
Reliable Software 
Systems

Week 6: Data Integrity

February 14, 2018
Alyssa Pittman

University of Washington Allen School



Motivating Example: Gitlab data loss
Gitlab had a single primary and single secondary database.

Due to increased load, replication lagged and started failing.

While responding, the oncall engineer accidentally deleted the live database.

The nightly backups had been failing.

It took over 18 hours just to copy data from the latest snapshot.

Gitlab lost 6 hours of data (estimated at 5000 projects, 5000 comments, and 
roughly 700 users).

https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/source/posts/2017-02-10-postmortem-of-database-outage-of-january-31.html.md



Example SLO: HelloSign

https://www.hellosign.com/legal/security



Example SLO: AWS Glacier

https://www.hellosign.com/legal/security



Service levels for durability
RPO: Recovery Point Objective

How much data can you lose during a failure?

RTO: Recovery Time Objective

How long does it take you to get data back online after a failure?



Types of failures

From “Site Reliability Engineering”, copyright Google Inc , used under CC BY-NC-ND 4.0 

https://landing.google.com/sre/sre-book/chapters/data-integrity/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Replication
Stream changes to extra databases

Solves: 

Data locality

Failover

But:

Corruption is quickly replicated too.



Redundancy
Think of it as distributed RAID

Solves: 

Failover

Restore if some copies are corrupted

But:

Corruption/deletion can be propagated on write

From https://www.docusign.com/how-it-works/availability



Backups
Periodically backup all data, often in multiple locations/mediums

Solves:

Recent deletions/corruptions

But:

Stale backups lose data

Can be expensive (space, computation)



Backups
Incremental backups: only save data that’s changed since the previous backup

On-demand backups: create a backup when you’re about to do a risky update

Transaction logs: log mutations that occurred since the last backup

Storage mediums: tape, off-site, ...



Backups are useless...
...What people care about is restores.

Monitor backups.

Test your restore process.

Schema changes?

Data migrations?

Point-in-time restore?



Data retention

From “Site Reliability Engineering”, copyright Google Inc , used under CC BY-NC-ND 4.0 

https://landing.google.com/sre/sre-book/chapters/data-integrity/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Data validation
Can you find (and solve) problems before users notice?

Automated validation pipelines

Checksums



Don’t underestimate the human element
Can you prevent people from easily running commands that destroy data?

...or not have those commands at all?

Can you limit access to the people who really need it?

Can you grant access to enough people that catastrophes (or vacations!) don’t 
cause problems?



Defense in depth
TL;DR:

Have multiple approaches

And make sure they work!



Switching gears
...from operational concerns to how we as developers expect our data to work



Strong consistency

From Cloud Datastore documentation, copyright Google Inc , used under CC BY 3.0 

https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore/
https://creativecommons.org/licenses/by/3.0/


Eventual consistency

From Cloud Datastore documentation, copyright Google Inc , used under CC BY 3.0 

https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore/
https://creativecommons.org/licenses/by/3.0/


Microservices and eventual consistency

https://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/



END
Next week - voting on topic for week 10

Think of any topics you want to suggest!


