
Reliable Software
Systems

Week 1: Reliability? Systems?

January 10, 2018
Alyssa Pittman

University of Washington Allen School

Example outage: Maersk
NotPetya virus brought down all their
computers

They couldn’t move any shipments for 2 days

It took about two weeks for operations to normalize

They estimated $300 million losses

Not to mention the impact on their customers

https://pivotts.com/maersk-attack-illustrates-enormous-cost-downtime/

reliable
 adjective
re·li·able | \ri-ˈlī-ə-bəl \

Definition of reliable

(Entry 1 of 2)

1: suitable or fit to be relied on : DEPENDABLE

2: giving the same result on successive trials

https://www.merriam-webster.com/dictionary/reliable

https://www.merriam-webster.com/dictionary/adjective
https://www.merriam-webster.com/dictionary/relied
https://www.merriam-webster.com/dictionary/dependable

Reliability from the user’s perspective
Available

Fast

Consistent

Correct

Durable

Secure

Reliability from the developer’s perspective
Resilient when faced with...

Failures

Change

Scalable when faced with…

More usage

More data

Why do companies care?
Money

Their customers’ money

Customer trust

Employee morale

Why should you care?
Everything is interconnected

You may be oncall

Ownership!

Why would people *not* care?
Features!

Moving fast!

Brief history of ops
1944 - Colossus, the first programmable computer, in use for WWII.

1952 - IBM’s 701, the first commercial computer, is announced.

1969 - UNIX is born, the first multi-user OS.

1980’s - The role of sysadmin develops.

1993 - Windows is born.

2000’s - The rise of the internet and web systems - “throw it over the wall”

2010’s - DevOps, SRE, oncall software engineers.
Adapted from “A Brief History of System Administration”,

from UNIX and Linux System Administration Handbook, 5th Edition

https://proquest-safaribooksonline-com.ezproxy.spl.org/book/networking/linux/9780134278308

Service Oriented Architecture
A way of designing software that is oriented towards breaking the problem
space into independent pieces which interact using a communication protocol
over the network.

A service:

● Is a representation of a repeatable business activity that has a specified
outcome

● Is self-contained

● May be composed of other services

● Is a “black box” to consumers of the service

Remote Procedure Calls (RPC)

Image from https://www.geeksforgeeks.org/operating-system-remote-procedure-call-rpc/

Remote Procedure Calls (RPC)
Client requests to execute a function on the server

Client invokes a “stub”

Client needs to know how to connect to the server

Data gets marshalled to the underlying transport protocol

Packets get sent to the server

Server unmarshalls data and processes request

...and reverse to get the response back to the client

Systems today

Database

Clients

Servers

Systems today

Clients

Load balancer

Servers

Systems today

Authentication User preferences Directions Traffic estimates Map tiles

Maps server

Systems today

Google Compute Engine Datacenter locations

END

