
Reliable Software
Systems

Week 2: Expect Failure

January 17, 2018
Alyssa Pittman

University of Washington Allen School

Example outage: Slack
Two incidents: full outage for 14 minutes, then 13% of users for 2 hours

Routine maintenance accidentally corrupted jobs that processed queues

Fixed immediately! But 13% of users had already been disconnected

They all tried to reconnect simultaneously

That overloaded the databases

Slack added more database capacity, and over 2 hours later, it was all peachy

https://slackhq.com/this-was-not-normal-really

Embrace failure
“100% is the wrong reliability target for basically everything (pacemakers
and anti-lock brakes being notable exceptions). In general, for any software
service or system, 100% is not the right reliability target because no user can
tell the difference between a system being 100% available and 99.999%
available. There are many other systems in the path between user and service
(their laptop, their home WiFi, their ISP, the power grid…) and those systems
collectively are far less than 99.999% available. Thus, the marginal difference
between 99.999% and 100% gets lost in the noise of other unavailability, and
the user receives no benefit from the enormous effort required to add that
last 0.001% of availability.”

https://landing.google.com/sre/sre-book/chapters/introduction/

Five 9’s

See, there’s five nines

How much failure is too much?
SLI: Service Level Indicator

Measurement of health in the system

SLO: Service Level Objective

Target levels for SLIs

SLA: Service Level Agreement

SLO promised to a customer + repercussions for failing to meet it

Example SLO: gSuite (paid gMail)

https://gsuite.google.com/terms/partner_sla.html

Example SLO: Twilio messaging

https://www.twilio.com/legal/service-level-agreement

Example SLO: 100% availability

https://cloud.google.com/dns/sla

Sources of failure

Sources of failure

Sources of failure
Client can’t initially connect to server

Client can’t reach server

API mismatch

Timeout

Server overloaded

Sources of failure
Reply message may have:

The response

An error code

Server error

Application error

Timeout

Etc

Limit the blast radius
As a client, you should try to:

Keep failure from affecting…

Other requests

Other servers

Keep failure from taking down….

The servers you contact

The clients contacting you

Graceful degradation
Don’t crash (e.g no System.exit(1), catch exceptions)

Otherwise “query of death” can topple the service

Consider failing open

Consider fallback paths

Can you have default data or leave some part of the user experience out?

Consider skipping work if the system knows it’s overloaded

Pick good defaults
What do you do if cache data never loaded, or fails to reload?

Fail

Use an old set of data

Use some pre-loaded default data

Use an empty dataset

I’ve seen all of these in practice, be careful when choosing.

Protect resources from overloading
Retries

With exponential backoff!
And jitter!
And stop after a maximum number of retries!

Idempotency
Idempotent APIs:

Clients can make the same call repeatedly while producing the same result.

Can you tell whether the failure actually failed or not?
A client-side timeout could have occurred after the server finished

Can you safely retry?
A read will be safe
A delete will be safe (it may fail, but the data will already be gone)
A write could overwrite data that sneaked in between

Protect resources from overloading
Set deadlines

Propagate deadlines that you’ve been given

Bulkhead
Limit the number of concurrent requests

Plan to avoid cascading failures

END

