
Reliable Software 
Systems

Week 8: Scalable Design Patterns

February 28, 2018
Alyssa Pittman

University of Washington Allen School



Motivating Example: young Foursquare
In 2010, Foursquare was growing at a rate of half a million users per month.

They had recently split their data into two database shards.

One shard filled more quickly than the other, and when it exceeded RAM on 
the server, performance ground to a halt.

They added another shard and moved data to it, but due to data 
fragmentation, the existing shard still performed poorly.

Compaction took too long, but after downtime (11 hours total) and a full 
restore of data from a backup, all the shards performed well again.

https://groups.google.com/forum/#!topic/mongodb-user/UoqU8ofp134



Architecture
These are system design patterns rather than software design patterns

Tradeoffs between approaches:

Scalability can be more complicated than the less-scalable approaches

There are times and places to use the less-scalable approaches



Three main ideas
Distribution: e.g. one server isn’t enough to deal with all the load

Caching: e.g. reducing load on the data storage system

Asynchronous processing: e.g. work takes too long to do all at once



Use case: receiving updates
Less-scalable pattern: polling, using transactions

More-scalable pattern: queues, messages



Queues
Queue work so that a consumer can process it later.

Pros:

Frees application servers for serving

Distributes work over consuming servers

Asynchronous nature smooths out spikes

Cons:

Work not done immediately

At-least-once messaging - message retries? Out-of-order message arrival?

Database

Client

Servers
Queue

Consumer



Messages
Publish messages to consumers who have subscribed
(like queues, but one event can be processed by 
 multiple subscribers)

Pros:

Loose coupling of all consumers

Database

Client

Servers
Queue

Consumers



Use case: scaling data usage
Less scalable: add more resources to a database server

More scalable: sharding, caching, scalable databases



Sharding
Split data into multiple databases 

Pros: 

Horizontally scales database (distributes work)

Cons:

Rethink the schema if multiple pieces of data
need to be accessed at once

Still have single points of failure

Shards can become unbalanced

Client

Servers

Databases

key <= ‘c’ key >= ‘u’
‘c’ > key > ‘u’



Caching
Precalculate results or store frequently-used results
(database-level or application-level caching)

Pros:

Expensive work done asynchronously

Amount of work reduced

Cons:

Cache invalidation is difficult

Client

Servers

DatabaseDatabase
with cache

In cache?1

2



Scalable databases
Based on the structure of your data (schema or json blob?),
your retrieval patterns (sequential access or key based access?), and 
consistency requirements, pick a NoSQL database solution.

Pros:

Relaxes consistency to give better availability & partition tolerance

Cons:

Joins and queries often need to be done by application

Application needs to deal with potentially inconsistent data



Use case: processing lots of data
Less scalable: run a batch job on a single server

More scalable: Map/Reduce, streaming



Map/Reduce
Store data in a distributed file system,
use Map/Reduce to process it.

Pros:

Good for I/O bound tasks

Distributed use of resources

Cons:

Still a batch/offline job

Image from http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html



Streaming
Process data as it arrives by writing “agents” to 
process each event

Pros:

Immediately processes data

Cons:

Often approximates outputs

Can only do a single pass over data

Client

Input queue

Agents

Output queue



END


