
CSE 490 U
Natural Language Processing

Spring 2016

Yejin Choi - University of Washington

Dependency Parsing
And Other Grammar Formalisms

Dependency Grammar

I shot an elephant

For each word, find one parent.

Child Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

I shot an elephant in my pajamas

For each word, find one parent.

Child Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

I shot an elephant in my pajamas yesterday

For each word, find one parent.

Child Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

shot

I elephant

an
in

pajamas

my

yesterday

I shot an elephant in my pajamas yesterday

Typed Depedencies

I shot an elephant in my pajamas

nsubj dobj

prep

det

pobj

poss

1 2 3 4 5 6 7

nsubj(shot-2, i-1)
root(ROOT-0, shot-2)
det(elephant-4, an-3)
dobj(shot-2, elephant-4)

prep(shot-2, in-5)
poss(pajamas-7, my-6)
pobj(in-5, pajamas-7)

Naïve CKY Parsing

It takes two to tango

It takes two to tango

totakes

takes

takes

O(n5)
combinations

It

p

p c
i j k

O(n5N3) if N
nonterminals

r
0 n

goal

goal

slides from Eisner & Smith

Eisner Algorithm (Eisner & Satta, 1999)

i j k i j k

i j ki j k

Without adding a
dependency arc

When adding a
dependency arc
(head is higher)

0 i n

goal
This happens
only once as the
very final step

Eisner Algorithm (Eisner & Satta, 1999)

It takes two to tango

goal

One trapezoid
per
dependency.

A triangle is a head with
some left (or right) subtrees.

slides from Eisner & Smith

Eisner Algorithm (Eisner & Satta, 1999)

i j k i j k

i j ki j k

O(n3)
combinations

O(n3)
combinations

0 i n

goal
O(n)
combinations

Gives O(n3) dependency grammar
parsing

slides from Eisner & Smith

Eisner Algorithm
§ Base case:

§ Recursion:

§ Final case:

8t 2 {E,D,C,B}, ⇡(i, i, t) = 0

⇡(i, j,B) = max

ikj

⇣
⇡(i, k,D) + ⇡(k + 1, j,B)

⌘
⇡(i, j,C) = max

ikj

⇣
⇡(i, k,C) + ⇡(k + 1, j,E)

⌘
⇡(i, j,D) = max

ikj

⇣
⇡(i, k,B) + ⇡(k + 1, j,C) + �(wi, wj))

⌘

⇡(1, n,CB) = max

1kn

⇣
⇡(1, k,C) + ⇡(k + 1, n,B)

⌘

⇡(i, j,E) = max

ikj

⇣
⇡(i, k,B) + ⇡(k + 1, j,C) + �(wj , wi)

⌘

CFG vs Dependency Parse I
§ CFG focuses on “constituency” (i.e., phrasal/clausal structure)
§ Dependency focuses on “head” relations.

§ CFG includes non-terminals. CFG edges are not typed.
§ No non-terminals for dependency trees. Instead, dependency

trees provide “dependency types” on edges.

§ Dependency types encode “grammatical roles” like
§ nsubj -- nominal subject
§ dobj – direct object
§ pobj – prepositional object
§ nsubjpass – nominal subject in a passive voice

CFG vs Dependency Parse II
§ Can we get “heads” from CFG trees?

§ Yes. In fact, modern statistical parsers based on CFGs use
hand-written “head rules” to assign “heads” to all nodes.

§ Can we get constituents from dependency trees?
§ Yes, with some efforts.

§ Can we transform CFG trees to dependency parse trees?
§ Yes, and transformation software exists. (stanford toolkit

based on [de Marneffe et al. LREC 2006])
§ Can we transform dependency trees to CFG trees?

§ Mostly yes, but (1) dependency parse can capture non-
projective dependencies, while CFG cannot, and (2) people
rarely do this in practice

CFG vs Dependency Parse III
§ Both are context-free.
§ Both are used frequently today, but dependency parsers are more

recently popular.

§ CKY Parsing algorithm:
§ O (N^3) using CKY & unlexicalized grammar
§ O (N^5) using CKY & lexicalized grammar (O(N^4) also possible)

§ Dependency parsing algorithm:
§ O (N^5) using naïve CKY
§ O (N^3) using Eisner algorithm
§ O (N^2) based on minimum directed spanning tree algorithm

(arborescence algorithm, aka, Edmond-Chu-Liu algorithm – see
edmond.pdf)

§ Linear-time O (N) Incremental parsing (shift-reduce parsing) possible
for both grammar formalisms

Non Projective Dependencies

§ Mr. Tomash will remain as a director emeritus.

§ A hearing is scheduled on the issue today.

Non Projective Dependencies

§ Projective dependencies: when the tree edges are
drawn directly on a sentence, it forms a tree (without a
cycle), and there is no crossing edge.

§ Projective Dependency:
§ Eg:

Mr. Tomash will remain as a director emeritus.

Non Projective Dependencies

§ Projective dependencies: when the tree edges are
drawn directly on a sentence, it forms a tree (without a
cycle), and there is no crossing edge.

§ Non-projective dependency:

§ Eg:

A hearing is scheduled on the issue today.

Non Projective Dependencies

§ which word does “on the issue” modify?
§ We scheduled a meeting on the issue today.
§ A meeting is scheduled on the issue today.

§ CFGs capture only projective dependencies
(why?)

Coordination across Constituents

§Right-node raising:
§ [[She bought] and [he ate]] bananas.

§Argument-cluster coordination:
§ I give [[you an apple] and [him a pear]].

§Gapping:
§ She likes sushi, and he sashimi

è CFGs don’t capture coordination across
constituents:

Coordination across Constituents

§ She bought and he ate bananas.
§ I give you an apple and him a pear.

Compare above to:
§ She bought and ate bananas.
§ She bought bananas and apples.
§ She bought bananas and he ate apples.

The Chomsky Hierarchy

The Chomsky Hierarchy

� Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag,
1987, 1994)

� Lexical Functional Grammar (LFG) (Bresnan, 1982)
� Minimalist Grammar (Stabler, 1997)

� Tree-Adjoining Grammars (TAG) (Joshi, 1969)
� Combinatory Categorial Grammars (CCG) (Steedman, 1986)

Mildly Context-Sensitive
Grammar Formalisms

I. Tree Adjoining Grammar
(TAG)

Some slides adapted from Julia Hockenmaier’s

TAG Lexicon (Supertags)
§ Tree-Adjoining Grammars (TAG) (Joshi, 1969)
§ “… super parts of speech (supertags): almost

parsing” (Joshi and Srinivas 1994)
§ POS tags enriched with syntactic structure
§ also used in other grammar formalisms (e.g., CCG)

S

NP VP

NPV

likes

NP

N

bananas

NP

NP*D

the

NP

NP* PP

NPP

with

VP

VP* PP

NPP

with

S

NP VP

NPV

likes

NP

N

bananas

NP

NP*D

the

NP

NP* PP

NPP

with

VP

VP* PP

NPP

with

VP

VP*RB

always

TAG Lexicon (Supertags)
S

PP S*

NPP

with

Example: TAG Lexicon

Example: TAG Derivation

Example: TAG Derivation

Example: TAG Derivation

TAG rule 1: Substitution

TAG rule 2: Adjunction

(1) Can handle long distance dependencies

S*

(2) Cross-serial Dependencies

� Dutch and Swiss-German
� Can this be generated from context-free grammar?

Tree Adjoining Grammar (TAG)
§ TAG: Aravind Joshi in 1969
§ Supertagging for TAG: Joshi and Srinivas 1994

§ Pushing grammar down to lexicon.
§ With just two rules: substitution & adjunction

§ Parsing Complexity:
§ O(N^7)

§ Xtag Project (TAG Penntree) (http://www.cis.upenn.edu/~xtag/)

§ Local expert!
§ Fei Xia @ Linguistics (https://faculty.washington.edu/fxia/)

II. Combinatory Categorial
Grammar (CCG)

Some slides adapted from Julia Hockenmaier’s

Categories

§ Categories = types
§ Primitive categories

§ N, NP, S, etc
§ Functions

§ a combination of primitive categories
§ S/NP, (S/NP) / (S/NP), etc
§ V, VP, Adverb, PP, etc

Combinatory Rules

§ Application
§ forward application: x/y y è x
§ backward application: y x\y è x

§ Composition
§ forward composition: x/y y/z è x/z
§ backward composition: y\z x\y è x\z
§ (forward crossing composition: x/y y\z è x\z)
§ (backward crossing composition: x\y y/z è x/z)

§ Type-raising
§ forward type-raising: x è y / (y\x)
§ backward type-raising: x è y \ (y/x)

§ Coordination <&>
§ x conj x è x

Combinatory Rules 1 : Application

§ Forward application “>”
§ X/Y Y è X
§ (S\NP)/NP NP è S\NP

§ Backward application “<“
§ Y X\Y è X
§ NP S\NP è S

Function
§ likes := (S\NP) / NP

§ A transitive verb is a function from NPs into predicate S. That is,
it accepts two NPs as arguments and results in S.

§ Transitive verb: (S\NP) / NP
§ Intransitive verb: S\NP
§ Adverb: (S\NP) \ (S\NP)
§ Preposition: (NP\NP) / NP
§ Preposition: ((S\NP) \ (S\NP)) / NP

S

NP VP

V

likes

NP

CCG Derivation:

CFG Derivation:

Combinatory Rules
§ Application

§ forward application: x/y y è x
§ backward application: y x\y è x

§ Composition
§ forward composition: x/y y/z è x/z
§ backward composition: y\z x\y è x\z
§ forward crossing composition: x/y y\z è x\z
§ backward crossing composition: x\y y/z è x/z

§ Type-raising
§ forward type-raising: x è y / (y\x)
§ backward type-raising: x è y \ (y/x)

§ Coordination <&>
§ x conj x è x

Combinatory Rules 4 : Coordination
§ X conj X è X

§ Alternatively, we can express coordination by
defining conjunctions as functions as follows:

§ and := (X\X) / X

Coordination with CCG

Examples from Prof. Mark Steedman

Coordination with CCG

� Application
� forward application: x/y y è x
� backward application: y x\y è x

Coordination with CCG

� Application
� forward application: x/y y è x
� backward application: y x\y è x

Combinatory Rules
§ Application

§ forward application: x/y y è x
§ backward application: y x\y è x

§ Composition
§ forward composition: x/y y/z è x/z
§ backward composition: y\z x\y è x\z
§ forward crossing composition: x/y y\z è x\z
§ backward crossing composition: x\y y/z è x/z

§ Type-raising
§ forward type-raising: x è y / (y\x)
§ backward type-raising: x è y \ (y/x)

§ Coordination <&>
§ x conj x è x

Coordination with CCG

� Application
� forward application: x/y y è x
� backward application: y x\y è x

� Composition
� forward composition: x/y y/z è x/z
� backward composition: y\z x\y è x\z
� forward crossing composition: x/y y\z è x\z
� backward crossing composition: x\y y/z è x/z

Coordination with CCG

� Application
� forward application: x/y y è x
� backward application: y x\y è x

� Composition
� forward composition: x/y y/z è x/z
� backward composition: y\z x\y è x\z
� forward crossing composition: x/y y\z è x\z
� backward crossing composition: x\y y/z è x/z

Combinatory Rules
§ Application

§ forward application: x/y y è x
§ backward application: y x\y è x

§ Composition
§ forward composition: x/y y/z è x/z
§ backward composition: y\z x\y è x\z
§ forward crossing composition: x/y y\z è x\z
§ backward crossing composition: x\y y/z è x/z

§ Type-raising
§ forward type-raising: x è y / (y\x)
§ backward type-raising: x è y \ (y/x)

§ Coordination <&>
§ x conj x è x

Combinatory Rules 3 : Type-Raising

§ Turns an argument into a function

§ Forward type-raising: X è T / (T\X)
§ Backward type-raising: X è T \ (T/X)

For instance…
§ Subject type-raising: NP è S / (S \ NP)
§ Object type-raising: NP è (S\NP) \ ((S\NP) / NP)

Combinatory Rules 3 : Type-Raising

� Application
� forward application: x/y y è x
� backward application: y x\y è x

� Type-raising
� forward type-raising: x è y / (y\x)
� backward type-raising: x è y \ (y/x)
� Subject type-raising: NP è S / (S \ NP)
� Object type-raising: NP è (S\NP) \ ((S\NP) / NP)

� Coordination <&>
� x conj x è x

Combinatory Rules 3 : Type-Raising

Combinatory Categorial Grammar (CCG)

§ CCG: Steedman in 1986

§ Pushing grammar down to lexicon.
§ With just a few rules: application, composition, type-raising

§ We’ve looked at only syntactic part of CCG
§ A lot more in the semantic part of CCG (using lambda calculus)

§ Parsing Complexity:
§ O(N^6)

§ Local expert!
§ Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/lsz)

