Regular Expressions / Finite State Automata

UW CSE 490u Quiz Section, Feb 8, 2017 Sam Thomson

Denotations of REs

- $\llbracket \varnothing \rrbracket = \varnothing$
- $\llbracket \varepsilon \rrbracket = \{\varepsilon\}$
- $\llbracket c \rrbracket = \{c\} \text{ for } c \in \Sigma$
- $\llbracket \alpha \beta \rrbracket = \{ x y \mid x \in \llbracket \alpha \rrbracket, y \in \llbracket \beta \rrbracket \}$
- $\llbracket a \mid \beta \rrbracket = \llbracket a \rrbracket \cup \llbracket \beta \rrbracket$
- $[\![\alpha^*]\!] = \{ x_{0 \dots} x_n \mid x_i \in [\![\alpha]\!], n \ge 0 \}$

FSA Diagrams

ab

FSA Diagrams

FSA Diagrams

Pumping Lemma

Intuition (FSA)

- A regular language L has an FSA F that accepts it.
- *F* has *p* states (for some *p*)
- Any word $w \in L$ with |w| > p will go through the same state twice (pigeonhole), creating a loop
- That loop can be "pumped"

Intuition (RE)

- A regular language *L* has a RE that accepts it.
- The only way to make an infinite RE is using a "*", e.g. $\alpha\beta^*\gamma|\omega$, with non-empty β
- β can be pumped

Formal Statement

- Let L be a regular language. Then there exists
 p ≥ 1 such that every string w in L of length at least
 p (p is called the "pumping length") can be written
 as w = xyz, satisfying the following conditions:
- $|y| \ge 1$
- $|xy| \leq p$
- for all $i \ge 0$, $xy^i z \in L$

Not the only way

- Closure properties
- Myhill–Nerode theorem

The pumping lemma is necessary, not sufficient

- There are non-regular languages that are "pumpable"
- Usually combination of pumping lemma and closure properties is enough

- $L = \{ (ab)^i \mid i \ge 2 \}$
- L is regular
- L = [abab(ab)*]

- $L = \{ a^i b^i | i \ge 0 \}$
- *L* is not regular
- Given p, let $w = a^p b^p$
- Since $|xy| \le p$, y is only 'a's. Pumping y will lead to more 'a's than 'b's.

- $L = \{ a^{2i} \mid i \ge 0 \}$
- L is regular
- $L = \llbracket (aa)^* \rrbracket$

- $L = \{ a^{2^i} | i \ge 0 \}$
- *L* is not regular
- Pumping any y = a^j will work at most once,
 because the gaps between 2ⁱ double each time.

- $L = \{ WW \mid W \in \{a,b\}^* \}$
- *L* is not regular
- Given p, let $w = a^p b a^p b$
- Since $|xy| \le p$, y is only 'a's. Pumping y will lead to more 'a's in the first half than the second half.

- $L = \{ \text{ matching "parentheses"} \} \subseteq \{a,b\}^*$
- *L* is not regular
- Intersect L with $[a^*b^*]$ and you get $\{a^ib^i | i \ge 0\}$.
- We already showed that's not regular

Exercise

- Write CFGs for the previous examples
- For example:
 - $L = \{ a^{2i} \mid i \ge 0 \}$
- Rules:
 - $S \rightarrow aaS$
 - $S \rightarrow \varepsilon$

Write CFGs for:

- $L = \{ a^i b^i | i \ge 0 \}$
- $L = \{ (ab)^i \mid i \ge 2 \}$
- $L = \{ a^{2^i} | i \ge 0 \}$
- $L = \{ WW \mid W \in \{a,b\}^* \}$
- $L = \{ \text{ matching "parentheses"} \} \subseteq \{a,b\}^*$

Converting FSAs to REs

(bonus, not on final)

Converting FSAs to REs

- The Floyd-Warshall/Roy/Kleene/Gauss-Jordan/McNaughton/ Yamada dynamic programming algorithm computes:
 - transitive closures
 - shortest paths
 - highest probability paths
 - total probabilities of all paths
 - the regular expression for a finite automaton
 - solution to linear equations

Kleene's Algorithm

- Recurrence:
 - C⁽⁻¹⁾ is adjacency matrix
 - (paths from i to j that don't pass through any other states in between)
 - $C^{(k)}_{i,j} = C^{(k-1)}_{i,j} | (C^{(k-1)}_{i,k} (C^{(k-1)}_{k,k})^* C^{(k-1)}_{k,j})$
 - (paths from i to j that possibly pass through 0,...,k)
- Answer is C_{n,start,final}

Kleene's Algorithm

Paths from *i* to *j* without passing through any other nodes in between:

C (-1)	0	1	2	3
0	Ø	а	b	Ø
1	Ø	Ø	а	b
2	Ø	Ø	a b	Ø
3	Ø	Ø	a b	Ø

Paths from *i* to *j* that possibly pass through 0

C (-1)	0	1	2	3
0	Ø	а	b	Ø
1	Ø	Ø	а	b
2	Ø	Ø	a b	Ø
3	Ø	Ø	a b	Ø

Paths from *i* to *j* that possibly pass through 0,1

C (0)	0	1	2	3
0	Ø	а	b	Ø
1	Ø	Ø	а	b
2	Ø	Ø	a b	Ø
3	Ø	Ø	a b	Ø

0

1

2

3

Ø

Ø

Paths from *i* to *j* that possibly pass through 0,1,2

C ⁽¹⁾	0	1	2	3
0	Ø	а	b aa	ab
1	Ø	Ø	а	b
2	Ø	Ø	a b	Ø
3	Ø	Ø	a b	Ø

(a|b) (a|b)*

 \oslash

0

1

2

3

Paths from *i* to *j* that possibly pass through 0,1,2,3

C ⁽²⁾	0	1	2	3
0	Ø	а	(b aa) (a b)*	ab
1	Ø	Ø	a(a b)*	b
2	Ø	Ø	(a b)*	Ø
3	Ø	Ø	(a b) (a b)*	Ø

(a|b) (a|b)*

 \oslash

 \oslash

 \oslash

Paths from *i* to *j* that possibly pass through 0,1,2,3

C ⁽²⁾	0	1	2	3
0	Ø	а	(b aa) (a b)*	ab
1	Ø	Ø	a(a b)*	b
2	Ø	Ø	(a b)*	Ø
3	Ø	Ø	(a b) (a b)*	Ø

