
CSE 490 U
Natural Language Processing

Spring 2016

Yejin Choi

University of Washington

[Many slides from Dan Klein, Michael Collins, Luke Zettlemoyer]

Hidden Markov Models

Overview
§ Hidden Markov Models

§ Learning

§ Supervised: Maximum Likelihood

§ Inference (or Decoding)

§ Viterbi

§ Forward Backward

§ N-gram Taggers

Pairs of Sequences
§ Consider the problem of jointly modeling a pair of strings

§ E.g.: part of speech tagging

§ Q: How do we map each word in the input sentence onto the
appropriate label?

§ A: We can learn a joint distribution:

§ And then compute the most likely assignment:

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

p(x1 . . . xn, y1 . . . yn)

arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

Classic Solution: HMMs
§ We want a model of sequences y and observations x

where y0=START and we call q(y’|y) the transition distribution and e(x|y) the
emission (or observation) distribution.

§ Assumptions:
§ Tag/state sequence is generated by a markov model
§ Words are chosen independently, conditioned only on the tag/state
§ These are totally broken assumptions: why?

y1 y2 yn

x1 x2 xn

y0 yn+1

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Example: POS Tagging
The Georgia branch had taken on loan commitments …

§ HMM Model:
§ States Y = {DT, NNP, NN, ... } are the POS tags
§ Observations X = V are words
§ Transition dist’n q(yi |yi -1) models the tag sequences
§ Emission dist’n e(xi |yi) models words given their POS

§ Q: How to we represent n-gram POS taggers?

DT NNP NN VBD VBN RP NN NNS

Example: Chunking
§ Goal: Segment text into spans with certain properties
§ For example, named entities: PER, ORG, and LOC
Germany ’s representative to the European Union ’s
veterinary committee Werner Zwingman said on Wednesday
consumers should…

[Germany]LOC ’s representative to the [European Union]ORG ’s
veterinary committee [Werner Zwingman]PER said on
Wednesday consumers should…

§ Q: Is this a tagging problem?

Example: Chunking

Germany/BL ’s/NA representative/NA to/NA the/NA European/BO
Union/CO ’s/NA veterinary/NA committee/NA Werner/BP Zwingman/CP
said/NA on/NA Wednesday/NA consumers/NA should/NA…

[Germany]LOC ’s representative to the [European Union]ORG ’s
veterinary committee [Werner Zwingman]PER said on Wednesday
consumers should…

§ HMM Model:
§ States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings

(BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well
as other words (NA)

§ Observations X = V are words
§ Transition dist’n q(yi |yi -1) models the tag sequences
§ Emission dist’n e(xi |yi) models words given their type

A:

Example: HMM Translation Model
Thank you , I shall do so gladly .

1 3 7 6 9

1 2 3 4 5 76 8 9

Model Parameters
Transitions: p(A2 = 3 | A1 = 1)Emissions: e(F1 = Gracias | EA1 = Thank)

Gracias , lo haré de muy buen grado .

8 8 88

E:

F:

HMM Inference and Learning
§ Learning

§ Maximum likelihood: transitions q and emissions e

§ Inference (linear time in sentence length!)
§ Viterbi:

§ Forward Backward:
p(x1 . . . xn, yi) =

X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

y⇤ = argmax

y1...yn

p(x1...xn, y1...yn+1)

where yn+1 = stop

Learning: Maximum Likelihood

§ Learning (Supervised Learning)
§ Maximum likelihood methods for estimating

transitions q and emissions e

§ Will these estimates be high quality?
§ Which is likely to be more sparse, q or e?

§ Can use all of the same smoothing tricks we saw for
language models!

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Learning: Low Frequency Words

§ Typically, linear interpolation works well for transitions

§ However, other approaches used for emissions
§ Step 1: Split the vocabulary

§ Frequent words: appear more than M (often 5) times
§ Low frequency: everything else

§ Step 2: Map each low frequency word to one of a small, finite
set of possibilities
§ For example, based on prefixes, suffixes, etc.

§ Step 3: Learn model for this new space of possible word
sequences

q(yi|yi�1) = �1qML(yi|yi�1) + �2qML(yi)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Low Frequency Words: An Example
Named Entity Recognition [Bickel et. al, 1999]

§ Used the following word classes for infrequent words:

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class Example Intuition

twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization information
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other words

18

Low Frequency Words: An Example
§ Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA

topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

§ firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
…

Inference (Decoding)
§ Problem: find the most likely (Viterbi) sequence under the model

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ)…..

NNP VBZ NN NNS CD NN
NNP NNS NN NNS CD NN
NNP VBZ VB NNS CD NN

logP = -23

logP = -29
logP = -27

§ In principle, we’re done – list all possible tag sequences,
score each one, pick the best one (the Viterbi state sequence)

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .

§ Given model parameters, we can score any sequence pair

y⇤ = argmax

y1...yn

p(x1...xn, y1...yn+1)

Dynamic Programming!

§ Define π(i,yi) to be the max score of a sequence of
length i ending in tag yi

§ We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

= max

yi�1

e(xi|yi)q(yi|yi�1) max

y1...yi�2

p(x1 . . . xi�1, y1 . . . yi�1)

= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

y⇤ = argmax

y1...yn

p(x1...xn, y1...yn+1)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Time flies like an arrow;
Fruit flies like a banana

16

17

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

Fruit Flies Like Bananas

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

18

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

Fruit Flies Like Bananas

=0

=0.01

=0.03

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

19

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

20

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

=0.007

=0

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

21

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

= max

yi�1

e(xi|yi)q(yi|yi�1) max

y1...yi�2

p(x1 . . . xi�1, y1 . . . yi�1)

= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

Fruit Flies Like Bananas

23

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

Fruit Flies Like Bananas

24

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

Fruit Flies Like Bananas

25

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

Why is this not a greedy algorithm?
Why does this find the max p(.)?

What is the runtime?

26

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

ST
AR

T

ST
O

P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

Dynamic Programming!

§ Define π(i,yi) to be the max score of a sequence of
length i ending in tag yi

§ We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

= max

yi�1

e(xi|yi)q(yi|yi�1) max

y1...yi�2

p(x1 . . . xi�1, y1 . . . yi�1)

= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

y⇤ = argmax

y1...yn

p(x1...xn, y1...yn+1)

Viterbi Algorithm
§ Dynamic program for computing (for all i)

§ Iterative computation

For i = 1 ... n:

§ Also, store back pointers

§ What is the final solution to ?

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

⇡(0, y0) =

⇢
1 if y0 == START
0 otherwise

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

bp(i, yi) = argmax

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

y⇤ = argmax

y1...yn

p(x1...xn, y1...yn+1)

The Viterbi Algorithm: Runtime
§ Linear in sentence length n
§ Polynomial in the number of possible tags |K|

§ Specifically:

§ Total runtime:

§ Q: Is this a practical algorithm?
§ A: depends on |K|….

⇡(i, yi) = max

yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

O(n|K|) entries in ⇡(i, yi)

O(n|K|2)
O(|K|) time to compute each ⇡(i, yi)

Broader Context
§ Beam Search: Viterbi decoding with K best sub-

solutions (beam size = K)
§ Viterbi algorithm - a special case of max-product

algorithm
§ Forward-backward - a special case of sum-product

algorithm (belief propagation algorithm)
§ Viterbi decoding can be also used with general graphical

models (factor graphs, Markov Random Fields,
Conditional Random Fields, …) with non-probabilistic
scoring functions (potential functions).

30

Reflection
§ Viterbi: why argmax over joint distribution?

§ Why not this:

§ Same thing!

y

⇤
= arg max

y1...yn

p(x1 . . . xn, y1 . . . yn)

Marginal Inference
§ Problem: find the marginal probability of each tag for yi

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ)…..

NNP VBZ NN NNS CD NN
NNP NNS NN NNS CD NN
NNP VBZ VB NNS CD NN

logP = -23

logP = -29
logP = -27

§ In principle, we’re done – list all possible tag sequences,
score each one, sum over all of the possible values for yi

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .

§ Given model parameters, we can score any sequence pair

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn+1)

Marginal Inference
§ Problem: find the marginal probability of each tag for yi

Compare it to “Viterbi Inference”

⇡(i, yi) = max

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn+1)

The State Lattice / Trellis: Viterbi
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)q(V|V)

e(STOP|V)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

The State Lattice / Trellis: Marginal
p(x1 . . . xn, yi) =

X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn+1)

Dynamic Programming!

§ Sum over all paths, on both sides of each yi

�(i, yi) = p(x1 . . . xi, yi) =
X

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

=
X

yi+1

e(xi+1|yi+1)q(yi+1|yi)�(i + 1, yi+1)

=
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

p(x1 . . . xn, yi) = p(x1 . . . xi, yi)p(xi+1 . . . xn|yi)

�(i, yi) = p(xi+1 . . . xn|yi) =
X

yi+1...yn

p(xi+1 . . . xn, yi+1 . . . yn+1|yi)

START Fed raises interest rates STOP

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

The State Lattice / Trellis: Forward
�(i, yi) = p(x1 . . . xi, yi) =

X

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

=
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

The State Lattice / Trellis: Backward

=
X

yi+1

e(xi+1|yi+1)q(yi+1|yi)�(i + 1, yi+1)

�(i, yi) = p(xi+1 . . . xn|yi) =
X

yi+1...yn

p(xi+1 . . . xn, yi+1 . . . yn+1|yi)

Forward Backward Algorithm
§ Two passes: one forward, one back

§ Forward:

§ For i = 1 … n

§ Backward:

§ For i = n-1 ... 0

�(i, yi) =
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

�(i, yi) =
X

yi+1

e(xi+1|yi+1)q(yi+1|yi)�(i + 1, yi+1)

�(0, y0) =

⇢
1 if y0 == START
0 otherwise

�(n, yn) =

⇢
1 if yn == STOP
0 otherwise

q(yn+1|yn) if yn+1 = stop

Forward Backward: Runtime
§ Linear in sentence length n
§ Polynomial in the number of possible tags |K|

§ Specifically:

§ Total runtime:

§ Q: How does this compare to Viterbi?
§ A: Exactly the same!!!

O(n|K|2)

�(i, yi) =
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

�(i, yi) =
X

yi+1

e(xi+1|yi+1)q(yi+1|yi)�(i + 1, yi+1)

O(n|K|) entries in �(i, yi) and ⇥(i, yi)
O(|K|) time to compute each entry

Other Marginal Inference
§ We’ve been doing this:

§ Can we compute this?

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn+1)

=
X

y1...yn

p(x1 . . . xn, y1 . . . yn+1)

Other Marginal Inference
§ Can we compute this?

§ Relation with forward quantity?
�(i, yi) = p(x1 . . . xi, yi) =

X

y1...yi�1

p(x1 . . . xi, y1 . . . yi)

=
X

y1...yn

p(x1 . . . xn, y1 . . . yn+1)

Unsupervised Learning (EM) Intuition
§ We’ve been doing this:

§ What we really want is this: (which we now know how to compute!)

§ This means we can compute the expected count of things

p(x1 . . . xn, yi) =
X

y1...yi�1

X

yi+1...yn

p(x1 . . . xn, y1 . . . yn+1)

Unsupervised Learning (EM) Intuition
§ What we really want is this: (which we now know how to compute!)

§ This means we can compute the expected count of things:

§ If we have this:

§ We can also compute expected transition counts:

§ Above marginals can be computed as

Unsupervised Learning (EM) Intuition

§ Expected emission counts:

§ Maximum Likelihood Parameters (Supervised Learning):

§ For Unsupervised Learning, replace the actual counts with the
expected counts.

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

Expectation Maximization
§ Initialize transition and emission parameters

§ Random, uniform, or more informed initialization
§ Iterate until convergence

§ E-Step:
§ Compute expected counts

§ M-Step:
§ Compute new transition and emission parameters (using the

expected counts computed above)

§ Convergence? Yes. Global optimum? No

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

Equivalent to the procedure given
in the textbook (J&M) – slightly
different notations

How is Unsupervised Learning Possible (at all)?

§ I water the garden everyday
§ Saw a weird bug in that garden …
§ While I was thinking of an equation …

Noun
S: (n) garden (a plot of ground where plants are cultivated)
S: (n) garden (the flowers or vegetables or fruits or herbs that are cultivated in a garden)
S: (n) garden (a yard or lawn adjoining a house)
Verb
S: (v) garden (work in the garden) "My hobby is gardening"
Adjective
S: (adj) garden (the usual or familiar type) "it is a common or garden sparrow"

48

Does EM learn good HMM POS-taggers?
§ “Why doesn’t EM find good HMM POS-taggers”,

Johnson, EMNLP 2007

49

HMMs estimated by EM
generally assign a roughly
equal number of word
tokens to each hidden state,
while the empirical
distribution of tokens to
POS tags is highly skewed

Unsupervised Learning Results
§ EM for HMM

§ POS Accuracy: 74.7%

§ Bayesian HMM Learning [Goldwater, Griffiths 07]
§ Significant effort in specifying prior distriubtions
§ Integrate our parameters e(x|y) and t(y’|y)
§ POS Accuracy: 86.8%

§ Unsupervised, feature rich models [Smith, Eisner 05]
§ Challenge: represent p(x,y) as a log-linear model, which requires

normalizing over all possible sentences x
§ Smith presents a very clever approximation, based on local

neighborhoods of x
§ POS Accuracy: 90.1%

§ Newer, feature rich methods do better, not near
supervised SOTA

Quiz: p(S1) vs. p(S2)

51

§ S1 = Colorless green ideas sleep furiously.
§ S2 = Furiously sleep ideas green colorless

§ “It is fair to assume that neither sentence (S1) nor (S2) had ever
occurred in an English discourse. Hence, in any statistical model for
grammaticalness, these sentences will be ruled out on identical
grounds as equally "remote" from English” (Chomsky 1957)

§ How would p(S1) and p(S2) compare based on (smoothed)
bigram language models?

§ How would p(S1) and p(S2) compare based on marginal
probability based on POS-tagging HMMs?
§ i.e., marginalized over all possible sequences of POS tags

