Probabilistic Models

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

1

Probabilistic models in localization

Motion model

Measurement model

$$P(x_t | \mathbf{u}_t, x_{t-1})$$

Example of a motion model

Probability density function Samples from the pdf

Measurement Model

 $P(z_t | x_t, m)$

state map

How does a LiDAR work?

https://www.youtube.com/watch?v=NZKvf1cXe8s&t=67s

How does a LiDAR work?

https://www.youtube.com/watch?v=NZKvf1cXe8s&t=67s

Working with lasers in the real world

Working with lasers in the real world

Three questions you should ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

Several sources of stochasticity

Several sources of stochasticity

Category

Example

Several sources of stochasticity

Category

Example

Incomplete / Incorrect map

Pedestrians, objects moving around

Several sources of stochasticity

Category

Example

Incomplete / Incorrect map

Pedestrians, objects moving around

Unmodelled physics

Lasers goes through glass

Several sources of stochasticity

Category

Example

Incomplete / Incorrect map

Pedestrians, objects moving around

Unmodelled physics

Lasers goes through glass

Sensing assumptions

Multiple laser returns

Three questions you should ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

Good news: LiDAR is very precise! A handful of measurements is enough to localize robot

Good news: LiDAR is very precise! A handful of measurements is enough to localize robot

However, has distinct modes of failures

Good news: LiDAR is very precise! A handful of measurements is enough to localize robot

However, has distinct modes of failures

Problem: Overconfidence in measurement can be catastrophic

Good news: LiDAR is very precise! A handful of measurements is enough to localize robot

However, has distinct modes of failures

Problem: Overconfidence in measurement can be catastrophic

Solution: Anticipate specific types of failures and add stochasticity accordingly.

Three questions you should ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

 $P(z_t | x_t, m)$

laser state map scan

Assume individual beams are conditionally independent given map

Assume individual beams are conditionally independent given map

$$P(z_t | x_t, m) = \prod_{\substack{i=1 \\ \text{scan}}} P(z_t^k | x_t, m)$$

Assume individual beams are conditionally independent given map

$$P(z_t|x_t, m) = \prod_{\substack{k = 1 \\ \text{iscan}}} P(z_t^k|x_t, m)$$

When is this assumption invalid?

All beams are correlated!

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

 $P(z_t^k | x_t, m)$

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

2. Ray-cast (shoot out rays) from p on the map m

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

2. Ray-cast (shoot out rays) from p on the map m

3. Get back a simulated laser-scan z^*

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

2. Ray-cast (shoot out rays) from p on the map m

3. Get back a simulated laser-scan z^*

4. Go over every ray in z^* and compare with z. Compute a likelihood based on how much they match / mismatch.

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

- 2. Ray-cast (shoot out rays) from p on the map m
- 3. Get back a simulated laser-scan z^*
- 4. Go over every ray in z^* and compare with z. Compute a likelihood based on how much they match / mismatch.
- 5. Multiply all probabilities to get p

What kind of stochasticity should we consider?

1. Simple measurement noise in distance value

2. Presence of unexpected objects

3. Laser returns max range when no objects

4. Failures in sensing

Factor 1: Simple measurement noise

Factor 2: Unexpected objects

Factor 3: Maximum range

Factor 4: Failures in sensing

 $p(z_t^k \mid x_t, m)$

Combined probabilistic model

Question: How do we tune parameters?

In theory: Collect lots of data and optimize parameters to maximize data likelihood

Number of datapoint

Question: How do we tune parameters?

In practice: Simulate a scan and plot the likelihood from different positions

Actual scan

Likelihood at various locations

Problem: Overconfidence

Independence assumption may result in repetition of mistakes

Problem: Overconfidence

$$P(z_t | x_t, m) = \prod_{i=1}^{K} P(z_t^k | x_t, m)$$

Independence assumption may result in repetition of mistakes

Solution

1. Subsample laser scans: Convert 180 beams to 18 beams

2. "Smooth" out the probability model

$$P(z_t^k | x_t, m) \longrightarrow P(z_t^k | x_t, m)^{\frac{1}{N}}$$