Introduction to Imitation Learning

Matt Barnes

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

*Some content borrowed from Florian Shkurti, Yisong Yue and Hoang M. Le

Recap

e Markov Decision Processes are a very general class of models, which
encompass planning and reinforcement learning.

C
xf

Staite Cost action

U

Recap

“Markov” means that captures all information about the history

T1, T2y ..., Ty

The most recent state x;

Recap

® The difference between planning and reinforcement learning is whether the
are known

transition model / dynamics / environment

Recap

® The three general methods for reinforcement learning are...

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

® (2) and (3) are both methods

Model-free

Recap

The multi-armed bandit problem is reinforcement learning with state(s)

Recap

What is the fundamental trade-off in bandit (and reinforcement learning)
problems?’

Exploration vs. exploitation

Recap

Reward 1s equivalent to

Negative cost

Recap

The e-greedy algorithm randomly explores with probability

Recap

The UCB algorithm chooses actions according to the estimated reward, plus a
bonus (i.e. confidence interval) which decreases with respect to

The number of times we try that action.

Today s lecture

Today s lecture

® Robots do not operate in a vacuum. They do not need to learn everything
from scratch.

e Humans need to easily interact with robots and share our expertise with
them.

® Robots need to learn from the behavior and experience of others, not just
their own.

19 *Based off Florian Shkurti’s lectures

Today s lecture

e Part 1: How can robots easily understand our objectives from
demonstrations?

Inverse reinforcement learning (IRL)
e Part 2: How can robots incorporate other’s decision into their own?

Behavior cloning (BC), interactive imitation learning (IL)

13 *Based off Florian Shkurti’s lectures

Part 1

Part 2

Inverse RL

Behavior Cloning

Interactive 1L

GAIL

Today s lecture

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Inputs
Reward Access to Interactive Pre-collected
Learning Environment Demonstrator Demonstration
Yes Yes No Yes
Yes
No No No
No Yes Yes (Optional)
Yes
No Yes No

Yes (indirect)

14 *Partially based off slides from Yisong Yue and Hoang M. Le

Part 1: Inverse Reinforcement Learning (IRL)

® Setting: No reward function. For complex tasks, these can be hard to
specity!

e® Fortunately, we are given a set of demonstrations

D={7,...,7,} = {(xé, ué,x{,uf...)} ~ P
r r

m trajectories The state-action distribution of policy =*

® Goal: Learn a reward function r* such that

7% = argmax [, [r*(x, u)]

15

The high-level recipe

® Step 1: Learn a policy for the current reward tunction r
® Step 2: Update the reward function

Repeat until policy trajectories are similar to demonstrations

Compare R

16 *Partially based off slides from Yisong Yue and Hoang M. Le

Learning a reward function is an under defined problem

e Many reward functions correspond to the same policy

17 *Partially based off slides from Yisong Yue and Hoang M. Le

Learning a reward function is an under defined problem

® Let 7 be one solution, ie. 7 = argmax [[r*(x, u)]

e Note that ar™ for any constant a is also a solution, since

argmax [E_ |ar*(x,u)| = argmax E_ |r*(x, u)|

e In fact, »" = 0 is always a solution, since every policy is optimal

18

Many different |IRL approaches

@ The reward function is linear |Abbeel & Ng 2004]

e Maximize the trajectory entropy, subject to a feature matching constraint
| Ziebart et al., 2008|

e Maximum Margin Planning |Ratliff et al., 2006}

19

The linear reward function assumption
reduces to feature expectation matching

® Assume r(x) =6-¢(x) where ¢h(x) are the features of state x

@ Then the value of a policy is linear in the expected features

H
J(n) = E lz - qb(xt)]
=0
H
=0 L [Z¢(xt):|
=0

= 0 - u(m)
\

The expected features of the policy

20

New objective, matching the feature expectations

® Step 1: Learn a policy T for the current reward function and compute its
feature expectation pu

® Step 2: Update the reward function I%ll?xl 6’T(,u,, — W)
<

Repeat until feature expectations are close ||y, — p ||

Compare R

21 *Partially based off slides from Yisong Yue and Hoang M. Le

Using IRL to predict pedestrian intention

|Kitani et al., 2012]

22

Part 2: Directly learning a policy

Output Inputs
Policy Reward Access to Interactive Pre-collected
Learning Learning Environment Demonstrator Demonstration
Part 1 Inverse RL No Yes Yes No Yes
. Yes
Behavior Cloning Yes (direct) No No No
Part 2 Interactive IL Yes (direct) No Yes Yes (Optional)
GAIL Y
Yes (indirect) No Yes No "

23 *Partially based off slides from Yisong Yue and Hoang M. Le

Behavior cloning

e Observe pre-collected expert The state-action distribution of policy =*
demonstrations: /

D= {7,7,} = {(X Uy, X{, Uj...) } ~ P

® Learn a policy

argmin_ Z £ (u;, n(x;))

=3

Some loss function

T

24

Behavior cloning suffers from compounding errors

Va\

® The good news: 7 will perform well on
samples from p_

® The really bad news: When we roll out
policy 7 it will inevitably make some
mistakes compared to 7, and these errors
could compound resulting in drastically
different state action distributions p,+« and

Pz

25

Behavior cloning suffers from compounding errors

A\

® The good news: 7 will perform well on
samples from p_

® The really bad news: When we roll out

policy 7 it will inevitably make some
- %
mistakes compared to 7™, and these errors MUI D 1@y o Al

could compound resulting in drastically = Oplions

different state action distributions p,+ and Quit

Pz

20

Behavior cloning suffers from compounding errors

Theorem (simplified) [Ross et al., 2011|. Let ¢ be the supervised learning error rate of 7. Then the
cumulative reward of this policy is bounded by:

J(7) < J(m%) + T?¢

Errors compound with respect to the time horizon T

27

A history of covariate shift in imitation learning

3O Output
Units

J0x32 Sensor
Input Retina

Navlab 1 (1986-1989) and Navlab 2 + ALVINN

30 x 32 pixels, 3 layer network, outputs steering
command from approximately 5 minutes of training

data per road type [Pomerleau 1992] o8

A history of covariate shift in imitation learning

“igure 3.4: The single original video image is shifted and rotated to create multiple
raining exemplars in which the vehicle appears to be at different locations relative to

he road.

a
d

A
d

| N

s

Shifted and Rotated

riginal Image

P

A

0

"/

mages

View

/" Transformed
" Fleld of View

Original Extrapolation
Scheme

Improved Extrapolation
Scheme

29

|Pomerleau 1992]

Imitation Learning is not supervised learning

e Policy’s actions affect future observations/data

® This is not the case in supervised learning

Imitation Learning Supervised Learning
e Train/test data are not i.i.d. e Train/test data are i.i.d.
® If expected hold-out error is ¢, then ® If expected hold-out error is ¢, then
expected test error after T decisions is up to expected test error after T decisions is order
1=e Te
® Errors compound ® LErrors are independent

30 *From Florian Shkurti

Part 1

Part 2

Interactive imitation learning

Inverse RL

Behavior Cloning

Interactive 1L

GAIL

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Yes (indirect)

Reward
Learning

31

Yes

No

No

No

Inputs
Access to Interactive Pre-collected
Environment Demonstrator Demonstration

Yes No Yes
Yes

No No

Yes Yes (Optional)
Yes

Yes No

*Partially based off slides from Yisong Yue and Hoang M. Le

Interactive feedback

® Roll-out any policy, and expert provides

feedback for the current state

® In today’s lecture, we’ll consider the simple
setting where this feedback takes the form of

y : *
the expert’s action n*(x;) Expert feedback m*(z:)

32

The high-level recipe

e Step 1: Roll-out the current policy, collect expert feedback on the states it
V1s1ts

e Step 2: Update the dataset and retrain the policy

Repeat

33

The Forward Training algorithm

Initialize T policies, 7y, ..., Ty
® Step 1: Roll-out pOllcy uy ~ 7[1(5'1), Uy ~ 7[2(5'2),
and collect expert feedback u® = z*(x,), uik = 1*(x,), ...

1

e Step 2: Update policies

Intuitively, each policy will have to learn to correct for the mistakes of earlier policies

34

The Forward Training algorithm

@ Theorem (simplified) |Ross et al., 2011]|. Let ¢ be the supervised learning error rate of 7. Then

the cumulative reward of this policy is bounded by:

J(n) £ J(7*) + ule

N

Errors increase linearly with respect to the time horizon T,

A constant

Same as supervised learning!

The downside: We have to learn T separate policies

39

DAgger: Dataset Aggregation

® Learn only a single policy

Algorithm 1 DAgger

1: D = {(s,a)} initial expert demonstrations
2: ; + train learner’s policy parameters on D
3: for:=1...N do

4; Execute learner’s policy mg., get visited states Sp. = {sq, ..., s7}

5: Query the expert at those states to get actions A = {ag. a.-r}

6: Aggregate datasetlD = DU {(s,a) | s € Sy., a € A}| Aggregate the data
T Train learner’s policy my, ., on dataset L

8: Return one of the policies my. that performs best on validation set

36

45

Average Falls/Lap

-
o

Dataset Aggregation

——DAgger
==-SMiLe(0.1)
"""" Supervised
—
0.5 1 1.5 2 2.5
Number of Training Data s

37

-
e
O \ ’ 4
}lnglc Player ¥

—-— Multiplayer w
Oplions

~

» -

R i

- .‘ . N
7 f'\m. “‘

¥

"..r‘t‘o L g

Ross et al, 2011

DAgger: Dataset A

l' b | LA
_ .g._ ’) / ' — ;'

S
B L

-
: L}

ggregation

Ross et al, 2011

38

GAIL: Generative Adversarial Imitation Learning

Part 1 Inverse RL

Behavior Cloning

Part 2 Interactive 1L

GAIL

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Yes (indirect)

Inputs
Reward Access to Interactive Pre-collected
Learning Environment Demonstrator Demonstration
Yes Yes No Yes
Yes
No No No
No Yes Yes (Optional)
Yes
No Yes No

39

GAIL: Generative Adversarial Imitation Learning

® Setting: Pre-collected expert demonstrations
—_ _ U, 0 1,1
D — {Tl, ...,Tm} — {(.XO, I/to,.xl, ul...)} an.*

® Goal: Minimize the divergence between p . and p,

7z =argmin D(p_||p,:)

40

What's a divergence?

® Tells us how far apart two distributions are

® Given samples from p_. and p, , we can estimate the divergence (e.g. using
|[Nguyen et al., 2008|)

41

GAIL: Generative Adversarial Imitation Learning

® The GAIL objective

_x,urvpﬂ* IOg(f(X, I/t)) T _x,urvpﬂ log(l _f(xa l/t))

The divergence estimator

The ‘“discriminator’”

RL problem

® Step 1: For the current 7, maximize the discriminator to estimate the
divergence

® Step 2: Update the policy using reinforcement learning.

42

Takeaways

e Expert demonstrations, and in particular expert feedback, can dramatically
speed up policy training.

® Behavior Cloning suffers from compounding errors. This is not true for
Forward Training or DAgger, which use interactive expert feedback.

® Inverse reinforcement learning allows us to learn an expert’s reward
function.

43

