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Dependency Grammar

I    shot    an     elephant

For each word, find one parent.

Child            Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.



I    shot    an     elephant    in    my    pajamas

For each word, find one parent.

Child            Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.



I    shot    an     elephant    in    my    pajamas    yesterday

For each word, find one parent.

Child            Parent

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.
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I    shot    an     elephant    in    my    pajamas    yesterday     



Typed Depedencies

I        shot        an         elephant        in        my        pajamas

nsubj dobj

prep

det

pobj

poss

1             2              3                 4                   5             6                  7                   

nsubj(shot-2, i-1) 
root(ROOT-0, shot-2) 
det(elephant-4, an-3) 
dobj(shot-2, elephant-4) 

prep(shot-2, in-5) 
poss(pajamas-7, my-6) 
pobj(in-5, pajamas-7)



Naïve CKY Parsing

It takes two to tango

It takes two to tango

totakes

takes

takes

O(n5) 
combinations

It

p

p c
i j k

O(n5N3) if N
nonterminals

r
0 n

goal

goal

slides from Eisner & Smith 



Eisner Algorithm (Eisner & Satta, 1999)
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When adding a 
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(head is higher)
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very final step



Eisner Algorithm (Eisner & Satta, 1999)

It takes two to tango

goal

One trapezoid 
per 
dependency.

A triangle is a head with 
some left (or right) subtrees.

slides from Eisner & Smith 



Eisner Algorithm (Eisner & Satta, 1999)
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Gives O(n3) dependency grammar 
parsing 

slides from Eisner & Smith 



Eisner Algorithm
§ Base case:

§ Recursion:

§ Final case:

8t 2 {E,D,C,B}, ⇡(i, i, t) = 0
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⌘
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CFG vs Dependency Parse I
§ CFG focuses on “constituency” (i.e., phrasal/clausal structure)
§ Dependency focuses on “head” relations.

§ CFG includes non-terminals. CFG edges are not typed.
§ No non-terminals for dependency trees. Instead, dependency 

trees provide “dependency types” on edges.

§ Dependency types encode “grammatical roles” like 
§ nsubj -- nominal subject
§ dobj – direct object
§ pobj – prepositional object
§ nsubjpass – nominal subject in a passive voice



CFG vs Dependency Parse II
§ Can we get “heads” from CFG trees?

§ Yes. In fact, modern statistical parsers based on CFGs use 
hand-written “head rules” to assign “heads” to all nodes.

§ Can we get constituents from dependency trees?
§ Yes, with some efforts.

§ Can we transform CFG trees to dependency parse trees?
§ Yes, and transformation software exists. (stanford toolkit 

based on [de Marneffe et al. LREC 2006])
§ Can we transform dependency trees to CFG trees?

§ Mostly yes, but (1) dependency parse can capture non-
projective dependencies, while CFG cannot, and (2) people 
rarely do this in practice



CFG vs Dependency Parse III
§ Both are context-free.
§ Both are used frequently today, but dependency parsers are more 

recently popular. 

§ CKY Parsing algorithm: 
§ O (N^3) using CKY & unlexicalized grammar
§ O (N^5) using CKY & lexicalized grammar (O(N^4) also possible)

§ Dependency parsing algorithm: 
§ O (N^5) using naïve CKY
§ O (N^3) using Eisner algorithm
§ O (N^2) based on minimum directed spanning tree algorithm 

(arborescence algorithm, aka, Edmond-Chu-Liu algorithm – see 
edmond.pdf) 

§ Linear-time O (N) Incremental parsing (shift-reduce parsing) possible 
for both grammar formalisms



Non Projective Dependencies

§ Mr. Tomash will remain as a director emeritus.

§ A hearing is scheduled on the issue today.



Non Projective Dependencies

§ Projective dependencies: when the tree edges are 
drawn directly on a sentence, it forms a tree (without a 
cycle), and there is no crossing edge.

§ Projective Dependency:
§ Eg: 

Mr.  Tomash will     remain    as    a    director    emeritus.



Non Projective Dependencies

§ Projective dependencies: when the tree edges are 
drawn directly on a sentence, it forms a tree (without a 
cycle), and there is no crossing edge.

§ Non-projective dependency:

§ Eg:

A    hearing    is    scheduled    on    the    issue    today.



Non Projective Dependencies

§ which word does “on the issue” modify?
§ We scheduled a meeting on the issue today.
§ A meeting is scheduled on the issue today.

§ CFGs capture only projective dependencies 
(why?)



Coordination across Constituents

§Right-node raising:
§ [[She bought] and [he ate]] bananas.

§Argument-cluster coordination:
§ I give [[you an apple] and [him a pear]].

§Gapping:
§ She likes sushi, and he sashimi

è CFGs don’t capture coordination across 
constituents:



Coordination across Constituents

§ She bought and he ate bananas.
§ I give you an apple and him a pear.

Compare above to:
§ She bought and ate bananas.
§ She bought bananas and apples. 
§ She bought bananas and he ate apples.



The Chomsky Hierarchy



The Chomsky Hierarchy

� Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 
1987, 1994)

� Lexical Functional Grammar (LFG) (Bresnan, 1982)
� Minimalist Grammar (Stabler, 1997)

� Tree-Adjoining Grammars (TAG) (Joshi, 1969)
� Combinatory Categorial Grammars (CCG) (Steedman, 1986)



Mildly Context-Sensitive 
Grammar Formalisms



I. Tree Adjoining Grammar 
(TAG)

Some slides adapted from Julia Hockenmaier’s



TAG Lexicon (Supertags)
§ Tree-Adjoining Grammars (TAG) (Joshi, 1969)
§ “… super parts of speech (supertags): almost 

parsing” (Joshi and Srinivas 1994)
§ POS tags enriched with syntactic structure
§ also used in other grammar formalisms (e.g., CCG)
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Example: TAG Lexicon



Example: TAG Derivation



Example: TAG Derivation



Example: TAG Derivation



TAG rule 1: Substitution



TAG rule 2: Adjunction



(1) Can handle long distance dependencies

S*



(2) Cross-serial Dependencies

� Dutch and Swiss-German
� Can this be generated from context-free grammar?





Tree Adjoining Grammar (TAG)
§ TAG: Aravind Joshi in 1969
§ Supertagging for TAG: Joshi and Srinivas 1994

§ Pushing grammar down to lexicon.
§ With just two rules: substitution & adjunction

§ Parsing Complexity:
§ O(N^7)

§ Xtag Project (TAG Penntree) (http://www.cis.upenn.edu/~xtag/)

§ Local expert!
§ Fei Xia @ Linguistics (https://faculty.washington.edu/fxia/)



II. Combinatory Categorial 
Grammar (CCG)

Some slides adapted from Julia Hockenmaier’s



Categories

§ Categories = types
§ Primitive categories

§ N, NP, S, etc
§ Functions

§ a combination of primitive categories
§ S/NP,   (S/NP) / (S/NP),   etc
§ V, VP, Adverb, PP, etc



Combinatory Rules

§ Application
§ forward application:   x/y  y è x
§ backward application:   y  x\y  è x

§ Composition
§ forward composition:   x/y  y/z  è x/z
§ backward composition:  y\z  x\y  è x\z
§ (forward crossing composition:   x/y  y\z  è x\z)
§ (backward crossing composition:   x\y  y/z  è x/z)

§ Type-raising
§ forward type-raising:   x è y / (y\x)
§ backward type-raising:   x è y \ (y/x)

§ Coordination <&>
§ x  conj  x è x



Combinatory Rules 1 : Application

§ Forward application “>”
§ X/Y   Y   è X
§ (S\NP)/NP   NP   è S\NP

§ Backward application “<“
§ Y   X\Y   è X
§ NP   S\NP   è S



Function
§ likes := (S\NP) / NP

§ A transitive verb is a function from NPs into predicate S. That is, 
it accepts two NPs as arguments and results in S.

§ Transitive verb:   (S\NP) / NP
§ Intransitive verb:   S\NP
§ Adverb:   (S\NP) \ (S\NP)
§ Preposition:  (NP\NP) / NP
§ Preposition:  ((S\NP) \ (S\NP)) / NP
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NP VP
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NP



CCG Derivation:

CFG Derivation:



Combinatory Rules
§ Application

§ forward application:   x/y  y è x
§ backward application:   y  x\y  è x

§ Composition
§ forward composition:   x/y  y/z  è x/z
§ backward composition:  y\z  x\y  è x\z
§ forward crossing composition:   x/y  y\z  è x\z
§ backward crossing composition:   x\y  y/z  è x/z

§ Type-raising
§ forward type-raising:   x è y / (y\x)
§ backward type-raising:   x è y \ (y/x)

§ Coordination <&>
§ x  conj  x è x



Combinatory Rules 4 : Coordination
§ X conj X è X

§ Alternatively, we can express coordination by 
defining conjunctions as functions as follows:

§ and :=  (X\X) / X



Coordination with CCG

Examples from Prof. Mark Steedman



Coordination with CCG

� Application
� forward application:   x/y  y è x
� backward application:   y  x\y  è x



Coordination with CCG

� Application
� forward application:   x/y  y è x
� backward application:   y  x\y  è x



Combinatory Rules
§ Application

§ forward application:   x/y  y è x
§ backward application:   y  x\y  è x

§ Composition
§ forward composition:   x/y  y/z  è x/z
§ backward composition:  y\z  x\y  è x\z
§ forward crossing composition:   x/y  y\z  è x\z
§ backward crossing composition:   x\y  y/z  è x/z

§ Type-raising
§ forward type-raising:   x è y / (y\x)
§ backward type-raising:   x è y \ (y/x)

§ Coordination <&>
§ x  conj  x è x



Coordination with CCG

� Application
� forward application:   x/y  y è x
� backward application:   y  x\y  è x

� Composition
� forward composition:   x/y  y/z  è x/z
� backward composition: y\z  x\y  è x\z 
� forward crossing composition:   x/y  y\z  è x\z
� backward crossing composition:   x\y  y/z  è x/z



Coordination with CCG

� Application
� forward application:   x/y  y è x
� backward application:   y  x\y  è x

� Composition
� forward composition:   x/y  y/z  è x/z
� backward composition:  y\z  x\y  è x\z
� forward crossing composition:   x/y  y\z  è x\z
� backward crossing composition:   x\y  y/z  è x/z



Combinatory Rules
§ Application

§ forward application:   x/y  y è x
§ backward application:   y  x\y  è x

§ Composition
§ forward composition:   x/y  y/z  è x/z
§ backward composition:   y\z  x\y  è x\z
§ forward crossing composition:   x/y  y\z  è x\z
§ backward crossing composition:   x\y  y/z  è x/z

§ Type-raising
§ forward type-raising:   x è y / (y\x)
§ backward type-raising:   x è y \ (y/x)

§ Coordination <&>
§ x  conj  x è x



Combinatory Rules 3 : Type-Raising

§ Turns an argument into a function

§ Forward type-raising: X è T / (T\X)
§ Backward type-raising:   X è T \ (T/X)

For instance…
§ Subject type-raising:   NP  è S / (S \ NP)
§ Object type-raising:   NP è (S\NP) \ ((S\NP) / NP)



Combinatory Rules 3 : Type-Raising

� Application
� forward application:   x/y  y è x
� backward application:   y  x\y  è x

� Type-raising
� forward type-raising:   x è y / (y\x)
� backward type-raising:   x è y \ (y/x)
� Subject type-raising:   NP  è S / (S \ NP)
� Object type-raising:   NP è (S\NP) \ ((S\NP) / NP)

� Coordination <&>
� x  conj  x è x



Combinatory Rules 3 : Type-Raising



Combinatory Categorial Grammar (CCG)

§ CCG: Steedman in 1986

§ Pushing grammar down to lexicon.
§ With just a few rules: application, composition, type-raising

§ We’ve looked at only syntactic part of CCG
§ A lot more in the semantic part of CCG (using lambda calculus)

§ Parsing Complexity:
§ O(N^6)

§ Local expert!
§ Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/lsz)


