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Human	Neurons

• Switching	time
• ~	0.001	second

• Number	of	neurons
– 1010

• Connections	per	neuron
– 104-5

• Scene	recognition	time
– 0.1	seconds

• Number	of	cycles	per	scene	recognition?
– 100	àmuch	parallel	computation!



g

Perceptron	as	a	Neural	Network

This	is	one	neuron:
– Input	edges	x1 ...	xn,	along	with	basis
– The	sum	is	represented	graphically
– Sum	passed	through	an	activation	function	g



Sigmoid	Neuron

g

Just change g!
• Why would we want to do this?
• Notice new output range [0,1]. What was it before?
• Look familiar?



Optimizing	a	neuron
We	train	to	minimize	sum-squared	error
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Solution just depends on g’: derivative of activation function!
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Sigmoid	units:	have	to	differentiate	g
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Perceptron,	linear	classification,	
Boolean	functions:	xi∈{0,1}	

• Can	learn	x1	∨ x2?
• -0.5	+	x1	+ x2

• Can	learn	x1	∧ x2?
• -1.5	+	x1	+	x2

• Can	learn	any	conjunction	or	disjunction?
• 0.5	+	x1	+	…	+	xn
• (-n+0.5)	+	x1	+	…	+	xn

• Can	learn	majority?
• (-0.5*n)	+	x1	+	…	+	xn

• What	are	we	missing?	The	dreaded	XOR!,	etc.



Going	beyond	linear	classification
Solving	the	XOR	problem

y =	x1 XOR	x2

v1	= (x1∧¬x2)	
=	-1.5+2x1-x2

v2	= (x2∧¬x1)	
=	-1.5+2x2-x1

y	=	v1∨v2
=	-0.5+v1+v2
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Hidden	layer

• Single	unit:

• 1-hidden	layer:		

• No	longer	convex	function!



Example 
data for NN 
with hidden 
layer



Learned 
weights for 
hidden layer



Why	“representation	learning”?

• MaxEnt (multinomial	logistic	regression):

• NNs:

y = softmax(w · f(x, y))

y = softmax(w · �(Ux))

y = softmax(w · �(U (n)
(...�(U

(2)
�(U

(1)
x))))

You design the feature vector

Feature representations 
are “learned” through 
hidden layers



Very	deep	models	in	computer	vision



RECURRENT	NEURAL	NETWORKS



𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%

Recurrent	Neural	Networks	(RNNs)
• Each	RNN	unit	computes	a	new	hidden	state	using	the	previous	state	and	a	

new	input	
• Each	RNN	unit	(optionally)	makes	an	output	using	the	current	hidden	state

• Hidden	states																		are	continuous	vectors
– Can	represent	very	rich	information
– Possibly	the	entire	history	from	the	beginning

• Parameters	are	shared	(tied)	across	all	RNN	units	(unlike	feedforwardNNs)	

ht = f(xt, ht�1)

ht 2 RD

yt = softmax(V ht)



Recurrent	Neural	Networks	(RNNs)
• Generic	RNNs:

• Vanilla	RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



Many	uses	of	RNNs

• Input:	a	sequence
• Output:	one	label	(classification)
• Example:	sentiment	classification

ht = f(xt, ht�1)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%
y = softmax(V hn)

1.	Classification	(seq to	one)



2.	one	to	seq

• Input:	one	item
• Output:	a	sequence
• Example:	Image	captioning

ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥"

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"
Cat                sitting                on                    top                 of ….

Many	uses	of	RNNs



3.	sequence	tagging

• Input:	a	sequence
• Output:	a	sequence	(of	the	same	length)
• Example:	POS	tagging,	Named	Entity	Recognition
• How	about	Language	Models?

– Yes!	RNNs	can	be	used	as	LMs!
– RNNs	make	markov assumption:	T/F? ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many	uses	of	RNNs



4.	Language	models
• Input:	a	sequence	of	words
• Output:	one	next	word	
• Output:	or	a	sequence	of	next	words
• During	training,	x_t is	the	actual	word	in	the	training	sentence.	
• During	testing,	x_t is	the	word	predicted	from	the	previous	time	step.
• Does	RNN	LMs	make	Markov	assumption?

– i.e.,	the	next	word	depends	only	on	the	previous	N	words

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many	uses	of	RNNs

ht = f(xt, ht�1)

yt = softmax(V ht)



5.	seq2seq (aka	“encoder-decoder”)

• Input:	a	sequence
• Output:	a	sequence	(of	different length)
• Examples?

ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥" 𝑥# 𝑥$

ℎ" ℎ# ℎ$

ℎ%

ℎ% ℎ' ℎ(

ℎ)ℎ(ℎ'

Many	uses	of	RNNs



Many	uses	of	RNNs
4.	seq2seq (aka	“encoder-decoder”)

Figure from http://www.wildml.com/category/conversational-agents/

• Conversation and Dialogue
• Machine Translation



Many	uses	of	RNNs
4.	seq2seq (aka	“encoder-decoder”)

John   has   a dog 

𝑥" 𝑥# 𝑥$

ℎ" ℎ# ℎ$

ℎ%

ℎ% ℎ' ℎ(

ℎ)ℎ(ℎ'

Parsing!
- “Grammar as Foreign Language” (Vinyals et al., 2015)



Recurrent	Neural	Networks	(RNNs)
• Generic	RNNs:

• Vanilla	RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



Recurrent	Neural	Networks	(RNNs)
• Generic	RNNs:
• Vanilla	RNNs:
• LSTMs	(Long	Short-term	Memory	Networks):

ht = f(xt, ht�1)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%
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ht = ot � tanh(ct)

There are many 
known variations 
to this set of 
equations!

ht = tanh(Uxt +Wht�1 + b)

𝑐" 𝑐# 𝑐$ 𝑐% 𝑐+ : cell state

ℎ+ : hidden state



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS

𝑐+,"

ℎ+,"

𝑐+

ℎ+

Figure by Christopher Olah (colah.github.io)



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS
sigmoid:
[0,1] 

ft = �(U (f)
xt +W

(f)
ht�1 + b

(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS
sigmoid:
[0,1] 

tanh:
[-1,1] 

it = �(U (i)
xt +W

(i)
ht�1 + b

(i))

c̃t = tanh(U (c)
xt +W

(c)
ht�1 + b

(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)
xt +W

(f)
ht�1 + b

(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS
sigmoid:
[0,1] 

tanh:
[-1,1] 

ct = ft � ct�1 + it � c̃t

New cell content: 
- mix old cell with the new temp cell

it = �(U (i)
xt +W

(i)
ht�1 + b

(i))

c̃t = tanh(U (c)
xt +W

(c)
ht�1 + b

(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)
xt +W

(f)
ht�1 + b

(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS

ct = ft � ct�1 + it � c̃t

New cell content: 
- mix old cell with the new temp cell

it = �(U (i)
xt +W

(i)
ht�1 + b

(i))

c̃t = tanh(U (c)
xt +W

(c)
ht�1 + b

(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)
xt +W

(f)
ht�1 + b
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Forget gate: forget the past or notOutput gate: output from the new 
cell or not
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ht = ot � tanh(ct)
Hidden state:

Figure by Christopher Olah (colah.github.io)



LSTMS	(LONG	SHORT-TERM	MEMORY	NETWORKS
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vanishing	gradient	problem	for	RNNs.

• The	shading	of	the	nodes	in	the	unfolded	network	indicates	their	sensitivity	 to	
the	inputs	at	time	one	(the	darker	the	shade,	the	greater	the	sensitivity).	

• The	sensitivity	 decays	over	time	as	new	inputs	overwrite	the	activations	of	the	
hidden	layer,	and	the	network	‘forgets’	the	first	inputs.	

Example from Graves 2012



Preservation	of	gradient	information	by	LSTM

• For	simplicity,	all	gates	are	either	entirely	open	(‘O’)	or	closed	(‘—’).	
• The	memory	cell	 ‘remembers’	the	first	input	as	long	as	the	forget	gate	is	open	and	

the	input	gate	is	closed.	
• The	sensitivity	 of	the	output	layer	can	be	switched	on	and	off	by	the	output	gate	

without	affecting	the	cell.	

Forget gate

Input gate

Output gate

Example from Graves 2012



Recurrent	Neural	Networks	(RNNs)
• Generic	RNNs:
• Vanilla	RNNs:
• GRUs	(Gated	Recurrent	Units):

ht = f(xt, ht�1)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%

zt = �(U (z)
xt +W

(z)
ht�1 + b

(z))

rt = �(U (r)
xt +W

(r)
ht�1 + b

(r))

h̃t = tanh(U (h)
xt +W

(h)(rt � ht�1) + b

(h))

ht = (1� zt) � ht�1 + zt � h̃t
Less parameters 
than LSTMs. 
Easier to train for 
comparable 
performance!

ht = tanh(Uxt +Wht�1 + b)



Recursive	Neural	Networks
• Sometimes,	inference	over	a	tree	structure	makes	more	sense	than	

sequential	structure
• An	example	of	compositionality	in	ideological	bias	detection	

(red→ conservative,	blue→ liberal,	gray→ neutral)	in	which	
modifier	phrases	and	punctuation	cause	polarity	switches	at	higher	
levels	of	the	parse	tree

Example from Iyyer et al., 2014



Recursive	Neural	Networks
• NNs	connected	as	a	tree
• Tree	structure	is	fixed	a	priori
• Parameters	are	shared,	similarly	as	RNNs

Example from Iyyer et al., 2014



LEARNING:	BACKPROPAGATION



Error	Backpropagation

• Model	parameters:

for	brevity:

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

Next 10 slides on back propagation are adapted from Andrew Rosenberg

~✓ = {w(1)
ij , w(2)

jk , w(3)
kl }
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ij w(2)

jk

w(3)
kl



Error	Backpropagation

• Model	parameters:
• Let	a and	z be	the	input	and	output	of	each	node

41
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zj zkzi
aj zlalak

~✓ = {wij , wjk, wkl}



Error	Backpropagation

wij wjk
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zj = g(aj) zk = g(ak) zl = g(al)

• Let	a and	z be	the	input	and	output	of	each	node
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Training:	minimize	loss
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Training:	minimize	loss
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Error	Backpropagation
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Error	Backpropagation
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Error	Backpropagation
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Error	Backpropagation
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Error	Backpropagation
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Error	Backpropagation
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Learning:	Gradient	Descent



Backpropagation
• Starts	with	a	forward	sweep	to	compute	all	the	intermediate	function	values
• Through	backprop,	computes	the	partial	derivatives	recursively
• A	form	of	dynamic	programming

– Instead	of	considering	exponentially	many	paths	between	 a	weight	w_ij and	the	final	loss	(risk),	
store	and	reuse	intermediate	results.

• A	type	of	automatic	differentiation.	(there	are	other	variants	e.g.,	recursive	
differentiation	only	through	forward	propagation.

zi

�j @R

@wij

Forward 

Gradient



Backpropagation
• TensorFlow (https://www.tensorflow.org/)	
• Torch	(http://torch.ch/)		
• Theano (http://deeplearning.net/software/theano/)	
• CNTK	(https://github.com/Microsoft/CNTK)
• cnn (https://github.com/clab/cnn)
• Caffe (http://caffe.berkeleyvision.org/)	

Primary	Interface	Language:
• Python
• Lua
• Python
• C++
• C++
• C++

Forward 

Gradient



Cross	Entropy	Loss	(aka	log	loss,	logistic	loss)
• Cross	Entropy

• Related	quantities
– Entropy
– KL	divergence	(the	distance	between	two	distributions	p	and	q)

• Use	Cross	Entropy	for	models	that	should	have	more	probabilistic	flavor	
(e.g.,	language	models)

• Use	Mean	Squared	Error loss	for	models	that	focus	on	correct/incorrect	
predictions

H(p, q) = Ep[�log q] = H(p) +DKL(p||q)

H(p, q) = �
X

y

p(y) log q(y)

H(p) =
X

y

p(y)log p(y)

DKL(p||q) =
X

y

p(y) log
p(y)

q(y)

MSE =
1

2
(y � f(x))2

Predicted prob

True prob



RNN	Learning:	Backprop Through	Time	(BPTT)

• Similar	to	backprop with	non-recurrent	NNs
• But	unlike	feedforward (non-recurrent)	NNs,	each	unit	in	the	

computation	graph	repeats	the	exact	same	parameters…
• Backprop gradients	of	the	parameters	of	each	unit	as	if	they	

are	different	parameters
• When	updating	the	parameters	using	the	gradients,	use	the	

average	gradients	throughout	the	entire	chain	of	units.

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



Convergence	of	backprop
• Without	non-linearity	or	hidden	layers,	learning	is	convex	
optimization
– Gradient	descent	reaches	global	minima

• Multilayer	neural	nets	(with	nonlinearity)	are	not	convex
– Gradient	descent	gets	stuck	in	local	minima
– Selecting	number	of	hidden	units	and	layers	=		fuzzy	process
– NNs	have	made	a	HUGE	comeback	in	the	last	few	years

• Neural	nets	are	back	with	a	new	name
– Deep	belief	networks
– Huge	error	reduction	when	trained	with	lots	of	data	on	GPUs



Overfitting in	NNs
• Are	NNs	likely	to	overfit?

– Yes,	they	can	represent	
arbitrary	functions!!!

• Avoiding	overfitting?
– More	training	data
– Fewer	hidden	nodes	/	better	
topology

– Random	perturbation	to	the	
graph	topology	(“Dropout”)

– Regularization
– Early	stopping


