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Human Neurons /
Axonalifiiuaﬁon

!\ Axon from another cell

Synapse

Switching time
 ~0.001 second
Number of neurons
— 1010

Connections per neuron  ceibvoayor soms
— 104-5

Scene recognition time

— 0.1 seconds

Number of cycles per scene recognition?
— 100 = much parallel computation!

Dendrite

Nucleus ( ///.

Synapses



Perceptron as a Neural Network
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This is one neuron:
— Input edges x; ... X,,, along with basis
— The sum is represented graphically
— Sum passed through an activation function g
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Sigmoid Neuron

Just change ¢!
* Why would we want to do this?

* Notice new output range [0,1]. What was it before?
* Look familiar?



Optimizing a neuron | % () = f(a(=)g'x)

We train to minimize sum-squared error
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Solution just depends on g’: derivative of activation function!



Sigmoid units: have to differentiate g
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Perceptron, linear classification,
Boolean functions: x.&10,1}

Can learn x; vV xX,?
* -0.5+x;+x,
Can learn x; A X,?
* -1.5+x,+x%,
Can learn any conjunction or disjunction?
* 0.5+x,+...+X,
* (-n+0.5) + X, + ... + X,
Can learn majority?
e (-0.5*Nn) + x;+ ... + X,
What are we missing? The dreaded XOR!, etc.




Going beyond linear classification

Solving the XOR problem
Y=X4 XOR Xy = (X1 /\ _'X2) \ (X2 A_'X1)

V= (X A X))

= -1.542%,X,
V= (X3 A =Xg)

= -1.5+2x,-X,
y=ViVV;

=-0.5+v,+v,




Hidden layer

* Single unit:

out(x) = g(wg+ Z W;T;)

e 1-hidden layer:
out(x) = g (wo + Z w].:g(wlg + Z wq{:ﬁi’?i)‘)
k i

* No longer convex function!



Example

iV, ¢
A :0_>

%! S 49
TR N

data for NN AN
with hidden .
A target function:

Iayer Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??



A network:

Learned
weights for
hidden layer

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Why “representation learning”?

 MaxEnt (multinomial logistic regression):

y = softmax(w - f(x,y))
S~

You design the feature vector

e NNs: ¥ = softmax(w-o(Ux))

y = softmax(w - o(U"™ (N\g (UP (UM 2))))

\ Feature representations

are “learned” through
hidden layers



Very deep models in computer vision

EEEEEER:

'Inception 5 (GoogLeNet)

Inception 7a

'Going Deeper with Convolutions, [C. Szegedy et al, CVPR 2015]



RECURRENT NEURAL NETWORKS



Recurrent Neural Networks (RNNs)

Each RNN unit computes a new hidden state using the previous stateand a

new input hy = f(ay, hi_q)
Each RNN unit (optionally) makes an output using the currenthidden state
y; = softmax(V h;)

Hidden states h; € R are continuous vectors
— Canrepresent very rich information
— Possibly the entire history from the beginning

Parameters areshared (tied) across all RNN units (unlike feedforward NNs)

T T 1 -
T JTH_J_"TKT_J_"T



Recurrent Neural Networks (RNNs)

* Generic RNNs: hy = f(xs, he1)
Yy = softmax(V hy)

 Vanilla RNN: h; = tanh(Uxy + Why_1 + D)
y; = softmax(V h;)

- -l



Many uses of RNNs
1. Classification (seq to one)

* Input: a sequence
 Qutput: one label (classification)
 Example: sentiment classification

he = f(e, he—1)
y = softmax(V h,,)
hy

I

X1 4



Many uses of RNNs
2. one to seq

Input: one item

Output: a sequence
ht — f(xta ht—l)

Example: Image captioning y: = softmax(V hy)

Cat sitting on top
hl hZ h3 h4
t f 1 1

of ...



Many uses of RNNs
3. seguence tagging

Input: a sequence
Output: a sequence (of the same length)
Example: POS tagging, Named Entity Recognition

How about Language Models?

— Yes! RNNs can be used as LMs!

— RNNs make markov assumption: T/F? hy = f(:Ct, ht—l)
y; = softmax(V h;)

hy h, hs hy
I I I I



Many uses of RNNs
4. Language models

Input: a sequence of words
hy = f(ili‘u ht—l)

Output: one next word
y; = softmax(V h;)

Output: or a sequence of next words

During training, x_t is the actual word in the training sentence.
During testing, x_t is the word predicted from the previous time step.
Does RNN LMs make Markov assumption?

— i.e., the next word dependsonlyonthe previous N words




Many uses of RNNs
5. seg2seq (aka “encoder-decoder”)

* |nput:asequence
e Qutput: asequence (of different length)
 Examples?

he = f(xe, hi—1)
y; = softmax(V h;)




Many uses of RNNs
4. seq2seq (aka “encoder-decoder”)

Conversation and Dialogue
Machine Translation

ENCODER Reply
) Yes, what's up? — <END>
5 [ I [ [
~yo— —a C = Y g Er— e Wo—a —a E
o) (0] [ = .
l l I I £ R S R SN R T
Are you free tomorrow? <START>

DECODER

Incoming Email
Figure from http://www.wildml.com/category/conversational-agents/



Many uses of RNNs
4. seq2seq (aka “encoder-decoder”)

Parsing!
- “Grammar as Foreign Language” (Vinyals et al., 2015)
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. he h-,

John has a dog



Recurrent Neural Networks (RNNs)

* Generic RNNs: hy = f(xs, he1)
Yy = softmax(V hy)

 Vanilla RNN: h; = tanh(Uxy + Why_1 + D)
y; = softmax(V h;)

- -l



Recurrent Neural Networks (RNNs)

* Generic RNNs: hy = f(xs, he1)
* Vanilla RNNs: hy = tanh(Uxy + Why_1 + 1)
* LSTMs (Long Short-term Memory Networks):

1t = O’(U(i)xt + W(i)ht_l 4 b(i))

fo =Dz + W hy_1 + )

0; = J(U(o)xt + W(O>ht_1 + b(o))

¢ = tanh(U Wz, + WOh,_1 + b(9)

. ~ There are many
Cy = oCi_1+140¢C -
t ft t—1 t t \ known variations

ht = ot o tanh(c;) to this set of
equations!
C1 Cr C3 Cy Ct : cell state
hy, e hy ) hs hy h¢ : hidden state




LSTMS (LONG SHORT-TERM MEMORY NETWORKS

O—P>—>—<

Neural Network Pointwise Copy
L ayer Operation Transfer

t t |
a \Ct 4 N\ ¢ N
——® —T T >
A lele]ll A
N\ I T Y ,: o>

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY NETWORKS

s(i)g1moid: Forget gate: forget the past or not
[0,1] | fi = o(UDz, + WHhy_ | + )

fi

Tt

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY NETWORKS

sigmoid: Forget gate: forget the past or not
[0,1] fi = o(UDz, + WHhy_ | + )
tanh: Input gatg: use the input or noft
[-1,1] [TTTATTTT it = o(UDz, + Wh, ; + 1)
New cell content (temp):
¢ = tanh(U @z, + W h,_y + b))
it >
i
o | [tanh
b an
T

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY NETWORKS

S(;QPOid: Forget gate: forget the past or not
[0,1] fi = o(UDz, + WHhy_ | + )
tanh: Input gatg: use the input or noft
[-1,1] AT ir = o(UWzy + WHhy_y 4 5)
New cell content (temp):
¢ = tanh(U @z, + W h,_y + b))
Cy
CL@—@—} New cell content:

- mix old cell with the new temp cell
¢t = ftoci—1+ 14 0C
t

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY NETWORKS

Output gate: output from the new Forget gate: forget the past or not
cell or not fr=0(UWzy + Wh,_y 4 )

0r = J(U(O)xt + W(O)ht_l + b(o))
Input gate: use the input or not

Hidden state: i = o (UDzy + WOhy_q +b)
hy = o; o tanh(c;)

New cell content (temp):
¢ = tanh(U©@z;, + WO hy_y + b))

htT
New cell content:

- mix old cell with the new temp cell
ct = ftocCi—1 +14 0

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY NETWORKS

Forget gate: forget the past or not
Input gate: use the input or not

Output gate: output from the new
cell or not

fi = U(U(f)xt s W(f)ht—l s b(f))
g = U(U(i)wt + W(i)ht_l + b(i))
0oy = (U zy + WO hy_y + b))

New cell content (temp):
New cell content:
- mix old cell with the new temp cell

Hidden state:
hy = 04 o tanh(c;)

C~t = tanh(U(c)xt + W(C) ht—l + b(c))

ct = ftoci—1 + 106

D,

A

a )

) —®

Ganh>
T r’% T
(0] (0] tanh (0]
poees (), ,

Ct—1 =

he—q —Vq
|
(x)




vanishing gradient problem for RNNs.

s @ @ @ O O O O

Hidden
Layer

nputs O O O O O O
1 2 3 4 5 6 7

Time

The shading of the nodes in the unfolded network indicates their sensitivity to
the inputs at time one (the darker the shade, the greater the sensitivity).

The sensitivity decays over time as new inputs overwrite the activations of the
hidden layer, and the network ‘forgets’ the first inputs.

Example from Graves 2012



Preservation of gradient information by LSTM

Lmoveoes

- - - O — O -
Hidden
1 @-- @@ Q- @@ O
- - - - - O

O
Forget gate /
Input gate
Inputs
Time 1 2 3 4 5 6 7

For simplicity, all gates are either entirely open (‘O’) or closed (‘—’).
The memory cell ‘remembers’ the first input as long as the forget gate is open and
the input gate is closed.

The sensitivity of the output layer can be switched on and off by the output gate
without affecting the cell.

Example from Graves 2012



Recurrent Neural Networks (RNNs)

* Generic RNNs: hy = f(xs, he1)
e Vanilla RNNs: hy = tanh(Uxy + Why_1 +b)
 GRUs (Gated Recurrent Units):

2 =o(UPz, + WEh,_y +03))
re = oUWz + W h g +01)
he = tanh(U(h)a:t + W) (reohy_1) + b(h))

_ _ N Less parameters
ht = (1 Zt) (@) ht—l -+ Zt © ht \ than LSTMs.
Easier to train for
comparable
1 1 1 1 performance!
1 2 3 4



Recursive Neural Networks

 Sometimes, inference over a tree structure makes more sense than
sequential structure

 Anexampleof compositionalityin ideological bias detection
(red - conservative, blue = liberal, gray - neutral)in which
modifier phrases and punctuation cause polarity switches at higher
levels of the parsetree

IS

They “ deathtax ” and created a its adverse effects
dubbed it big lie about on small
the businesses

Example from lyyer et al., 2014



Recursive Neural Networks

* NNs connectedas a tree
* Tree structure is fixed a priori
* Parameters are shared, similarly as RNNs

Pe = so-called climate change

x (000000
e /? \
WL WR p.. = climate change
/ \ c -
xd=(ooooooD x 000000
W 4 = so-called ¢ /' X
d \///V/I/_ W
p
xa=COCOOOO) xb=COOOOOO)
w, = climate wy, = change

Example from lyyer et al., 2014



LEARNING: BACKPROPAGATION



Next 10 slides on back propagation are adapted from Andrew Rosenberg

Error Backpropagation

° . ~ 1 2 3
Model parameters: g _— {w§j)>w§k)aw£l)

for brevity: ¢

{w’ija Wik, wkl}

L7

€T D




Error Backpropagation

* Model parameters: 0 = {w;;, wjr, wk }

e let a and z be the input and output of each node

41



Error Backpropagation

zj = g(a;)




e let a and z be the input and output of each node

a; = E Wij 24 ap — a; =
)

zj = glaj) 2k = 2 =




e let a and z be the input and output of each node
b= wgn =S wpy a=Y wwz
i j k
zj = g(ay) 2k = g(ak) 21 = g(a)
aj  Z ap 2k a  z
b l ok l J

>
g ’z“
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«— X

/A
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1

N

1
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Training: minimize loss

N
Z L(yn — f(2n)) Empirical Risk Function
0

N

> 5 e~ )’
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Training: minimize loss

N
Z L(yn — f(2n)) Empirical Risk Function
0

N

> 5 e~ )’

S5 (o (e (o (5))




Error Backpropagation

1

2
Optimize last layer weights wy, L, = 2 (Yn — f(zn))

OR 1 OL, | [Oajn

dwr, N ; arn | | Dwn Calculus chain rule




Error Backpropagation

1 2
Optimize last layer weights wy, Ly = 2 (Yn — f(xn))

- Z 041 Calculus chain rule
8wkl aOJl . Owp

OR B 1 Z 8%(yn_g(al,n))2 8al,n
8wkl B N - 8al,n 8wkl




Error Backpropagation

Ly — Flan))?

Lp==
5 (

Optimize last layer weights wy

- Z 041 Calculus chain rule
8wkl aOJl . Owp

OR B 1 Z a%(yn_g(al,n>)2 aZlc,n'wkl
8wkl B N - 8al,n 8wkl




Error Backpropagation

1 2
Optimize last layer weights wy, Ly = 2 (Yn — f(xn))

- Z 041 Calculus chain rule
8wkl aOJl . Owp

S = N > [2ate )P ][Ottt ] _ L5 [y, — 2 (a1




Error Backpropagation

1

2
Optimize last Iayer weights Wi Ly = 2 (Yn — f(xn))
_ Z day,n Calculus chain rule
3’wkl 3az nl | Owg |
OR 1 82 (Yn — g(al,n)) 02k nWki | 1 ;
Owr N ;[ day dwy | N - = (Wn — 210)g (an)




Error Backpropagation

Repeat for all previous layers

OR 8al n 1
- N 7 — AT - n Ne) n — ) n<k.n
a/wk:l Z [aal n:| lﬁfwkl ] Z “ al )] “k, N zn: l,n?k,
OR o -60,]{;,,,1 o / o i ‘
8wjk o Z [(‘3% n | 8’(1)]]{: . N zn: [zl: 5l,nwklg (ak,n)] Zjmn — N ;(Sk,nzj,n
8R o aaj,n o 1 Y, . ] | B i | |
8wzj N N Z laa] n | 8’(1]” ] o N ; [; 6k’nw«7kg (CL]’n) Zz,n - N Z 5]77121,,71

Z; a’j Z] ag 2k




Backprop Recursion

= g(a,)

.Zk

OR 1 OLn | [Oarn]
Owje N;[f)ak,n_ _861L:jk_ Z[Z(Sl”wklg ak”]ZJ“_Z‘SanM
OR 1 0L, ||[0a;n]

Ow; N En: lﬁaj,n_ _8uiij | N Zn:




Learning: Gradient Descent

OR

t+1 _ t
Wy ; = Wi — U—wij
t+1 _ t aR
Wit = wi, —n—
j j Wit
OR

t+1 _ t
Wi = Wy —N—




Backpropagation

Starts with a forward sweep to compute all theintermediate function values £
Through backprop, computes the partial derivatives recursively 53’ OR

A form of dynamicprogramming Ow;;

— Instead of considering exponentially many paths between a weight w_ij and the final loss (risk),
store and reuse intermediate results.

A type of automaticdifferentiation. (there are othervariants e.g., recursive
differentiation only through forward propagation.

Inputs Outputs

R ———— -

Forward

- Nond N
€= =N ‘w*' 'ﬁ‘w'“ ------- Gradient
”; ‘( V ‘ \

.9""‘ ‘v.v;I} ‘\

5\‘




Backpropagation

Primary Interface Language:

TensorFlow (https://www.tensorflow.org/) * Python

Torch (http://torch.ch/) * Lua

Theano (http://deeplearning.net/software/theano/) « Python

CNTK (https://github.com/Microsoft/CNTK) e C++

cnn (https://github.com/clab/cnn) o C++

Caffe (http://caffe.berkeleyvision.org/) e C++
Inputs Outputs

Forward

R ———— -

<€--== wﬁv ( ------- Gradient
/ "A‘( ‘

'« "v. Vi
/‘3‘3\




Cross Entropy Loss (aka log loss, logistic loss)

Cross Entropy Zp log q(y)
\\ Predicted prob

Related quantities H(p) = Zp(y)log () True prob

— Entropy

— KL divergence (the distance between two distributions p and q)

Di1(pllg) = Zp log y;

H(p,q) = Ep[ log q] = H(p) + Dkr(pl|q)
Use Cross Entropy for models that should have more probabilisticflavor
(e.g., language models)

Use Mean Squared Errorloss for models that focus on correct/incorrect

predictions 1
MSE = (y - f(x))?



RNN Learning: Backprop Through Time (BPTT)

* Similar to backprop with non-recurrent NNs

* But unlike feedforward (non-recurrent) NNs, each unitin the
computation graph repeats the exact same parameters...

* Backprop gradients of the parameters of each unitas if they
are different parameters

* When updating the parameters using the gradients, use the
average gradients throughoutthe entire chain of units.

T T I -
Lrj"ﬁ JTHJM



Convergence of backprop

* Without non-linearity or hidden layers, learning is convex
optimization
— Gradient descent reaches global minima

* Multilayer neural nets (with nonlinearity) are not convex
— Gradient descent gets stuck in local minima

— Selecting number of hidden units and layers = fuzzy process
— NNs have made a HUGE comeback in the last few years

* Neural netsare back with a new name
— Deep belief networks
— Huge error reduction when trained with lots of data on GPUs



Overfitting in NNs

* Are NNs likely to overfit? Inputs Outputs

— Yes, they can represent |
arbitrary functions!!! \
WAL
W
WY/ XX/

* Avoiding overfitting?
— More training data

: 4“‘*'/\
— Fewer hidden nodes / better V%é"!\ "
topology SOV
— Random perturbation to the 4';0)“\ RN

graph topology (“Dropout”)
— Regularization
— Early stopping



