALUATION
	6 Future Work
	7 Conclusion
	8 References

