Natural Language Processing (CSE 490U): Sequence Models (II)

Noah Smith

© 2017

University of Washington nasmith@cs.washington.edu

January 30-February 3, 2017

1/63

Mid-Quarter Review: Results

Thank you!

Going well:

- ► Content! Lectures, slides, readings.
- Office hours, homeworks, course structure.

イロン イロン イヨン イヨン 三日

2/63

Changes to make:

- Math (more visuals and examples).
- More structure in sections.
- Prerequisites.

Full Viterbi Procedure

Input: \boldsymbol{x} , $p(X_i \mid Y_i)$, $p(Y_{i+1} \mid Y_i)$

Output: \hat{y}

- 1. For $i \in \langle 1, \ldots, \ell \rangle$:
 - Solve for $s_i(*)$ and $b_i(*)$.
 - Special base case for i = 1 to handle start state y_0 (no max)
 - General recurrence for $i \in \langle 2, \ldots, \ell 1 \rangle$
 - Special case for $i = \ell$ to handle stopping probability
- 2. $\hat{y}_{\ell} \leftarrow \operatorname*{argmax}_{y \in \mathcal{L}} s_{\ell}(y)$
- 3. For $i \in \langle \ell, \ldots, 1 \rangle$:
 - $\blacktriangleright \hat{y}_{i-1} \leftarrow b(y_i)$

	x_1	x_2	 x_ℓ
y			
y'			
:			
y^{last}			

	x_1	x_2	 x_ℓ
y	$s_1(y)$		
y'	$s_1(y')$		
÷			
y^{last}	$s_1(y^{last})$		

 $s_1(y) = p(x_1 \mid y) \cdot p(y \mid y_0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

5/63

	x_1	x_2		x_{ℓ}
y	$s_1(y)$	$s_2(y)$		
y'	$s_1(y')$	$s_2(y')$		
÷				
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$		

$$s_i(y) = p(x_i \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot \boxed{s_{i-1}(y')}$$

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 道 の Q ()
6 / 63

	x_1	x_2	•••	x_ℓ
y	$s_1(y)$	$s_2(y)$		$s_\ell(y)$
y'	$s_1(y')$	$s_2(y')$		$s_\ell(y')$
÷				
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$		$s_\ell(y^{last})$

$$s_{\ell}(y) = p(\bigcirc \mid y) \cdot p(x_{\ell} \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot \boxed{s_{\ell-1}(y')}$$

・ロト (部) (言) (言) (言) (の) (の) (7/63)

Viterbi Asymptotics

Space: $O(|\mathcal{L}|\ell)$

Runtime: $O(|\mathcal{L}|^2 \ell)$

	x_1	x_2	 x_{ℓ}
y			
y'			
:			
y^{last}			

 Instead of HMM parameters, we can "featurize" or "neuralize."

- Instead of HMM parameters, we can "featurize" or "neuralize."
- Viterbi instantiates an general algorithm called max-product variable elimination, for inference along a chain of variables with pairwise "links."

- Instead of HMM parameters, we can "featurize" or "neuralize."
- Viterbi instantiates an general algorithm called max-product variable elimination, for inference along a chain of variables with pairwise "links."
- ► Viterbi solves a special case of the "best path" problem.

- Instead of HMM parameters, we can "featurize" or "neuralize."
- Viterbi instantiates an general algorithm called max-product variable elimination, for inference along a chain of variables with pairwise "links."
- ► Viterbi solves a special case of the "best path" problem.
- ► Higher-order dependencies among *Y* are also possible.

$$s_i(y, y') = \max_{y'' \in \mathcal{L}} p(x_i \mid y) \cdot p(y \mid y', y'') \cdot s_{i-1}(y', y'')$$

Applications of Sequence Models

- ▶ part-of-speech tagging (Church, 1988)
- supersense tagging (Ciaramita and Altun, 2006)
- named-entity recognition (Bikel et al., 1999)
- multiword expressions (Schneider and Smith, 2015)
- base noun phrase chunking (Sha and Pereira, 2003)

Parts of Speech

http://mentalfloss.com/article/65608/

master-particulars-grammar-pop-culture-primer

14/63

Parts of Speech

"Open classes": Nouns, verbs, adjectives, adverbs, numbers

イロン イロン イヨン イヨン 三日

15/63

- "Closed classes":
 - Modal verbs
 - Prepositions (on, to)
 - ▶ Particles (*off*, *up*)
 - Determiners (*the*, *some*)
 - Pronouns (she, they)
 - Conjunctions (and, or)

Parts of Speech in English: Decisions

Granularity decisions regarding:

- verb tenses, participles
- plural/singular for verbs, nouns
- proper nouns
- comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

- Existential there
- Infinitive marker to
- ► wh words (pronouns, adverbs, determiners, possessive whose) Interactions with tokenization:
 - Punctuation
 - Compounds (Mark'll, someone's, gonna)

Penn Treebank: 45 tags, \sim 40 pages of guidelines (Marcus et al., 1993)

Parts of Speech in English: Decisions

Granularity decisions regarding:

- verb tenses, participles
- plural/singular for verbs, nouns
- proper nouns
- comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

- Existential there
- Infinitive marker to
- ► wh words (pronouns, adverbs, determiners, possessive whose) Interactions with tokenization:
 - Punctuation
 - ► Compounds (*Mark'll, someone's, gonna*)
- ▶ Social media: hashtag, at-mention, discourse marker (*RT*), URL, emoticon, abbreviations, interjections, acronyms
 Penn Treebank: 45 tags, ~40 pages of guidelines (Marcus et al., 1993)

TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al. 2011)

Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol

Example: Part-of-Speech Tagging

Example: Part-of-Speech Tagging

Why POS?

- ► Text-to-speech: record, lead, protest
- ▶ Lemmatization: $saw/V \rightarrow see$; $saw/N \rightarrow saw$
- Quick-and-dirty multiword expressions: (Adjective | Noun)* Noun (Justeson and Katz, 1995)
- Preprocessing for harder disambiguation problems:
 - ► The Georgia branch had taken **on** loan commitments
 - ► The average of interbank offered rates plummeted

Define a map $\mathcal{V} \to \mathcal{L}$.

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed,

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed,

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you're clever about handling unknown words.

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed, ...

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you're clever about handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98%.

Supervised Training of Hidden Markov Models

Given: annotated sequences $\langle\langle \pmb{x}_1, \pmb{y}_1, \rangle, \dots, \langle \pmb{x}_n, \pmb{y}_n \rangle
angle$

$$p(\boldsymbol{x}, \boldsymbol{y}) = \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}$$

Parameters: for each state/label $y \in \mathcal{L}$:

- ▶ $\theta_{*|y}$ is the "emission" distribution, estimating $p(x \mid y)$ for each $x \in \mathcal{V}$
- ▶ $\gamma_{*|y}$ is called the "transition" distribution, estimating $p(y' \mid y)$ for each $y' \in \mathcal{L}$

Supervised Training of Hidden Markov Models

Given: annotated sequences $\langle \langle \boldsymbol{x}_1, \boldsymbol{y}_1, \rangle, \dots, \langle \boldsymbol{x}_n, \boldsymbol{y}_n \rangle
angle$

$$p(\boldsymbol{x}, \boldsymbol{y}) = \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}$$

Parameters: for each state/label $y \in \mathcal{L}$:

- ▶ $\theta_{*|y}$ is the "emission" distribution, estimating $p(x \mid y)$ for each $x \in \mathcal{V}$
- ▶ $\gamma_{*|y}$ is called the "transition" distribution, estimating $p(y' \mid y)$ for each $y' \in \mathcal{L}$

Maximum likelihood estimate: count and normalize!

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: \sim 97.5% (Toutanova et al., 2003); uses a feature-based model with:

- capitalization features
- spelling features
- name lists ("gazetteers")
- context words
- hand-crafted patterns

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ${\sim}97.5\%$ (Toutanova et al., 2003); uses a feature-based model with:

- capitalization features
- spelling features
- name lists ("gazetteers")
- context words
- hand-crafted patterns

There might be very recent improvements to this.

Parts of speech are a minimal syntactic representation.

Sequence labeling can get you a lightweight *semantic* representation, too.

A problem with a long history: word-sense disambiguation.

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

• E.g., from a dictionary

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

• E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

 WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

• E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

 WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al., 1993).

Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts"
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty"
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates"
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner"
- 5. box: a rectangular drawing. "the flowchart contained many boxes"
- 6. box/boxwood: evergreen shrubs or small trees
- box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box"
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver"
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold"
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear"
- 11. box/package: put into a box. "box the gift, please"
- 12. box: hit with the fist. "I'll box your ears!"
- 13. box: engage in a boxing match.

Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts" \rightsquigarrow N.ARTIFACT
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty" \rightsquigarrow N.ARTIFACT
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates" $\rightsquigarrow N.QUANTITY$
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner" \rightsquigarrow N.STATE
- 5. box: a rectangular drawing. "the flowchart contained many boxes" \rightarrow N.SHAPE
- 6. box/boxwood: evergreen shrubs or small trees \rightsquigarrow N.PLANT
- 7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box" \rightsquigarrow N.ARTIFACT
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver" \rightsquigarrow N.ARTIFACT
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold" \rightsquigarrow N.ARTIFACT
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear" \rightsquigarrow $\rm N.ACT$
- 11. box/package: put into a box. "box the gift, please" ~> V.CONTACT
- 12. box: hit with the fist. "I'll box your ears!" \rightsquigarrow V.CONTACT
- 13. box: engage in a boxing match. ↔ V.COMPETITION

Supersense Tagging Example

Clara Harris , one of the guests in the N.PERSON N.PERSON

box , stood up and demanded N.ARTIFACT V.MOTION V.COMMUNICATION

イロト 不得 とくき とくき とうき

38 / 63

water N.SUBSTANCE

.

Ciaramita and Altun's Approach

Features at each position in the sentence:

- word
- "first sense" from WordNet (also conjoined with word)

39 / 63

- POS, coarse POS
- shape (case, punctuation symbols, etc.)
- previous label

All of these fit into " $\phi({m x},i,y,y')$."

Featurizing HMMs

Log-probability score of y (given x) decomposes into a sum of local scores:

$$\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{\ell+1} \underbrace{(\log p(x_i \mid y_i) + \log p(y_i \mid y_{i+1}))}_{(1)}$$
(1)

Featurized HMM:

$$\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{\ell+1} \underbrace{(\mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1}))}_{i=1} (2)$$
$$= \mathbf{w} \cdot \sum_{i=1}^{\ell+1} \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$
$$\operatorname{global features, } \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y})$$
(3)

40 / 63

What Changes?

Algorithmically, not much!

Viterbi recurrence before and after:

$$s_{1}(y) = p(x_{1} \mid y) \cdot p(y \mid y_{0})$$

$$s_{i}(y) = p(x_{i} \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot \boxed{s_{i-1}(y')}$$

$$s_{\ell}(y) = p(\bigcirc \mid y) \cdot p(x_{\ell} \mid y) \cdot \max_{y' \in \mathcal{L}} p(y \mid y') \cdot \boxed{s_{\ell-1}(y')}$$

Now:

$$s_{1}(y) = \exp \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, 1, y, y_{0})$$

$$s_{i}(y) = \max_{y' \in \mathcal{L}} \exp \left[\mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y')\right] \cdot \boxed{s_{i-1}(y')}$$

$$s_{\ell}(y) = \max_{y' \in \mathcal{L}} \exp \left[\mathbf{w} \cdot \left(\boldsymbol{\phi}(\boldsymbol{x}, \ell, y, y') + \boldsymbol{\phi}(\boldsymbol{x}, \ell+1, \bigcirc, y)\right)\right] \cdot \boxed{s_{\ell-1}(y')}$$

Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences
$$\langle\langle m{x}_1,m{y}_1,
angle,\ldots,\langlem{x}_n,m{y}_n
angle
angle$$

Assume:

$$predict(\boldsymbol{x}) = \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, \boldsymbol{y})$$
$$= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \sum_{i=1}^{\ell+1} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$
$$= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \mathbf{w} \cdot \sum_{i=1}^{\ell+1} \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$
$$= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \mathbf{w} \cdot \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y})$$

42 / 63

Estimate: w

Perceptron

Perceptron algorithm for classification:

- For $t \in \{1, ..., T\}$:
 - Pick i_t uniformly at random from $\{1, \ldots, n\}$.

$$\begin{array}{l} \bullet \quad \hat{\ell}_{i_t} \leftarrow \operatorname*{argmax}_{\ell \in \mathcal{L}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}_{i_t}, \ell) \\ \bullet \quad \mathbf{w} \leftarrow \mathbf{w} - \alpha \left(\boldsymbol{\phi}(\boldsymbol{x}_{i_t}, \hat{\ell}_{i_t}) - \boldsymbol{\phi}(\boldsymbol{x}_{i_t}, \ell_{i_t}) \right) \end{array}$$

Structured Perceptron

Collins (2002)

Perceptron algorithm for classification structured prediction:

► For t ∈ {1,...,T}:
Pick i_t uniformly at random from {1,...,n}.
$$\hat{y}_{i_t} \leftarrow \underset{y \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \mathbf{w} \cdot \Phi(x_{i_t}, y)$$
► $\mathbf{w} \leftarrow \mathbf{w} - \alpha \left(\Phi(x_{i_t}, \hat{y}_{i_t}) - \Phi(x_{i_t}, y_{i_t}) \right)$

This can be viewed as stochastic subgradient descent on the *structured* hinge loss:

$$\sum_{i=1}^{n} \underbrace{\max_{\boldsymbol{y} \in \mathcal{L}^{\ell_i+1}} \mathbf{w} \cdot \boldsymbol{\Phi}(\boldsymbol{x}_i, \boldsymbol{y})}_{\text{fear}} - \underbrace{\mathbf{w} \cdot \boldsymbol{\Phi}(\boldsymbol{x}_i, \boldsymbol{y}_i)}_{\text{hope}}$$

(ロ)、<
 (目)、
 (目)、
 (日)、
 (日)、

Back to Supersenses

Clara Harris , one of the guests in the N.PERSON N.PERSON

box , stood up and demanded N.ARTIFACT V.MOTION V.COMMUNICATION

water . N.SUBSTANCE

Shouldn't Clara Harris and stood up be respectively "grouped"?

Segmentations

Segmentation:

- Input: $\boldsymbol{x} = \langle x_1, x_2, \dots, x_\ell \rangle$
- ► Output:

$$\left\langle \begin{array}{c} \boldsymbol{x}_{1:\ell_1}, \\ \boldsymbol{x}_{(1+\ell_1):(\ell_1+\ell_2)}, \\ \boldsymbol{x}_{(1+\ell_1+\ell_2):(\ell_1+\ell_2+\ell_3)}, \dots, \\ \boldsymbol{x}_{(1+\sum_{i=1}^{m-1}\ell_i):\sum_{i=1}^{m}\ell_i} \end{array} \right\rangle$$
(4)

where $\ell = \sum_{i=1}^{m} \ell_i$.

Application: word segmentation for writing systems without whitespace.

Segmentations

Segmentation:

- Input: $\boldsymbol{x} = \langle x_1, x_2, \dots, x_\ell \rangle$
- Output:

$$\left< \begin{array}{c} \boldsymbol{x}_{1:\ell_1}, \\ \boldsymbol{x}_{(1+\ell_1):(\ell_1+\ell_2)}, \\ \boldsymbol{x}_{(1+\ell_1+\ell_2):(\ell_1+\ell_2+\ell_3)}, \dots, \\ \boldsymbol{x}_{(1+\sum_{i=1}^{m-1}\ell_i):\sum_{i=1}^{m}\ell_i} \end{array} \right>$$
(4)

where $\ell = \sum_{i=1}^{m} \ell_i$.

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for $\phi(\pmb{x},i,y,y')!$

Segmentation as Sequence Labeling

Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment") $\blacktriangleright \ \ell_1 = 4, \ell_2 = 3, \ell_3 = 1, \ell_4 = 2 \longrightarrow \langle B, I, I, B, B, I, B, B, I \rangle$

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")

Segmentation as Sequence Labeling

Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment") $\blacktriangleright \ \ell_1 = 4, \ell_2 = 3, \ell_3 = 1, \ell_4 = 2 \longrightarrow \langle B, I, I, B, B, I, B, B, I \rangle$

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")

Bonus: combine these with a label to get *labeled* segmentation!

Named Entity Recognition as Segmentation and Labeling

An older and narrower subset of supersenses used in information extraction:

50/63

- person,
- location,
- organization,
- geopolitical entity,
- ... and perhaps domain-specific additions.

Named Entity Recognition

With Commander Chris Ferguson at the helm ,

person

Atlantistouched down at Kennedy Space Center .spacecraftlocation

Named Entity Recognition

Atlantis
spacecrafttouched down at
locationKennedy Space Center
location.BOOBIIO

イロト 不得下 イヨト イヨト 二日

52 / 63

Named Entity Recognition: Evaluation

rescue Britons stranded by Eyjafjallajökull 's volcanic ash cloud . 0 B 0 В 0 0 0 0 B В 0 0 \mathbf{O}

Segmentation Evaluation

Typically: precision, recall, and F_1 .

Multiword Expressions

Schneider et al. (2014b)

- MW compounds: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash talk
- verb-particle: pick up, dry out, take over, cut short
- verb-preposition: refer to, depend on, look for, prevent from
- verb-noun(-preposition): pay attention (to), go bananas, lose it, break a leg, make the most of
- support verb: make decisions, take breaks, take pictures, have fun, perform surgery
- other phrasal verb: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult to injury, make off with
- PP modifier: above board, beyond the pale, under the weather, at all, from time to time, in the nick of time
- coordinated phrase: cut and dry, more or less, up and leave
- conjunction/connective: as well as, let alone, in spite of, on the face of it/on its face
- semi-fixed VP: smack <one>'s lips, pick up where <one> left off, go over <thing> with a fine-tooth(ed) comb, take <one>'s time, draw <oneself> up to <one>'s full height
- fixed phrase: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of absence, sense of humor
- phatic: You're welcome. Me neither!
- proverb: Beggars can't be choosers. The early bird gets the worm. To each his own. One man's <thing₁> is another man's <thing₂>.

Sequence Labeling with Nesting

Schneider et al. (2014a)

Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag scheme.

Back to Syntax

Base noun phrase chunking:

```
[He]<sub>NP</sub> reckons [the current account deficit]<sub>NP</sub> will narrow to
[only $ 1.8 billion]<sub>NP</sub> in [September]<sub>NP</sub>
```

(What is a base noun phrase?)

"Chunking" used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and Pereira, 2003).

Remarks

Sequence models are extremely useful:

- syntax: part-of-speech tags, base noun phrase chunking
- semantics: supersense tags, named entity recognition, multiword expressions

All of these are called "shallow" methods (why?).

Remarks

Sequence models are extremely useful:

- syntax: part-of-speech tags, base noun phrase chunking
- semantics: supersense tags, named entity recognition, multiword expressions

All of these are called "shallow" methods (why?).

Issues to be aware of:

- Supervised data for these problems is not cheap.
- Performance always suffers when you test on a different style, genre, dialect, etc. than you trained on.
- ► Runtime depends on the size of *L* and the number of consecutive labels that features can depend on.

To-Do List

Read: Jurafsky and Martin (2016b,a)

References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what's in a name. Machine learning, 34(1-3):211-231, 1999. URL http://people.csail.mit.edu/mcollins/6864/slides/bikel.pdf.

Thorsten Brants. TnT - a statistical part-of-speech tagger. In Proc. of ANLP, 2000.

- Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In *Proc. of ANLP*, 1988.
- Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In *Proc. of EMNLP*, 2006.
- Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in WordNet. In *Proc. of EMNLP*, 2003.
- Michael Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In *Proc. of EMNLP*, 2002.
- Christiane Fellbaum, editor. *WordNet: An Electronic Lexical Database*. MIT Press, 1998.
- Kevin Gimpel, Nathan Schneider, Brendan O'Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. Part-of-speech tagging for Twitter: Annotation, features, and experiments. In Proc. of ACL, 2011.
- Daniel Jurafsky and James H. Martin. Information extraction (draft chapter), 2016a. URL https://web.stanford.edu/~jurafsky/slp3/21.pdf.

References II

- Daniel Jurafsky and James H. Martin. Part-of-speech tagging (draft chapter), 2016b. URL https://web.stanford.edu/~jurafsky/slp3/10.pdf.
- John S. Justeson and Slava M. Katz. Technical terminology: Some linguistic properties and an algorithm for identification in text. *Natural Language Engineering*, 1:9–27, 1995.
- Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of English: the Penn treebank. *Computational Linguistics*, 19(2): 313–330, 1993.
- G. A. Miller, C. Leacock, T. Randee, and R. Bunker. A semantic concordance. In *Proc. of HLT*, 1993.
- Lance A Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning, 1995. URL http://arxiv.org/pdf/cmp-lg/9505040.pdf.
- Nathan Schneider and Noah A. Smith. A corpus and model integrating multiword expressions and supersenses. In *Proc. of NAACL*, 2015.
- Nathan Schneider, Emily Danchik, Chris Dyer, and Noah A. Smith. Discriminative lexical semantic segmentation with gaps: Running the MWE gamut. *Transactions of the Association for Computational Linguistics*, 2:193–206, April 2014a.
- Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T. Mordowanec, Henrietta Conrad, and Noah A. Smith. Comprehensive annotation of multiword expressions in a social web corpus. In *Proc. of LREC*, 2014b.

References III

- Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In *Proc. of NAACL*, 2003.
- Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In *Proc. of NAACL*, 2003.