Mid-Quarter Review: Results

Thank you!

Going well:
- Content! Lectures, slides, readings.
- Office hours, homeworks, course structure.

Changes to make:
- Math (more visuals and examples).
- More structure in sections.
- Prerequisites.
Full Viterbi Procedure

Input: \(x, p(X_i \mid Y_i), p(Y_{i+1} \mid Y_i) \)

Output: \(\hat{y} \)

1. For \(i \in \langle 1, \ldots, \ell \rangle \):
 - Solve for \(s_i(*) \) and \(b_i(*) \).
 - Special base case for \(i = 1 \) to handle start state \(y_0 \) (no max)
 - General recurrence for \(i \in \langle 2, \ldots, \ell - 1 \rangle \)
 - Special case for \(i = \ell \) to handle stopping probability

2. \(\hat{y}_\ell \leftarrow \arg\max_{y \in \mathcal{L}} s_\ell(y) \)

3. For \(i \in \langle \ell, \ldots, 1 \rangle \):
 - \(\hat{y}_{i-1} \leftarrow b(y_i) \)
Viterbi Procedure (Part I: Prefix Scores)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>\ldots</th>
<th>x_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_{last}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Viterbi Procedure (Part I: Prefix Scores)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>...</th>
<th>x_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>(s_1(y))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y'</td>
<td>(s_1(y'))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y^{last}</td>
<td>(s_1(y^{\text{last}}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
s_1(y) = p(x_1 \mid y) \cdot p(y \mid y_0)
\]
Viterbi Procedure (Part I: Prefix Scores)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>...</th>
<th>x_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$s_1(y)$</td>
<td>$s_2(y)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y'</td>
<td>$s_1(y')$</td>
<td>$s_2(y')$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>y_{last}</td>
<td>$s_1(y_{last})$</td>
<td>$s_2(y_{last})$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$s_i(y) = p(x_i \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot s_{i-1}(y')$$
Viterbi Procedure (Part I: Prefix Scores)

\[
\begin{array}{c|c|c|c|}
 & x_1 & x_2 & \ldots & x_\ell \\
\hline
y & s_1(y) & s_2(y) & & s_\ell(y) \\
y' & s_1(y') & s_2(y') & & s_\ell(y') \\
\vdots & & & & \\
y^{last} & s_1(y^{last}) & s_2(y^{last}) & & s_\ell(y^{last}) \\
\end{array}
\]

\[
s_\ell(y) = p(\bigcirc \mid y) \cdot p(x_\ell \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot s_{\ell-1}(y')
\]
Viterbi Asymptotics

Space: $O(|\mathcal{L}|\ell)$

Runtime: $O(|\mathcal{L}|^2\ell)$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>\ldots</th>
<th>x_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_{last}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generalizing Viterbi

- Instead of HMM parameters, we can “featurize” or “neuralize.”
Generalizing Viterbi

- Instead of HMM parameters, we can “featurize” or “neuralize.”
- Viterbi instantiates an general algorithm called max-product variable elimination, for inference along a chain of variables with pairwise “links.”
Generalizing Viterbi

- Instead of HMM parameters, we can “featurize” or “neuralize.”
- Viterbi instantiates an general algorithm called **max-product variable elimination**, for inference along a chain of variables with pairwise “links.”
- Viterbi solves a special case of the “best path” problem.
Generalizing Viterbi

- Instead of HMM parameters, we can “featurize” or “neuralize.”
- Viterbi instantiates an general algorithm called **max-product variable elimination**, for inference along a chain of variables with pairwise “links.”
- Viterbi solves a special case of the “best path” problem.
- Higher-order dependencies among Y are also possible.

$$s_i(y, y') = \max_{y'' \in \mathcal{L}} p(x_i \mid y) \cdot p(y \mid y', y'') \cdot s_{i-1}(y', y'')$$
Applications of Sequence Models

- part-of-speech tagging (Church, 1988)
- supersense tagging (Ciaramita and Altun, 2006)
- named-entity recognition (Bikel et al., 1999)
- multiword expressions (Schneider and Smith, 2015)
- base noun phrase chunking (Sha and Pereira, 2003)
Parts of Speech

http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer
Parts of Speech

- “Open classes”: Nouns, verbs, adjectives, adverbs, numbers
- “Closed classes”:
 - Modal verbs
 - Prepositions (*on*, *to*)
 - Particles (*off*, *up*)
 - Determiners (*the*, *some*)
 - Pronouns (*she*, *they*)
 - Conjunctions (*and*, *or*)
Parts of Speech in English: Decisions

Granularity decisions regarding:

- verb tenses, participles
- plural/singular for verbs, nouns
- proper nouns
- comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

- Existential *there*
- Infinitive marker *to*
- *wh* words (pronouns, adverbs, determiners, possessive *whose*)

Interactions with tokenization:

- Punctuation
- Compounds (*Mark’ll, someone’s, gonna*)

Penn Treebank: 45 tags, ~40 pages of guidelines (Marcus et al., 1993)
Parts of Speech in English: Decisions

Granularity decisions regarding:

▶ verb tenses, participles
▶ plural/singular for verbs, nouns
▶ proper nouns
▶ comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

▶ Existential *there*
▶ Infinitive marker *to*
▶ *wh* words (pronouns, adverbs, determiners, possessive *whose*)

Interactions with tokenization:

▶ Punctuation
▶ Compounds (*Mark’ll*, *someone’s*, *gonna*)
▶ Social media: hashtag, at-mention, discourse marker (*RT*), URL, emoticon, abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ~40 pages of guidelines (Marcus et al., 1993)
TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011)
Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol
Example: Part-of-Speech Tagging

I know, right shake my head

ikr smh he asked fir yo last name

so he can add u on fb lololol
Example: Part-of-Speech Tagging

I know, right shake my head

ikr smh he asked fir yo last name!

interjection acronym pronoun verb prep. det. adj. noun

so he can add u on fb lololol

P O V V O P ∧

preposition proper noun

Facebook laugh out loud
Why POS?

- Text-to-speech: *record, lead, protest*
- Lemmatization: *saw/V → see; saw/N → saw*
- Quick-and-dirty multiword expressions: (Adjective | Noun)*
 Noun (Justeson and Katz, 1995)
- Preprocessing for harder disambiguation problems:
 - *The Georgia branch had taken on loan commitments . . .*
 - *The average of interbank offered rates plummeted . . .*
A Simple POS Tagger

Define a map $\mathcal{V} \rightarrow \mathcal{L}$.
A Simple POS Tagger

Define a map \(\mathcal{V} \rightarrow \mathcal{L} \).

How to pick the single POS for each word? E.g., raises, Fed, \ldots
A Simple POS Tagger

Define a map $\mathcal{V} \rightarrow \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about handling unknown words.
A Simple POS Tagger

Define a map \(V \rightarrow \mathcal{L} \).

How to pick the single POS for each word? E.g., raises, Fed, \ldots

Penn Treebank: most frequent tag rule gives 90.3\%, 93.7\% if you’re clever about handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98\%.
Supervised Training of Hidden Markov Models

Given: annotated sequences \[\langle \langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle \rangle \]

\[
p(x, y) = \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}
\]

Parameters: for each state/label \(y \in \mathcal{L} \):

- \(\theta_{\cdot|y} \) is the “emission” distribution, estimating \(p(x \mid y) \) for each \(x \in \mathcal{V} \)
- \(\gamma_{\cdot|y} \) is called the “transition” distribution, estimating \(p(y' \mid y) \) for each \(y' \in \mathcal{L} \)
Supervised Training of Hidden Markov Models

Given: annotated sequences \(\langle \langle x_1, y_1, \rangle, \ldots, \langle x_n, y_n \rangle \rangle \)

\[
p(x, y) = \prod_{i=1}^{\ell+1} \theta_{x_i | y_i} \cdot \gamma_{y_i | y_{i-1}}
\]

Parameters: for each state/label \(y \in \mathcal{L} \):

\(\theta_{*|y} \) is the “emission” distribution, estimating \(p(x | y) \) for each \(x \in \mathcal{V} \)

\(\gamma_{*|y} \) is called the “transition” distribution, estimating \(p(y' | y) \) for each \(y' \in \mathcal{L} \)

Maximum likelihood estimate: count and normalize!
TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)
TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ~97.5% (Toutanova et al., 2003); uses a feature-based model with:

- capitalization features
- spelling features
- name lists ("gazetteers")
- context words
- hand-crafted patterns
TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ~97.5% (Toutanova et al., 2003); uses a feature-based model with:
- capitalization features
- spelling features
- name lists ("gazetteers")
- context words
- hand-crafted patterns

There might be very recent improvements to this.
Other Labels

Parts of speech are a minimal *syntactic* representation.

Sequence labeling can get you a lightweight *semantic* representation, too.
Supersenses

A problem with a long history: word-sense disambiguation.
Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

- E.g., from a dictionary
Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

▶ E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

▶ WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.
Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

▶ E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

▶ WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al., 1993).
Example: *box’s Thirteen Synonym Sets, Eight Supersenses*

1. **box**: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”
2. **box/loge**: private area in a theater or grandstand where a small group can watch the performance. “the royal box was empty”
3. **box/boxful**: the quantity contained in a box. “he gave her a box of chocolates”
4. **corner/box**: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a tight corner”
5. **box**: a rectangular drawing. “the flowchart contained many boxes”
6. **box/boxwood**: evergreen shrubs or small trees
7. **box**: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. “the umpire warned the batter to stay in the batter’s box”
8. **box/box seat**: the driver’s seat on a coach. “an armed guard sat in the box with the driver”
9. **box**: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid the cold”
10. **box**: a blow with the hand (usually on the ear). “I gave him a good box on the ear”
11. **box/package**: put into a box. “box the gift, please”
12. **box**: hit with the fist. “I’ll box your ears!”
13. **box**: engage in a boxing match.
Example: box’s Thirteen Synonym Sets, Eight Supersenses

1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts” \(\sim \) N.ARTIFACT
2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the royal box was empty” \(\sim \) N.ARTIFACT
3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates” \(\sim \) N.QUANTITY
4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a tight corner” \(\sim \) N.STATE
5. box: a rectangular drawing. “the flowchart contained many boxes” \(\sim \) N.SHAPE
6. box/boxwood: evergreen shrubs or small trees \(\sim \) N.PLANT
7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. “the umpire warned the batter to stay in the batter’s box” \(\sim \) N.ARTIFACT
8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver” \(\sim \) N.ARTIFACT
9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid the cold” \(\sim \) N.ARTIFACT
10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear” \(\sim \) N.ACT
11. box/package: put into a box. “box the gift, please” \(\sim \) V.CONTACT
12. box: hit with the fist. “I’ll box your ears!” \(\sim \) V.CONTACT
13. box: engage in a boxing match. \(\sim \) V.COMpetition
Clara Harris, one of the guests in the box, stood up and demanded water.
Ciaramita and Altun’s Approach

Features at each position in the sentence:

- word
- “first sense” from WordNet (also conjoined with word)
- POS, coarse POS
- shape (case, punctuation symbols, etc.)
- previous label

All of these fit into “$\phi(x, i, y, y')$.”
Featurizing HMMs

Log-probability score of y (given x) decomposes into a sum of local scores:

$$\text{score}(x, y) = \sum_{i=1}^{\ell+1} \left[\text{local score at position } i \right]$$

$$\text{score}(x, y) = \sum_{i=1}^{\ell+1} \left(\log p(x_i | y_i) + \log p(y_i | y_{i+1}) \right) \quad (1)$$

Featurized HMM:

$$\text{score}(x, y) = \sum_{i=1}^{\ell+1} \left[\text{local score at position } i \right]$$

$$\text{score}(x, y) = \sum_{i=1}^{\ell+1} \left(w \cdot \phi(x, i, y_i, y_{i-1}) \right) \quad (2)$$

$$= w \cdot \sum_{i=1}^{\ell+1} \phi(x, i, y_i, y_{i-1}) \quad (3)$$

$$= w \cdot \Phi(x, y)$$

What Changes?

Algorithmically, not much!

Viterbi recurrence before and after:

$$s_1(y) = p(x_1 \mid y) \cdot p(y \mid y_0)$$

$$s_i(y) = p(x_i \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot s_{i-1}(y')$$

$$s_\ell(y) = p(\bigcirc \mid y) \cdot p(x_\ell \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot s_{\ell-1}(y')$$

Now:

$$s_1(y) = \exp \mathbf{w} \cdot \phi(x, 1, y, y_0)$$

$$s_i(y) = \max_{y' \in \mathcal{L}} \exp [\mathbf{w} \cdot \phi(x, i, y, y')] \cdot s_{i-1}(y')$$

$$s_\ell(y) = \max_{y' \in \mathcal{L}} \exp [\mathbf{w} \cdot (\phi(x, \ell, y, y') + \phi(x, \ell + 1, \bigcirc, y))] \cdot s_{\ell-1}(y')$$
Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences \(\langle \langle x_1, y_1, \rangle, \ldots, \langle x_n, y_n \rangle \rangle \)

Assume:

\[
\text{predict}(x) = \arg\max_{y \in L^{\ell+1}} \text{score}(x, y)
\]

\[
= \arg\max_{y \in L^{\ell+1}} \sum_{i=1}^{\ell+1} w \cdot \phi(x, i, y_i, y_{i-1})
\]

\[
= \arg\max_{y \in L^{\ell+1}} w \cdot \sum_{i=1}^{\ell+1} \phi(x, i, y_i, y_{i-1})
\]

\[
= \arg\max_{y \in L^{\ell+1}} w \cdot \Phi(x, y)
\]

Estimate: \(w \)
Perceptron

Perceptron algorithm for classification:

- For $t \in \{1, \ldots, T\}$:
 - Pick i_t uniformly at random from $\{1, \ldots, n\}$.
 - $\hat{l}_{i_t} \leftarrow \text{argmax}_{\ell \in \mathcal{L}} w \cdot \phi(x_{i_t}, \ell)$
 - $w \leftarrow w - \alpha \left(\phi(x_{i_t}, \hat{l}_{i_t}) - \phi(x_{i_t}, l_{i_t}) \right)$
Structured Perceptron
Collins (2002)

Perceptron algorithm for classification structured prediction:

- For $t \in \{1, \ldots, T\}$:
 - Pick i_t uniformly at random from $\{1, \ldots, n\}$.
 - $\hat{y}_{i_t} \leftarrow \arg\max_{y \in \mathcal{L}^{\ell+1}} w \cdot \Phi(x_{i_t}, y)$
 - $w \leftarrow w - \alpha \left(\Phi(x_{i_t}, \hat{y}_{i_t}) - \Phi(x_{i_t}, y_{i_t}) \right)$

This can be viewed as stochastic subgradient descent on the structured hinge loss:

$$\sum_{i=1}^{n} \max_{y \in \mathcal{L}_{i}^{\ell+1}} w \cdot \Phi(x_i, y) - w \cdot \Phi(x_i, y_i)$$

This can be viewed as stochastic subgradient descent on the **structured** hinge loss:
Back to Supersenses

Clara Harris, one of the guests in the box, stood up and demanded water.

Shouldn’t Clara Harris and stood up be respectively “grouped”?
Segmentations

Segmentation:

- **Input:** \(\mathbf{x} = \langle x_1, x_2, \ldots, x_\ell \rangle \)
- **Output:**

\[
\begin{align*}
\langle & x_{1: \ell_1}, \\
& x_{(1+\ell_1):(\ell_1+\ell_2)}, \\
& x_{(1+\ell_1+\ell_2):(\ell_1+\ell_2+\ell_3)}, \ldots, \\
& x_{(1+\sum_{i=1}^{m-1} \ell_i):\sum_{i=1}^{m} \ell_i} \rangle
\end{align*}
\]

(4)

where \(\ell = \sum_{i=1}^{m} \ell_i \).

Application: word segmentation for writing systems without whitespace.
Segmentations

Segmentation:

- Input: \(\mathbf{x} = \langle x_1, x_2, \ldots, x_\ell \rangle \)
- Output:

\[
\begin{align*}
\mathbf{x}_{1:\ell_1}, \\
\mathbf{x}_{(1+\ell_1):(\ell_1+\ell_2)}, \\
\mathbf{x}_{(1+\ell_1+\ell_2):(\ell_1+\ell_2+\ell_3)}, \ldots, \\
\mathbf{x}_{(1+\sum_{i=1}^{m-1} \ell_i):(\sum_{i=1}^{m} \ell_i)}
\end{align*}
\]

where \(\ell = \sum_{i=1}^{m} \ell_i \).

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for \(\phi(\mathbf{x}, i, y, y') \)!
Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment")

- $\ell_1 = 4$, $\ell_2 = 3$, $\ell_3 = 1$, $\ell_4 = 2 \rightarrow \langle B, I, I, I, B, I, I, B, B, I \rangle$

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")
Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment")

\[\ell_1 = 4, \ell_2 = 3, \ell_3 = 1, \ell_4 = 2 \rightarrow \langle B, I, I, I, B, I, I, B, B, I \rangle \]

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")

Bonus: combine these with a label to get labeled segmentation!
An older and narrower subset of supersenses used in information extraction:

- person,
- location,
- organization,
- geopolitical entity,
- ... and perhaps domain-specific additions.
Named Entity Recognition

With Commander Chris Ferguson at the helm, Atlantis touched down at Kennedy Space Center.
With Commander Chris Ferguson at the helm, Atlantis touched down at Kennedy Space Center.
Britain sent warships across the English Channel Monday to rescue Britons stranded by Eyjafjallajökull’s volcanic ash cloud.
Segmentation Evaluation

Typically: precision, recall, and F_1.
Multiword Expressions

Schneider et al. (2014b)

- **MW compounds**: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash talk
- **verb-particle**: pick up, dry out, take over, cut short
- **verb-preposition**: refer to, depend on, look for, prevent from
- **verb-noun(-preposition)**: pay attention (to), go bananas, lose it, break a leg, make the most of
- **support verb**: make decisions, take breaks, take pictures, have fun, perform surgery
- **other phrasal verb**: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult to injury, make off with
- **PP modifier**: above board, beyond the pale, under the weather, at all, from time to time, in the nick of time
- **coordinated phrase**: cut and dry, more or less, up and leave
- **conjunction/connective**: as well as, let alone, in spite of, on the face of it/on its face
- **semi-fixed VP**: smack <one>’s lips, pick up where <one> left off, go over <thing> with a fine-tooth(ed) comb, take <one>’s time, draw <oneself> up to <one>’s full height
- **fixed phrase**: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of absence, sense of humor
- **phatic**: You’re welcome. Me neither!
- **proverb**: Beggars can’t be choosers. The early bird gets the worm. To each his own. One man’s <thing₁> is another man’s <thing₂>.
he was willing to budge$_1$ a$_2$ little$_2$ on$_1$ the price

which means4 a$_3^4$ lot$_3^4$ to$_4^4$ me$_4^4$.

Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag scheme.
Back to Syntax

Base noun phrase chunking:

\[\text{He}_{NP} \text{ reckons } \text{the current account deficit}_{NP} \text{ will narrow to } \text{only } \$1.8 \text{ billion}_{NP} \text{ in } \text{September}_{NP} \]

(What is a base noun phrase?)

“Chunking” used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and Pereira, 2003).
Remarks

Sequence models are extremely useful:

- **syntax**: part-of-speech tags, base noun phrase chunking
- **semantics**: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).
Remarks

Sequence models are extremely useful:

- syntax: part-of-speech tags, base noun phrase chunking
- semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).

Issues to be aware of:

- Supervised data for these problems is not cheap.
- Performance always suffers when you test on a different style, genre, dialect, etc. than you trained on.
- Runtime depends on the size of \mathcal{L} and the number of consecutive labels that features can depend on.
To-Do List

- Read: Jurafsky and Martin (2016b,a)
References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that

Kenneth W. Church. A stochastic parts program and noun phrase parser for

Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and
information extraction with a supersense sequence tagger. In *Proc. of EMNLP*,
2006.

Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in

Michael Collins. Discriminative training methods for hidden Markov models: Theory

1998.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills,
Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A.
Smith. Part-of-speech tagging for Twitter: Annotation, features, and experiments.
In *Proc. of ACL*, 2011.

Daniel Jurafsky and James H. Martin. Information extraction (draft chapter), 2016a.
References II

