
Reliable Software
Systems

Week 5: Production

February 7, 2018
Alyssa Pittman

University of Washington Allen School

Windows 10 October 2018 update
“Windows as a Service” ships fixes and feature updates to customers’ PCs.

Early testers noted that this update deleted files from certain directories.

It rolled out anyway, but was halted after more customers reported data loss.

After the fix, they rolled it out more slowly, watched metrics.

Incompatibilities with drivers & some apps caused more delays as some users
were restricted from updating.

Eventually (over two months later) all restrictions lifted.

https://www.hindustantimes.com/tech/microsoft-windows-10-october-2018-update-roll-out-resumes-with-bug-fixes/story-gCgxAShzZRCH0GsnkECdgM.htm
l

https://twitter.com/brenankeller/status/1068615953989087232

Google’s top 8 outage triggers

From “The Site Reliability Workbook”, copyright Google Inc , used under CC BY-NC-ND 4.0

Binary push 37%

Configuration push 31%

User behavior change 9%

Processing pipeline 6%

Service provider change 5%

Performance decay 5%

Capacity management 5%

Hardware 2%

https://landing.google.com/sre/workbook/chapters/postmortem-analysis/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Deployment models

Less frequent releases More frequent releases

M
or

e s
tru

ctu
re

d
 re

lea
se

s
Le

ss
 st

ru
ctu

re
d

 re
lea

se
s

Scheduled
full-product
release

Scheduled
team-based
release

Release-at-will Push-on-green

Continuous
Deployment

Mitigating risk
Blue/Green deployments

Have two separate production environments (“blue” and “green”)

Deploy to blue

Move traffic from green to blue

If problems, move the traffic back to green

Mitigating risk
Canarying

Deploy new code to a small part of your production environment

Send a small amount of traffic to the canary

Monitor to make sure the canary is healthy

If problems, move traffic back to the rest

Otherwise, continue rolling out

Mitigating risk
Gradual release

Deploy to a small part of production

Send part of your users there

If good, gradually increase the rollout and the amount of traffic

Mitigating risk
Feature toggles - configuration that turns features on or off

if flag(“use_my_super_cool_new_feature”) {

 // do my new awesome stuff

} else {

 // do the boring old stuff that works

}

Multiple versions of code running

Database

Clients

Servers

DependencyDependency

Multiple versions of code running
Example: to move a field from one database to another

1. Code double writes - write to both the old database and the new.
2. Release.
3. Migrate all old data from the old database to the new format.
4. Code changes to read from the new location.
5. Release.
6. Code removes old write and read path.
7. Release.

Oh no, I broke it!
If still have the old deployment around...

Redirect users to the stable deployment

If there’s a feature toggle…

Turn it off!

If rollout is finished…

Prefer rolling back rather than fixing the code

Assorted Best Practices
Automate repeated processes

Don’t release on Fridays :)

Consider a “production freeze”

Make sure there’s an audit trail

What was released when?

Show build versions in your monitoring!

Testing in production

Testing in production
There will be failures anyway.

So practice failing* and recovering**!

* requires buy-in from your company

** and careful planning and engineering

Disaster recovery testing
Google annually practices failure by breaking live systems and testing
procedures

Large: take down a data center

Small: team takes down a few servers

Real: turn off some internal tools

Procedural: have datacenter operators pretend to buy massive amounts of
diesel fuel

Chaos engineering
Started by Netflix in 2010 to vet their move to AWS

“Chaos Monkey” would pseudo-randomly reboot machines

Later added more types of failure injection

Latency, error rates...

Also added ways to scope failure and have a feedback loop

END

