
Reliable Software 
Systems

Week 7: Scalable API Design

February 21, 2018
Alyssa Pittman

University of Washington Allen School



Vote for week 10 topic!
The topic for the last week of class will be “Student’s Choice” -

Vote here! https://bit.ly/2GUSyU8

Voting will be open through Friday in case you need more time, then I’ll send 
out the results.

https://bit.ly/2GUSyU8


Motivating Example: Twitter v1 API
Twitter launched in 2006 and was well-known for a few reasons, including:

The fail whale

An easy-to-use API

Increased API usage was responsible for some outages

In 2013, Twitter retired its v1 API, replacing it with an API required OAuth

Developers still haven’t forgiven Twitter for making them move

https://web.archive.org/web/20130513094200/https://dev.twitter.com/blog/application-only-authentication



Stateless vs stateful services

Database

Clients

Servers

Load balancers

Database

Clients

Servers
(with state & 
data)

Load balancers



Horizontal vs vertical scaling

Database

Clients

Servers

Load balancers

Database

Clients

Servers
(with state & 
data)

Load balancers

Classic horizontal example:
More usage?
Add more servers!

Classic vertical example:
More usage?
Add more resources to the 
database server!



Example API definitions
REST: usually object-oriented

GitHub commit comments API:

Create
POST /repos/:owner/:repo/commits/:sha/comments

Get
GET /repos/:owner/:repo/comments/:comment_id

Update
PATCH /repos/:owner/:repo/comments/:comment_id

Delete
DELETE /repos/:owner/:repo/comments/:comment_id

List
GET /repos/:owner/:repo/comments

https://api.slack.com/methods#channelshttps://developer.github.com/v3/repos/comments/

RPC: often action-oriented



Limit data: pagination
Paginate list responses rather than returning all objects.

Possible implementations:

● Explicit pages (example: get page 2)
● User-specified pages (example: get page 2, pagesize 100)
● Cursor (example: get after xyz, pagesize 10)



Limit data: filters
Allow users to specify which data fields they need.

GET /repos/:owner/:repo/comments

[

  {

    "html_url": "https://github.com/octocat/Hello-World/commit/6...",

    "url": "https://api.github.com/repos/octocat/Hello-World/comments/1",

    "id": 1,

    "node_id": "MDEzOkNvbW1pdENvbW1lbnQx",

    "body": "Great stuff",

    "path": "file1.txt",

    "position": 4,

    "line": 14,

    "commit_id": "6dcb09b5b57875f334f61aebed695e2e4193db5e",

    "user": {

    },

    "created_at": "2011-04-14T16:00:49Z",

    "updated_at": "2011-04-14T16:00:49Z"

  }

]

      "login": "octocat",

      "id": 1,

      "node_id": "MDQ6VXNlcjE=",

      "avatar_url": "https://github.com/images/error/octocat_happy.gif",

      "gravatar_id": "",

      "url": "https://api.github.com/users/octocat",

      "html_url": "https://github.com/octocat",

      "followers_url": "https://api.github.com/users/octocat/followers",

      "following_url": "https://api.github.com/users/octocat/following{/other_user}",

      "gists_url": "https://api.github.com/users/octocat/gists{/gist_id}",

      "starred_url": "https://api.github.com/users/octocat/starred{/owner}{/repo}",

      "subscriptions_url": "https://api.github.com/users/octocat/subscriptions",

      "organizations_url": "https://api.github.com/users/octocat/orgs",

      "repos_url": "https://api.github.com/users/octocat/repos",

      "events_url": "https://api.github.com/users/octocat/events{/privacy}",

      "received_events_url": "https://api.github.com/users/octocat/received_events",

      "type": "User",

      "site_admin": false

{

  organization(login: :owner) {

    name

    url

    repository(name: :repo) {

      name

      pullRequests(last: 10, states: [OPEN]) {

        edges {

          node {

            title

            comments(last: 10) {

              edges {

                node {

                  author {

                    name

                  }

                }...



Limit data: partial blobs
Binary Large OBjects can be large - let users get them in chunks.

Stateful: create sessions for user to stream data

Stateless: enable partial transfers so user can request chunks

Example: use HTTP HEAD and GET Accept-Range headers



Limit load: error codes
Good response codes let users know when to retry automatically (with backoff!) 
and when they need to adjust their request.

Client errors:

Bad Precondition

 4xx HTTP codes

401 Unauthorized 

Examples:

Server errors:

Throttled

5xx HTTP codes:

500 Internal Service Error



Limit load: bulk operations
Allow users to do a lot of work in a single request.

Examples:

Get 20 specific users by id

Update 20 specific users



Limit load: prioritize
Know the different use cases that users have - some requests are latency and 
failure sensitive and others are not.

Examples:

Run a separate batch mode endpoint to isolate background job traffic 
from sensitive user traffic.

Determine how “important” traffic is to give it a specific priority



Limiting load: quota
Introduce quotas to limit the amount of data or requests that users can have 
by default. Have a way to enable quota increases for users who need it (and 
test your system with the new limits!)

Examples:

10,000 requests per day per user

100 projects per account

100 objects per project



Limit load: rate limit
Limit the rate at which users can send requests. Introduce load shedding so 
that your system can reject requests when it’s overloaded.

Example:

Users can do a max of 10 qps

System returns a ‘throttled’ response 



Limit load: caching
Make it easy for users to cache some data.

Example:

HTTP headers for cache TTL and “ETag” to determine if the data
has changed



Limit load: event-driven APIs
Make your API event-driven. Your API notifies users when relevant events 
happen rather than making them poll to check whether events have 
happened.

Trade-off: Instead of clients polling you frequently to see whether data has 
changed, your API needs to do that work internally.

Example:

RESTHooks. Client subscribes by invoking your API with a callback URL, 
your system invokes that callback URL when a change happens.



Change management: lightweight SDKs
Some developers make an SDK to make it easier for users to access the API.

Tradeoff: Changing code is harder - it’s easier to fix bugs and release your API 
code than to get users to use a new SDK version.

Also, follow all your best practices (such as backoffs when retrying failures) in 
your SDK!



END


