
Foveated Ray Tracing
A cloud-based parallel ray-tracing system

FRANK QIN and STUDENT TWO, University of Washington

Fig. 1. Our ray tracing based rendering approach produces higher quality frames than traditional approach used by CSE 490V homework projects. The scene
includes a yellow point light source and a white directional light source from the upper-right corner. Our approach can render features that are hard to render
with the traditional approach, such as reflective surfaces (the upper-right sphere), translucent objects (the middle green sphere), opaque shadows (two farther
shadows on the bottom ellipsoid, one from the directional light and one from the point light), and translucent shadows (two nearer shadows on the bottom
ellipsoid, one from the directional light and one from the point light).

Ray tracing workload is highly parallelizable. Since current ray tracing
implementations are CPU-based, we made the hypothesis that ray tracing
performance can greatly benefit from having access to multiple CPU cores.
The goal of this project is to implement a high performance ray tracer for
real-time VR rendering by utilizing all cores in a system and separating the
ray tracer from the end user, so that the ray tracer can be put on a dedicated
server with high computational power. After testing, our fully parallel ray
tracer performance is significantly better than our single-threaded version,
but worsened when we put it on a server with larger number of cores. We
have a few hypothesis about why the performance is lower on the server,
and future work is needed to verify and resolve these issues.

1 INTRODUCTION
Ray tracing, an image synthesis technique, is a way of simulating
realistic light interacting with objects in a scene. In general, ray

Authors’ address: Frank Qin, qzh@cs.washington.edu; Student Two, student2@cs.
washington.edu, University of Washington.

tracing produces much higher quality rendering than traditional
graphics pipeline used in CSE 490V homework projects. However,
ray tracing is rarely used as a real-time rendering method because of
its high computational workload per frame. The goal of this project
is to implement a simple but high performance ray tracer to be
acceptable in a real-time VR system.

In ray tracing, the color of each pixel is sampled by casting a rays
from the viewer to intersect objects in the scene, and potentially
casting rays from intersected objects to reflective/refractive direc-
tions recursively. Until recently with the new Nvidia RTX GPUs,
these calculations are typically done by CPUs. Since the color of
each ray is calculated only based on the scene and independent from
other rays, this process is highly parallelizable. From past experi-
ence with the CSE 457 project ray tracer, we know that ray tracing
process can be significantly speed-ed up by multi-threading. Since
more cores yielded better performance, we made the hypothesis that

2 • Frank Qin and Student Two

we can achieve even better performance by running the ray tracer
on a server with larger number of cores. To connect the ray tracer
on the dedicated server and the end user VR headset, we created a
simple protocol based on WebSocket to transfer pose data from the
headset to the ray tracer, and rendered data from the ray tracer to
the headset.
We tested the performance of our ray tracer on my personal

computer and the UW CSE attu server. We chose the attu server
because it has a lot of cores, is available to all CSE students, and
has relatively low ping to us. Our test results agreed with our prior
observation of CSE 457 ray tracers that the performance greatly
benefited from multi-threading. However, our test results showed
the opposite of our hypothesis that performance should be higher
on a server. We made some hypothesis about why the performance
is lower on attu, and future work is needed to find the exact cause
of slow-down and resolve the issue.

1.1 Contributions
Our primary contributions are:

• We implemented a simple high performance ray tracer. The
ray tracing algorithm comes from our CSE 457 ray tracing
project, but the ray tracer in this project is written from
scratch to optimize for performance and simplicity.

• We created a VR headset to ray tracing server protocol based
on WebSocket. This protocol allowed us to run the ray tracer
on a server and still produce results on the end user’s headset.

• We found that simply running a ray tracer on a server with
large number of cores may produce lower performance than
running it on a laptop. Future work must be done before fully
utilizing the computational power of a server.

2 RELATED WORK
Ray tracing can be used both in static images or real-time scenes. As
demonstrated by a video game developed by the ray-tracing team at
Intel - Enemy Territory: Quake Wars [4], real-time ray tracing can
offer amazing graphical renderings. For example, to display shadow
effects, as rasterization, which is used in a lot of games, requires
complicated calculations and approximations, ray tracing solves
the problem with just checking if the path from the light to the
surface is blocked or not (checking a shadow ray). On the other
hand, performance was discovered as the main reason why this
technique is not yet used in mainstream games, especially when we
have ten or more surfaces in a row, such as a tree, rendering costs
increased drastically.

As a possible solution for ray tracing performance issue, a GPU-
driven technique using foveated rendering coupledwith eye-tracking
is discussed in paper [1] which can accelerate interactive 3D graph-
ics with minimal loss of perceptual details. Based on the experiments
mentioned in the paper, a 2.8x to 3.2x speedup is possible. As a pos-
sible future goal, we may consider apply this technique to optimize
the performance on VR headset with eye-tracking systems.

3 METHOD
We decided to separate the VR system into a front-end on the user’s
display and a ray tracer back-end running on a server. The front-
end and the back-end will communicate through a custom protocol
designed for this project. The back-end should hold all data neces-
sary to complete the rendering, such as the scene and textures. The
front-end should display rendered image to the user headset, and
transmit user options such as rendering quality, and real-time data
such as the viewer pose.
The protocol is based on WebSocket. The protocol has three

types of WebSocket packets: trace option update, pose update, and
rendered data.

• A trace option update packet is used for the front-end to
transmit user settings, such as the resolution, to the ray tracer.
It should be sent by the front-end when it first connects to the
back-end, and can be used to update ray tracing parameters
whenever the user changes the settings. A trace option update
packet contains the trace depth and a number of rays. The
front-end is responsible for creating these rays according to
user options.

• A pose update packet is used for the front-end to notify the
most recent pose of the headset. The pose update will contain
a timestamp of when the pose is generated. Ideally for every
pose update, the back-end will perform ray tracing on the
new viewer pose. If the back-end cannot keep up with the rate
of the pose update, which means the previous rendering has
been not finished, the back-end will ignore the pose update.

• A rendered data packet is used for the back-end to transmit
ray tracing result back to the front-end. The packet will be
sent by the back-end whenever a ray tracing has finished.
The packet will contain the same timestamp data from the
pose update packet. The front-end will know which pose
this rendering is generated from the timestamp data, and can
possibly do time wrapping with the latest pose.

The back-end will organize the scene in a hierarchical way similar
to CSE 457 projects rather than as a list of objects similar to CSE 490V
homework. This allows the builder of the scene to group objects and
transform them together. This also allows the ray tracer to check for
intersections more efficiently by using a Binary Space Partitioning
tree. For each ray, the ray tracer walks through the hierarchical tree
of objects and first check whether the ray intersects a node, and then
recursively check whether the ray intersects its children. When an
intersection is passed back up to the parent, the intersection position
will be transformed according to the child transform matrix, and the
intersection normal vector will be transformed using the normal
transformation equation.

We did not implement the real front-end, but we implemented a
test front-end to test our back-end.

4 IMPLEMENTATION DETAILS
The protocol between the front-end and the back-end is defined as
follows:

The trace option update packet contains the depth limit of recur-
sive ray tracing and the rays the front-end needs to trace. The exact
layout is described here:

Foveated Ray Tracing • 3

0 1 2 3 4 5 6 7
+-------------------------------+-------------------------------+
| Trace depth (32) | Number of rays (32) |
+-------------------------------+-------------------------------+
| x of ray 1 (32) | y of ray 1 (32) |
+-------------------------------+-------------------------------+
| x of ray 2 (32) | y of ray 2 (32) |
+-------------------------------+-------------------------------+
| Rays continued ... |
+---+

The depth is a 32-bit unsigned integer in little endian. The number
of rays is a 32-bit unsigned integer in little endian, describing the
number of rays after this field. Each ray is described by two 32-bit
floating point in little endian, 𝑥 and𝑦. Each pair of 𝑥 and𝑦 represents
a ray from the origin of the view space, to the [𝑥,𝑦,−1] direction in
the view space. The direction will be normalized by the back-end.
The pose update packet contains a timestamp of this pose, the

translation of the viewer from the origin, and the orientation of
the viewer. The packet is fixed to be 28 bytes. The exact layout is
described here:
0 1 2 3 4 5 6 7
+-------------------------------+-------------------------------+
| Timestamp (32) | x (32) |
+-------------------------------+-------------------------------+
| y (32) | z (32) |
+-------------------------------+-------------------------------+
| yaw (32) | pitch (32) |
+-------------------------------+-------------------------------+
| row (32) |
+-------------------------------+

The timestamp is a 32-bit value that the back-end will send back
to the front-end as is. In our test front-end, we use the Unix time as
an unsigned 32-bit integer as the timestamp. The 𝑥 , 𝑦, and 𝑧 are 32-
bit floating point values in little endian. They describes the position
of the viewer in world space. The 𝑦𝑎𝑤 , 𝑝𝑖𝑡𝑐ℎ, and 𝑟𝑜𝑤 are 32-bit
floating point values in little endian, They describes the orientation
of the viewer in world space, encoded as Euler’s angles. We chose
to use Euler’s angle because it is the smallest representation. The
back-end will convert them into the transformation matrix as soon
as it receives the pose.
The rendered data packet contains the echoed timestamp and a

list of RGB values. The exact layout is described here:
0 1 2 3 4 5 6 7
+-------------------------------+-----------------------+-------+
| Timestamp (32) | Color of ray 1 (24) | Color |
+---------------+---------------+-------+---------------+-------+
| of ray 2(24) | Color of ray 3 (24) | Color of ray 4 (24) |
+---------------+---------------+-------+-----------------------+
| Colors continued ... |
+---+

The timestamp is copied from the pose update packet as is. In
the list of colors, each color is described by a 24-bit RGB value. The
order of the rays will be exactly the same as the order specified in
the trace option update packet.

The goal of the back-end is to be a high performance ray tracer, so
we decided to implement the back-end in C++. Even though the ray
tracer uses generally the same algorithm as the CSE 457 ray tracer
which is also in C++, it is built from scratch to avoid unnecessary
functionalities and dependencies of the CSE 457 ray tracer and to
optimize for performance. Specifically, the CSE 457 ray tracer is very
closely coupled with a Qt graphics UI, and re-implementing the ray
tracer from scratch is the only way to remove its Qt UI dependency.

It has the following external dependencies:
• Boost: asio and beast
• OpenGL Mathematics (GLM)
• Simple OpenGL Image Library (SOIL)

The Boost asio library provides a thread pool implementation
for multi-threading, as well as network sockets. The Boost beast
library provides a WebSocket server implementation. By using their
asynchronous APIs, all network IO are non-blocking so all threads
can be fully used by the ray tracing process.
Even though the back-end does not depends on any OpenGL

rendering functionality, it uses the GLM library for its vector and
matrix calculations. And the back-end also uses the SOIL library to
load textures.
The color of each ray is modeled as three components: direct,

reflection, and refraction.
• The direct component uses the phong lighting model. The
ray tracer cast a ray from a point on the object to each light
source. If the ray successfully reaches the light source, the
ray tracer will calculate the light contribution from this light
source using the phone lighting model. If the ray intersects
an object first, the light contribution from this light source
will be reduced according to the object’s transmissivity.

• The reflection component is calculated by recursively cast-
ing a ray to the reflection direction. The reflection direction
reflecting the viewer direction about the surface normal di-
rection. After the light of the reflected ray is calculated, the
light is reduced according to the object’s surface reflectivity.
The reduced light value is the reflection component.

• The refraction component is calculated by recursively cast-
ing a ray into the object along the refraction direction. The
refracted angle is calculated by using Snell’s law

sin𝜃1
sin𝜃2

=
𝑛2
𝑛1

.

After the light of the refracted ray is calculated, the light is
reduced according to the object’s transmissivity. The reduced
light value is the refracted component.

If a ray does not intersect an object, it goes to infinity and the
corresponding direction on the environment map texture will be
assigned to this ray.
We did not implement the real front-end, but we implemented

a test front-end to test our back-end. The test front-end is used to
generate the teaser image of this report. The test front-end is not
connected to any IMU, so the pose of the viewer is controlled solely
by keyboard. The test front-end does not have any foveation feature.
It simply creates a 1920x1080 image and create a ray for each pixel.

5 EVALUATION OF RESULTS
The ray tracer back-end was tested both on my personal laptop
and on attu4. We checked that no other users are performing CPU
intensive tasks on attu4 at the time of testing.
The test is use the testing front-end to render the teaser scene.

We intentionally made the scene to highlight our ray tracing benefit
over traditional graphics rendering, including opaque/translucent
shadows, reflections, and refractions. From the teaser image, we can

4 • Frank Qin and Student Two

laptop attu4
of cores 8 48
Max MHz 4000 3100
L1d cache 128K 32K
L1i cache 128K 32K
L2 cache 1024K 256K
L3 cache 8192K 30720K

RAM 7.9G 128G
render time 1.5 s/frame 3.8 s/frame

Table 1. Spec and render time of personal laptop and attu4

clearly see that ray traced images are far more realistic than the
CSE 490V homework rendering approach.

We also measured the time for the ray tracer to finish rendering
each frame. The results and relevant spec of my personal laptop and
attu4 are specified in Table 1.

The result is very surprising to us. We expect the render time to
be lower on attu4 than on my personal laptop, since it has much
more cores and is more computationally powerful. After some exper-
iments, we have a few hypothesis why the ray tracer performance
is lower on attu4:

• Cache size: If we compare the hardware specification of two
machines, attu4 has significantly smaller L1 and L2 caches.
Since in ray tracing, we need to compute color over a large
image buffer, the personal laptop may benefit from larger
cache sizes and fewer cache misses.

• NUMA: The attu4 server has two NUMA nodes, each con-
taining 24 cores. Since the tasks of computing ray colors are
distributed arbitrarily among the CPU cores, there might be
a lot of cross-node memory reference, which has a significant
impact on performance.

• Locality: Since the tasks of computing the color of each ray
is distributed arbitrarily among threads in the thread pool,
multiple cores may frequently computerays whose location
in the image buffer lies in the same cache line. This will cause
multiple cores to synchronize their caches frequently, which
also has a great impact on the performance. This hypothesis
is supported by the observation that setting a smaller thread
limits yields a slightly better results on attu4. To mitigate this
issue, we can block the rays into cache lines and distributes
computational tasks in the unit of blocks.

We have suspected that sharing the thread pool among ray tracing
tasks and WebSocket I/O tasks might caused the performance drop,
but later experiments found that the performance drop stays the
same without the WebSocket I/O tasks. We have also suspected that
too much contention among threads caused the performance issue,
but the performance drop stays the same after we optimized the
code to eliminate all uses of locks.

Even with the better result of 1.5 seconds per frame result, the ray
tracer is still far less preferment to be used as a real-time rendering
method. Since the image for the left eye and the image for the right
eye are rendered separately, each eye can only get 0.3 fps, which is
20x lower than the refresh rate of most displays.

6 FUTURE WORK
The problem with the attu4 performance being lower than the lap-
top performance indicates that a naive implementation of a multi-
threaded ray tracer can easily have unexpected performance issues.
Further experiments are needed to verify our hypotheses and iden-
tify the exact causes of the performance problem. Some potential
solutions include separating I/O tasks from ray tracing CPU tasks
into a different thread pool, blocking rays together into cache lines,
and running the ray tracer on a server with larger cache sizes. How-
ever, how much those solutions will increase the performance, or
even whether those solutions will help with the performance at all,
is still yet to be tested.
Additionally, with newer hardware such as ray tracing capable

GPUs, we use GPU-based ray tracing on a GPU equipped render
server to achieve higher performance.

7 CONCLUSION
For this project, we attempted to implement a high performance
ray tracer for real-time VR rendering by running the ray tracer on
a dedicated server with high computational power. Contrary to our
expectation, the performance worsened when the ray tracer is put
on a server with larger number of cores. Future investigation is
needed to identify the exact cause of this issue.

Foveated Ray Tracing • 5

REFERENCES
[1] Augmentarium, X. M., Meng, X., Augmentarium, R. D., Du, R., Augmentarium,

M. Z., Zwicker, M., & Amitabh Varshney Augmentarium. (2018, July 1). Kernel
Foveated Rendering.
RetrievedMarch 19, 2020, fromhttps://dl.acm.org/doi/pdf/10.1145/3203199?download=true

[2] Project 3: Trace. (n.d.).
Retrieved fromhttps://courses.cs.washington.edu/courses/cse457/19sp/src/trace/trace.php

[3] Ray Tracing. (n.d.).
Retrieved March 19, 2020, from
https://courses.cs.washington.edu/courses/cse457/handouts/marschner-
shirley.pdf

[4] Sponsored Feature: Light It Up! Quake Wars Gets Ray Traced. (n.d.).
Retrieved fromhttps://www.gamasutra.com/view/feature/132320/sponsored_feature
_light_it_up_.php

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	4 Implementation Details
	5 Evaluation of Results
	6 Future Work
	7 Conclusion
	References

