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Natural Language Generation

The classical view: R is a meaning representation language.

I Often very specific to the domain.

I For a breakdown of the problem space and a survey, see Reiter
and Dale (1997).

Today: considerable emphasis on text-to-text generation, i.e.,
transformations:

I Translating a sentence in one language into another language

I Summarizing a long piece of text by a shorter one

I Paraphrase generation (Barzilay and Lee, 2003; Quirk et al.,
2004)

4 / 68



Machine Translation
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Warren Weaver to Norbert Wiener, 1947

One naturally wonders if the problem of translation could be
conceivably treated as a problem in cryptography. When I look at
an article in Russian, I say: ‘This is really written in English, but it
has been coded in some strange symbols. I will now proceed to
decode.’
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Evaluation

Intuition: good translations are fluent in the target language and
faithful to the original meaning.

Bleu score (Papineni et al., 2002):

I Compare to a human-generated reference translation

I Or, better: multiple references

I Weighted average of n-gram precision (across different n)

There are some alternatives; most papers that use them report
Bleu, too.
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Noisy Channel Models
Review

A pattern for modeling a pair of random variables, X and Y :

source −→ Y −→ channel −→ X

I Y is the plaintext, the true message, the missing information,
the output

I X is the ciphertext, the garbled message, the observable
evidence, the input

I Decoding: select y given X = x.

y∗ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)

p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
channel model

· p(y)︸︷︷︸
source model
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Bitext/Parallel Text

Let f and e be two sequences in V† (French) and V̄† (English),
respectively.

We’re going to define p(F | e), the probability over French
translations of English sentence e.

In a noisy channel machine translation system, we could use this
together with source/language model p(e) to “decode” f into an
English translation.

Where does the data to estimate this come from?
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IBM Model 1
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .
Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `}
(positions in e).

I a4 = 3 means that f4 is “aligned” to e3.
I a6 = 0 means that f6 is “aligned” to a special null symbol,
e0.

p(f | e,m) =
∑̀
a1=0

∑̀
a2=0

· · ·
∑̀
am=0

p(f ,a | e,m)

=
∑

a∈{0,...,`}m
p(f ,a | e,m)

p(f ,a | e,m) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai)

=
1

`+ 1
· θfi|eai
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .
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a = 〈4, 5, 6, 8, . . .〉

p(f ,a | e,m) =
1
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· 1

17 + 1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?

Problem: This alignment isn’t possible with IBM Model 1! Each
fi is aligned to at most one eai!
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, 4, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller ·

1

10 + 1
· θnot|nicht
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How to Estimate Translation Distributions?

This is a problem of incomplete data: at training time, we see e
and f , but not a.
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How to Estimate Translation Distributions?

This is a problem of incomplete data: at training time, we see e
and f , but not a.

Classical solution is to alternate:

I Given a parameter estimate for θ, align the words.

I Given aligned words, re-estimate θ.

Traditional approach uses “soft” alignment.
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“Complete Data” IBM Model 1

Let the training data consist of N word-aligned sentence pairs:

〈e(1)1 ,f (1),a(1)〉, . . . , 〈e(N),f (N),a(N)〉.
Define:

ι(k, i, j) =

{
1 if a

(k)
i = j

0 otherwise

Maximum likelihood estimate for θf |e:

c(e, f)

c(e)
=

N∑
k=1

∑
i:f

(k)
i =f

∑
j:e

(k)
j =e

ι(k, i, j)

N∑
k=1

m(k)∑
i=1

∑
j:e

(k)
j =e

ι(k, i, j)
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MLE with “Soft” Counts for IBM Model 1

Let the training data consist of N “softly” aligned sentence pairs,

〈e(1)1 ,f (1), 〉, . . . , 〈e(N),f (N)〉.

Now, let ι(k, i, j) be “soft,” interpreted as:

ι(k, i, j) = p(a
(k)
i = j)

Maximum likelihood estimate for θf |e:

N∑
k=1

∑
i:f

(k)
i =f

∑
j:e

(k)
j =e

ι(k, i, j)

N∑
k=1

m(k)∑
i=1

∑
j:e

(k)
j =e

ι(k, i, j)
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Expectation Maximization Algorithm for IBM Model 1

1. Initialize θ to some arbitrary values.

2. E step: use current θ to estimate expected (“soft”) counts.

ι(k, i, j)←
θ
f
(k)
i |e

(k)
j

`(k)∑
j′=0

θ
f
(k)
i |e

(k)

j′

3. M step: carry out “soft” MLE.

θf |e ←

N∑
k=1

∑
i:f

(k)
i =f

∑
j:e

(k)
j =e

ι(k, i, j)

N∑
k=1

m(k)∑
i=1

∑
j:e

(k)
j =e

ι(k, i, j)
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Expectation Maximization

I Originally introduced in the 1960s for estimating HMMs when
the states really are “hidden.”

I Can be applied to any generative model with hidden variables.

I Greedily attempts to maximize probability of the observable
data, marginalizing over latent variables. For IBM Model 1,
that means:

max
θ

N∏
k=1

pθ(f (k) | e(k)) = max
θ

N∏
k=1

∑
a

pθ(f (k),a | e(k))

I Usually converges only to a local optimum of the above,
which is in general not convex.

I Strangely, for IBM Model 1 (and very few other models), it is
convex!
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IBM Model 2
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .

Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `}
(positions in e).

I E.g., a4 = 3 means that f4 is “aligned” to e3.

p(f | e,m) =
∑

a∈{0,...,n}m
p(f ,a | e,m)

p(f ,a | e,m) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai)

= δai|i,`,m · θfi|eai
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IBM Models 1 and 2, Depicted

x1 x2 x3 x4

hidden 
Markov 
model

y1 y2 y3 y4

f1 f2 f3 f4

IBM 1 
and 2 a1 a2 a3 a4

e e e e
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Variations

I Dyer et al. (2013) introduced a new parameterization:

δj|i,`,m ∝ exp−λ
∣∣∣∣ im − j

`

∣∣∣∣
(This is called fast align.)

I IBM Models 3–5 (Brown et al., 1993) introduced increasingly
more powerful ideas, such as “fertility” and “distortion.”

36 / 68



From Alignment to (Phrase-Based) Translation

Obtaining word alignments in a parallel corpus is a common first
step in building a machine translation system.

1. Align the words.

2. Extract and score phrase pairs.

3. Estimate a global scoring function to optimize (a proxy for)
translation quality.

4. Decode French sentences into English ones.

(We’ll discuss 2–4.)

The noisy channel pattern isn’t taken quite so seriously when we
build real systems, but language models are really, really
important nonetheless.
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Phrases?

Phrase-based translation uses automatically-induced phrases . . .
not the ones given by a phrase-structure parser.
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Examples of Phrases
Courtesy of Chris Dyer.

German English p(f̄ | ē)

das Thema

the issue 0.41
the point 0.72
the subject 0.47
the thema 0.99

es gibt
there is 0.96
there are 0.72

morgen tomorrow 0.90

fliege ich
will I fly 0.63
will fly 0.17
I will fly 0.13
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Phrase-Based Translation Model
Originated by Koehn et al. (2003).

R.v. A captures segmentation of sentences into phrases, alignment
between them, and reordering.

to the conference

Morgen  fliege ich nach Pittsburgh zur Konferenz

Tomorrow I will fly in Pittsburgh e

f
a

p(f ,a | e) = p(a | e) ·
|a|∏
i=1

p(f̄ i | ēi)
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Extracting Phrases

After inferring word alignments, apply heuristics.
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Extracting Phrases

After inferring word alignments, apply heuristics.
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Extracting Phrases

After inferring word alignments, apply heuristics.
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Scoring Whole Translations

s(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.

I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are

optimized for Bleu performance.

49 / 68



Scoring Whole Translations

s(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

+ log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.

I Each log-probability is treated as a “feature” and weights are
optimized for Bleu performance.
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Scoring Whole Translations

s(e,a;f) = βl.m. log p(e)︸ ︷︷ ︸
language model

+βt.m. log p(f ,a | e)︸ ︷︷ ︸
translation model

+ βr.t.m.log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well
(not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are

optimized for Bleu performance.
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Decoding: Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch
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Decoding: Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give
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by
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Decoding
Adapted from Koehn et al. (2006).

Typically accomplished with beam search.

Initial state: 〈◦ ◦ . . . ◦︸ ︷︷ ︸
|f |

, “”〉 with score 0

Goal state: 〈• • . . . •︸ ︷︷ ︸
|f |

, e∗〉 with (approximately) the highest score

Reaching a new state:

I Find an uncovered span of f for which a phrasal translation
exists in the input (f̄ , ē)

I New state appends ē to the output and “covers” f̄ .

I Score of new state includes additional language model,
translation model components for the global score.
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “”〉, 0
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary”〉, log pl.m.(Mary) + log pt.m.(Maria | Mary)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary give a slap to the witch green

did not slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary did not”〉,
log pl.m.(Mary did not) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary to the witch green

did not

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • • • • ◦ ◦ ◦ ◦, “Mary did not slap”〉,
log pl.m.(Mary did not slap) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not) + log pt.m.(dio una bofetada | slap)
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Machine Translation: Remarks

Sometimes phrases are organized hierarchically (Chiang, 2007).

Extensive research on syntax-based machine translation (Galley
et al., 2004), but requires considerable engineering to match
phrase-based systems.

Recent work on semantics-based machine translation (Jones et al.,
2012); remains to be seen!

Neural models have become popular and are competitive (e.g.,
Devlin et al., 2014); impact remains to be seen!

Some good pre-neural overviews: Lopez (2008); Koehn (2009)
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Summarization
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Automatic Text Summarization

Survey from before statistical methods came to dominate: Mani,
2001

Parallel history to machine translation:

I Noisy channel view (Knight and Marcu, 2002)

I Automatic evaluation (Lin, 2004)

Differences:

I Natural data sources are less obvious

I Human information needs are less obvious

We’ll briefly consider two subtasks: compression and selection
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Sentence Compression as Structured Prediction
(McDonald, 2006)

Input: a sentence

Output: the same sentence, with some words deleted

McDonald’s approach:
I Define a scoring function for compressed sentences that

factors locally in the output.
I He factored into bigrams but considered input parse tree

features.

I Decoding is dynamic programming (not unlike Viterbi).

I Learn feature weights from a corpus of compressed sentences,
using structured perceptron or similar.

63 / 68



Sentence Selection

Input: one or more documents and a “budget”

Output: a within-budget subset of sentences (or passages) from
the input

Challenge: diminishing returns as more sentences are added to
the summary.

Classical greedy method: “maximum marginal relevance”
(Carbonell and Goldstein, 1998)

Casting the problem as submodular optimization: Lin and Bilmes
(2009)

Joint selection and compression: Martins and Smith (2009)
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To-Do List

I Course evaluation due March 12!

I Collins (2011, 2013)

I Assignment 5 due Friday
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