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Probabilistic models in localization
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Figure 5.3 The velocity motion model, for different noise parameter settings.

The function prob(x, b) models the motion error. It computes the probability of its
parameter x under a zero-centered random variable with variance b. Two possible
implementations are shown in Table 5.2, for error variables with normal distribution
and triangular distribution, respectively.

Figure 5.3 shows examples of this velocity motion model, projected into x-y-space. In
all three cases, the robot sets the same translational and angular velocity. Figure 5.3a
shows the resulting distribution with moderate error parameters α1 to α6. The dis-
tribution shown in Figure 5.3b is obtained with smaller angular error (parameters α3

and α4) but larger translational error (parameters α1 and α2). Figure 5.3c shows the
distribution under large angular and small translational error.

5.3.2 Sampling Algorithm

For particle filters (cf. Section 4.2.1), it suffices to sample from the motion model
p(xt | ut, xt−1), instead of computing the posterior for arbitrary xt, ut and xt−1.
Sampling from a conditional density is different than calculating the density: In sam-
pling, one is given ut and xt−1 and seeks to generate a random xt drawn according to
the motion model p(xt | ut, xt−1). When calculating the density, one is also given xt

generated through other means, and one seeks to compute the probability of xt under
p(xt | ut, xt−1).

The algorithm sample motion model velocity in Table 5.3 generates random sam-
ples from p(xt | ut, xt−1) for a fixed control ut and pose xt−1. It accepts xt−1 and ut

as input and generates a random pose xt according to the distribution p(xt | ut, xt−1).
Line 2 through 4 “perturb” the commanded control parameters by noise, drawn from
the error parameters of the kinematic motion model. The noise values are then used
to generate the sample’s new pose, in Lines 5 through 7. Thus, the sampling pro-
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(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in
Figure 5.3. Each diagram shows 500 samples.

cedure implements a simple physical robot motion model that incorporates control
noise in its prediction, in just about the most straightforward way. Figure 5.4 illus-
trates the outcome of this sampling routine. It depicts 500 samples generated by sam-
ple motion model velocity. The reader might want to compare this figure with the
density depicted in in Figure 5.3.

We note that in many cases, it is easier to sample xt than calculate the density of a
given xt. This is because samples require only a forward simulation of the physical
motion model. To compute the probability of a hypothetical pose amounts to retro-
guessing of the error parameters, which requires to calculate the inverse of the physical
motion model. The fact that particle filters rely on sampling makes them specifically
attractive from an implementation point of view.

5.3.3 Mathematical Derivation

We will now derive the algorithms mo-
tion model velocity and sample motion model velocity. As usual, the reader not
interested in the mathematical details is invited to skip this section at first reading, and
continue in Section 5.4 (page 107). The derivation begins with a generative model of
robot motion, and then derives formulae for sampling and computing p(xt | ut, xt−1)
for arbitrary xt, ut, and xt−1.

Exact Motion

Before turning to the probabilistic case, let us begin by stating the kinematics for an
ideal, noise-free robot. Let ut = (v ω)T denote the control at time t. If both velocities
are kept at a fixed value for the entire time interval (t−1, t], the robot moves on a circle
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Working with lasers in the real world

(courtesy Lyle Chamberlain)
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Three questions you should ask
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1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?
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Why is the measurement model probabilistic?
Several sources of stochasticity

Category Example

Incomplete / Incorrect map Pedestrians, objects moving 
around

Unmodelled physics Lasers goes through glass

Sensing assumptions Multiple laser returns 
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What defines a good model?
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Problem: Overconfidence in measurement can be catastrophic

Solution: Anticipate specific types of failures and  
add stochasticity accordingly.

Good news: LiDAR is very precise!  
A handful of measurements is enough to localize robot 

However, has distinct modes of failures
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1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?
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Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

2. Ray-cast (shoot out rays) from p on the map m

3. Get back a simulated laser-scan z*

4. Go over every ray in z* and compare with z. Compute 
a likelihood based on how much they match / mismatch. 



Pseudo-algorithm for sensor model

 15

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

1. Use x to figure out the pose p of the sensor

2. Ray-cast (shoot out rays) from p on the map m

3. Get back a simulated laser-scan z*

4. Go over every ray in z* and compare with z. Compute 
a likelihood based on how much they match / mismatch. 

5. Multiply all probabilities to get p



What kind of stochasticity should we consider?

 16

1. Simple measurement noise in distance value

2. Presence of unexpected objects

3. Laser returns max range when no objects

4. Failures in sensing



Factor 1: Simple measurement noise

 17

Measurements 125

(a) Gaussian distribution phit

p(zk
t | xt,m)

zk∗
t zmax

(b) Exponential distribution pshort

p(zk
t | xt,m)

zk∗
t zmax

(c) Uniform distribution pmax

p(zk
t | xt,m)

zk∗
t zmax

(d) Uniform distribution prand

p(zk
t | xt,m)

zk∗
t zmax

Figure 6.2 Components of the range fi nder sensor model. In each diagram the horizontal
axis corresponds to the measurement zk

t , the vertical to the likelihood.

model p(zt | xt,m) is therefore a mixture of four densities, each of which corresponds
to a particular type of error:

1. Correct range with local measurement noise. In an ideal world, a range finder
would always measure the correct range to the nearest object in its measurement
field. Let us use zk∗

t to denote the “true” range of the object measured by zk
t .

In location-based maps, the range zk∗
t can be determined using ray casting; in

feature-based maps, it is usually obtained by searching for the closest feature
within a measurement cone. However, even if the sensor correctly measures the
range to the nearest object, the value it returns is subject to error. This error arises
from the limited resolution of range sensors, atmospheric effect on the measure-
ment signal, and so on. This noise is usually modeled by a narrow Gaussian
with mean zk∗

t and standard deviation σhit. We will denote the Gaussian by phit.
Figure 6.2a illustrates this density phit, for a specific value of zk∗

t .

126 Chapter 6

In practice, the values measured by the range sensor are limited to the interval
[0; zmax], where zmax denotes the maximum sensor range. Thus, the measure-
ment probability is given by

phit(zk
t | xt,m) =

{
η N (zk

t ; zk∗
t ,σ2

hit) if 0 ≤ zk
t ≤ zmax

0 otherwise (6.4)

where zk∗
t is calculated from xt and m via ray tracing, and N (zk

t ; zk∗
t ,σ2

hit)
denotes the univariate normal distribution with mean zk∗

t and variance σ2
hit:

N (zk
t ; zk∗

t ,σ2
hit) =

1√
2πσ2

hit

e
− 1

2
(zk

t
−zk∗

t
)2

σ2
hit (6.5)

The normalizer η evaluates to

η =
(∫ zmax

0
N (zk

t ; zk∗
t ,σ2

hit) dzk
t

)−1

(6.6)

The variance σhit is an intrinsic noise parameter of the measurement model. Be-
low we will discuss strategies for setting this parameter.

2. Unexpected objects. Environments of mobile robots are dynamic, whereas maps
m are static. As a result, objects not contained in the map can cause range finders
to produce surprisingly short ranges—at least when compared to the map. A
typical example of moving objects are people that share the operational space
of the robot. One way to deal with such objects is to treat them as part of the
state vector and estimate their location; another, much simpler approach, is to
treat them as sensor noise. Treated as sensor noise, unmodeled objects have the
property that they cause ranges to be shorter than zk∗

t , not longer.
More generally, the likelihood of sensing unexpected objects decreases with
range. To see, imagine there are two people that independently and with the
same, fixed likelihood show up in the perceptual field of a proximity sensor. One
person’s range is z1, and the second person’s range is z2. Let us further assume
that z1 < z2, without loss of generality. Then we are more likely to measure z1

than z2. Whenever the first person is present, our sensor measures z1. However,
for it to measure z2, the second person must be present and the first must be
absent.
Mathematically, the probability of range measurements in such situations is
described by an exponential distribution. The parameter of this distribution,
λshort, is an intrinsic parameter of the measurement model. According to the



Factor 2: Unexpected objects

 18

Measurements 125

(a) Gaussian distribution phit

p(zk
t | xt,m)

zk∗
t zmax

(b) Exponential distribution pshort

p(zk
t | xt,m)

zk∗
t zmax

(c) Uniform distribution pmax

p(zk
t | xt,m)

zk∗
t zmax

(d) Uniform distribution prand

p(zk
t | xt,m)

zk∗
t zmax

Figure 6.2 Components of the range fi nder sensor model. In each diagram the horizontal
axis corresponds to the measurement zk

t , the vertical to the likelihood.

model p(zt | xt,m) is therefore a mixture of four densities, each of which corresponds
to a particular type of error:

1. Correct range with local measurement noise. In an ideal world, a range finder
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t to denote the “true” range of the object measured by zk
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range to the nearest object, the value it returns is subject to error. This error arises
from the limited resolution of range sensors, atmospheric effect on the measure-
ment signal, and so on. This noise is usually modeled by a narrow Gaussian
with mean zk∗

t and standard deviation σhit. We will denote the Gaussian by phit.
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definition of an exponential distribution we obtain the following equation for
pshort(zk

t | xt,m):

pshort(zk
t | xt,m) =

{
η λshort e−λshortz

k
t if 0 ≤ zk

t ≤ zk∗
t

0 otherwise
(6.7)

As in the previous case, we need a normalizer η since our exponential is limited to
the interval

[
0; zk∗

t

]
. Because the cumulative probability in this interval is given

as

∫ zk∗
t

0
λshort e−λshortz

k
t dzk

t = −e−λshortz
k∗
t + e−λshort0 (6.8)

= 1− e−λshortz
k∗
t (6.9)

the value of η can be derived as:

η =
1

1− e−λshortzk∗
t

(6.10)

Figure 6.2b depicts this density graphically. This density falls off exponentially
with the range zk

t .

3. Failures. Sometimes, obstacles are missed altogether. For example, this happens
frequently with sonar sensors when measuring a surface at a steep angle. Failures
also occur with laser range finders when sensing black, light-absorbing objects,
or when measuring objects in bright light. A typical result of sensor failures are
max-range measurements: the sensor returns its maximum allowable value zmax.
Since such events are quite frequent, it is necessary to explicitly model max-range
measurements in the measurement model.
We will model this case with a point-mass distribution centered at zmax:

pmax(zk
t | xt,m) = I(z = zmax) =

{
1 if z = zmax

0 otherwise (6.11)

Here I denotes the indicator function that takes on the value 1 if its argument is
true, and is 0 otherwise. Technically, pmax does not possess a probability density
function. This is because pmax is a discrete distribution. However, this shall
not worry us here, as our mathematical model of evaluating the probability of a
sensor measurement is not affected by the non-existence of a density function.
(In our diagrams, we simply draw pmax as a very narrow uniform distribution
centered at zmax, so that we can pretend a density exists).



Factor 3: Maximum range
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Figure 6.3 “Pseudo-density”of a typical mixture distribution p(z k
t | xt, m).

4. Random measurements. Finally, range finders occasionally produce entirely
unexplained measurements. For example, sonars often generate phantom read-
ings when they bounce off walls, or when they are subject to cross-talk between
different sensors. To keep things simple, such measurements will be modeled
using a uniform distribution spread over the entire sensor measurement range
[0; zmax]:

prand(zk
t | xt,m) =

{ 1
zmax

if 0 ≤ zk
t < zmax

0 otherwise (6.12)

Figure 6.2d shows the density of the distribution prand.

These four different distributions are now mixed by a weighted average, defined by
the parameters zhit, zshort, zmax, and zrand with zhit + zshort + zmax + zrand = 1.

p(zk
t | xt,m) =

⎛

⎜⎜⎝

zhit

zshort

zmax

zrand

⎞

⎟⎟⎠

T

·

⎛

⎜⎜⎝

phit(zk
t | xt,m)

pshort(zk
t | xt,m)

pmax(zk
t | xt,m)

prand(zk
t | xt,m)

⎞

⎟⎟⎠ (6.13)

A typical density resulting from this linear combination of the individual densities is
shown in Figure 6.3 (with our visualization of the point-mass distribution pmax as a
small uniform density). As the reader may notice, the basic characteristics of all four
basic models are still present in this combined density.
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small uniform density). As the reader may notice, the basic characteristics of all four
basic models are still present in this combined density.
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In theory: Collect lots of data and optimize parameters to  
maximize data likelihood
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Figure 6.4 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor in
an offi ce environment for a “true” range of 300 cm and a maximum range of 500 cm.

depicts the data for sonar sensors, and the right plot the corresponding data for laser
sensors. In both plots, the x-axis shows the number of the reading (from 1 to 10,000),
and the y-axis is the range measured by the sensor. Whereas most of the measurements
are close to the correct range for both sensors, the behaviors of the sensors differ
substantially. The ultrasound sensor appears to suffer from many more measurement
noise and detection errors. Quite frequently it fails to detect an obstacle, and instead
reports maximum range. In contrast, the laser range finder is more accurate. However,
it also occasionally reports false ranges.

A perfectly acceptable way to set the intrinsic parametersΘ is by hand: simply eyeball
the resulting density until it agrees with your experience. Another, more principled
way, is to learn these parameters from actual data. This is achieved by maximizing
the likelihood of a reference data set Z = {zi} with associated positions X = {xi}
and map m, where each zi is an actual measurement, xi is the pose at which the
measurement was taken, andm is the map. The likelihood of the data Z is given by

p(Z | X,m,Θ), (6.14)

and our goal is to identify intrinsic parameters Θ that maximize this likelihood. Algo-
rithms that maximize the likelihood of data are known as maximum likelihood estima-
tors, or ML estimators in short.

Table 6.2 depicts the algorithm learn intrinsic parameters, which is an algorithm
for calculating the maximum likelihood estimate for the intrinsic parameters. As we
shall see below, the algorithm is an instance of the expectation maximization algo-
rithm, an iterative procedure for estimating ML parameters. Initially, the algorithm
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In practice: Simulate a scan and plot the likelihood from different 
positionsMeasurements 133

(a) Laser scan and part of the map

(b) Likelihood for different positions

Figure 6.6 Probabilistic model of perception: (a) Laser range scan, projected into a pre-
viously acquired map m. (b) The likelihood p(zt | xt, m), evaluated for all positions xt

and projected into the map (shown in gray). The darker a position, the larger p(zt | xt, m).

Figure 6.6 illustrates the learned sensor model in action. Shown in Figure 6.6a is a 180
degree range scan. The robot is placed in a previously acquired occupancy grid map
at its true pose. Figure 6.6b plots a map of the environment along with the likelihood
p(zt | xt,m) of this range scan projected into x-y-space (by maximizing over the
orientation θ). The darker a location, the more likely it is. As is easily seen, all
regions with high likelihood are located in the corridor. This comes at little surprise,
as the specific scan is geometrically more consistent with corridor locations than with
locations inside any of the rooms. The fact that the probability mass is spread out
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as the specific scan is geometrically more consistent with corridor locations than with
locations inside any of the rooms. The fact that the probability mass is spread out
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P (zt|xt,m) =
KY

i=1

P (zkt |xt,m)

Independence assumption may result in repetition of mistakes

Solution

1. Subsample laser scans: Convert 180 beams to 18 beams

2. “Smooth” out the probability model

P (zkt |xt,m)
1
N

P (zkt |xt,m)
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