
Introduction to Imitation Learning
Matt Barnes

*Some content borrowed from Florian Shkurti, Yisong Yue and Hoang M. Le

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Recap
• Markov Decision Processes are a very general class of models, which

encompass planning and reinforcement learning.

xt

xt

ct

ct ut

Cost

Recap

“Markov” means that _____ captures all information about the history
x1, x2, …, xt

The most recent state xt

Recap
• The difference between planning and reinforcement learning is whether the

__________ are known

transition model / dynamics / environment

Recap
• The three general methods for reinforcement learning are…

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

• (2) and (3) are both _______ methods

Model-free

Recap

The multi-armed bandit problem is reinforcement learning with __ state(s)

1

Recap

What is the fundamental trade-off in bandit (and reinforcement learning)
problems?

Exploration vs. exploitation

Recap

Reward is equivalent to ________

Negative cost

Recap

The ε-greedy algorithm randomly explores with probability

ε

Recap

The UCB algorithm chooses actions according to the estimated reward, plus a
bonus (i.e. confidence interval) which decreases with respect to _____

The number of times we try that action.

Today’s lecture

!11

Today’s lecture

• Robots do not operate in a vacuum. They do not need to learn everything
from scratch.

• Humans need to easily interact with robots and share our expertise with
them.

• Robots need to learn from the behavior and experience of others, not just
their own.

!12 *Based off Florian Shkurti’s lectures

Today’s lecture

• Part 1: How can robots easily understand our objectives from
demonstrations?

Inverse reinforcement learning (IRL)

• Part 2: How can robots incorporate other’s decision into their own?

Behavior cloning (BC), interactive imitation learning (IL)

!13 *Based off Florian Shkurti’s lectures

!14

Today’s lecture

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy
Learning

Reward
Learning

Access to
Environment

Interactive
Demonstrator

Pre-collected
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes

Part 1: Inverse Reinforcement Learning (IRL)

• Setting: No reward function. For complex tasks, these can be hard to
specify!

• Fortunately, we are given a set of demonstrations

• Goal: Learn a reward function r* such that

!15

π* = argmaxπ𝔼π [r*(x, u)]

D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

m trajectories The state-action distribution of policy π*

The high-level recipe

• Step 1: Learn a policy for the current reward function r

• Step 2: Update the reward function

Repeat until policy trajectories are similar to demonstrations

!16

Run RL

Update
reward

Compare

*Partially based off slides from Yisong Yue and Hoang M. Le

Learning a reward function is an under defined problem

!17

• Many reward functions correspond to the same policy

*Partially based off slides from Yisong Yue and Hoang M. Le

Learning a reward function is an under defined problem

• Let r* be one solution, i.e.

• Note that ar* for any constant a is also a solution, since

• In fact, r* = 0 is always a solution, since every policy is optimal

!18

π* = argmaxπ𝔼π [r*(x, u)]

argmaxπ𝔼π [ar*(x, u)] = argmaxπ𝔼π [r*(x, u)]

Many different IRL approaches

• The reward function is linear [Abbeel & Ng 2004]

• Maximize the trajectory entropy, subject to a feature matching constraint
[Ziebart et al., 2008]

• Maximum Margin Planning [Ratliff et al., 2006]

!19

The linear reward function assumption
reduces to feature expectation matching

• Assume where are the features of state x

• Then the value of a policy is linear in the expected features

!20

r(x) = θ ⋅ ϕ(x) ϕ(x)

J(π) = 𝔼 [
H

∑
t=0

θ ⋅ ϕ(xt)]
= θ ⋅ 𝔼 [

H

∑
t=0

ϕ(xt)]
= θ ⋅ μ(π)

The expected features of the policy

New objective, matching the feature expectations

!21

• Step 1: Learn a policy for the current reward function and compute its
feature expectation

• Step 2: Update the reward function

Repeat until feature expectations are close

Run RL

Update
reward

Compare

*Partially based off slides from Yisong Yue and Hoang M. Le!21

π
μ

max
||θ||≤1

θT(μπ − μπ*)

| |μπ − μπ* | |

!22

[Kitani et al., 2012]

Using IRL to predict pedestrian intention

!23

Part 2: Directly learning a policy

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy
Learning

Reward
Learning

Access to
Environment

Interactive
Demonstrator

Pre-collected
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes

Behavior cloning
• Observe pre-collected expert

demonstrations:

• Learn a policy

!24

D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

̂π = argminπ

n

∑
i=0

ℓ(ui, π(xi))

Some loss function

The state-action distribution of policy π*

Behavior cloning suffers from compounding errors

• The good news: will perform well on
samples from

• The really bad news: When we roll out
policy it will inevitably make some
mistakes compared to , and these errors
could compound resulting in drastically
different state action distributions and

!25

̂π
ρπ*

̂π
π*

ρπ*
ρ ̂π

Behavior cloning suffers from compounding errors

• The good news: will perform well on
samples from

• The really bad news: When we roll out
policy it will inevitably make some
mistakes compared to , and these errors
could compound resulting in drastically
different state action distributions and

!26

̂π
ρπ*

̂π
π*

ρπ*
ρ ̂π

Behavior cloning suffers from compounding errors

!27

J(̂π) ≤ J(π*) + T2ϵ

Theorem (simplified) [Ross et al., 2011]. Let ε be the supervised learning error rate of . Then the
cumulative reward of this policy is bounded by:

̂π

Errors compound with respect to the time horizon T

A history of covariate shift in imitation learning

Navlab 1 (1986-1989) and Navlab 2 + ALVINN

!28

30 x 32 pixels, 3 layer network, outputs steering
command from approximately 5 minutes of training

data per road type [Pomerleau 1992]

A history of covariate shift in imitation learning

!29

[Pomerleau 1992]

Imitation Learning is not supervised learning

• Policy’s actions affect future observations/data

• This is not the case in supervised learning

!30

Imitation Learning

• Train/test data are not i.i.d.

• If expected hold-out error is ε, then
expected test error after T decisions is up to

T2ε

• Errors compound

*From Florian Shkurti

Supervised Learning

• Train/test data are i.i.d.

• If expected hold-out error is ε, then
expected test error after T decisions is order

Tε

• Errors are independent

!31

Interactive imitation learning

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy
Learning

Reward
Learning

Access to
Environment

Interactive
Demonstrator

Pre-collected
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes

Interactive feedback

!32

Expert feedback π*(xt)

• Roll-out any policy, and expert provides
feedback for the current state

• In today’s lecture, we’ll consider the simple
setting where this feedback takes the form of
the expert’s action π*(xt)

The high-level recipe

• Step 1: Roll-out the current policy, collect expert feedback on the states it
visits

• Step 2: Update the dataset and retrain the policy

Repeat

!33

The Forward Training algorithm

!34

Initialize T policies,

• Step 1: Roll-out policy

 and collect expert feedback

• Step 2: Update policies

Intuitively, each policy will have to learn to correct for the mistakes of earlier policies

π1, …, πT

u1 ∼ π1(s1), u2 ∼ π2(s2), …

u*1 = π*(x1), u*2 = π*(x2), …

The Forward Training algorithm

!35

• Theorem (simplified) [Ross et al., 2011]. Let ε be the supervised learning error rate of . Then
the cumulative reward of this policy is bounded by:

J(̂π) ≤ J(π*) + uTϵ

̂π

Errors increase linearly with respect to the time horizon T,
Same as supervised learning!

A constant

The downside: We have to learn T separate policies

DAgger: Dataset Aggregation

!36

Aggregate the data

• Learn only a single policy

DAgger: Dataset Aggregation

!37

Ross et al, 2011

DAgger: Dataset Aggregation

!38

Ross et al, 2011

GAIL: Generative Adversarial Imitation Learning

!39

Output Inputs

Policy
Learning

Reward
Learning

Access to
Environment

Interactive
Demonstrator

Pre-collected
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes

GAIL: Generative Adversarial Imitation Learning

• Setting: Pre-collected expert demonstrations

• Goal: Minimize the divergence between and

!40

D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

ρπ* ρ ̂π

̂π = argminπD(ρπ | |ρπ*)

What’s a divergence?
• Tells us how far apart two distributions are

• Given samples from and , we can estimate the divergence (e.g. using
[Nguyen et al., 2008])

!41

ρπ* ρ ̂π

P
(x

)
x

GAIL: Generative Adversarial Imitation Learning

• The GAIL objective

• Step 1: For the current π, maximize the discriminator to estimate the
divergence

• Step 2: Update the policy using reinforcement learning.

!42

min
π

max
f

𝔼x,u∼ρπ*
log(f(x, u)) + 𝔼x,u∼ρπ

log(1 − f(x, u))

RL problem
The “discriminator”

The divergence estimator

Takeaways

• Expert demonstrations, and in particular expert feedback, can dramatically
speed up policy training.

• Behavior Cloning suffers from compounding errors. This is not true for
Forward Training or DAgger, which use interactive expert feedback.

• Inverse reinforcement learning allows us to learn an expert’s reward
function.

!43

