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Recap

e Markov Decision Processes are a very general class of models, which
encompass planning and reinforcement learning.
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Recap

“Markov” means that captures all information about the history

T1, T2y ..., Ty

The most recent state x;



Recap

® The difference between planning and reinforcement learning is whether the
are known

transition model / dynamics / environment



Recap

® The three general methods for reinforcement learning are...

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

® (2) and (3) are both methods

Model-free



Recap

The multi-armed bandit problem is reinforcement learning with  state(s)



Recap

What is the fundamental trade-off in bandit (and reinforcement learning)
problems?’

Exploration vs. exploitation



Recap

Reward 1s equivalent to

Negative cost



Recap

The e-greedy algorithm randomly explores with probability



Recap

The UCB algorithm chooses actions according to the estimated reward, plus a
bonus (i.e. confidence interval) which decreases with respect to

The number of times we try that action.



Today s lecture




Today s lecture

® Robots do not operate in a vacuum. They do not need to learn everything
from scratch.

e Humans need to easily interact with robots and share our expertise with
them.

® Robots need to learn from the behavior and experience of others, not just
their own.
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Today s lecture

e Part 1: How can robots easily understand our objectives from
demonstrations?

Inverse reinforcement learning (IRL)
e Part 2: How can robots incorporate other’s decision into their own?

Behavior cloning (BC), interactive imitation learning (IL)

13 *Based off Florian Shkurti’s lectures



Part 1

Part 2

Inverse RL

Behavior Cloning

Interactive 1L

GAIL

Today s lecture

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Inputs
Reward Access to Interactive Pre-collected
Learning Environment Demonstrator Demonstration
Yes Yes No Yes
Yes
No No No
No Yes Yes (Optional)
Yes
No Yes No

Yes (indirect)
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Part 1: Inverse Reinforcement Learning (IRL)

® Setting: No reward function. For complex tasks, these can be hard to
specity!

e® Fortunately, we are given a set of demonstrations

D={7,...,7,} = {(xé, ué,x{,uf...)} ~ P
r r

m trajectories The state-action distribution of policy =*

® Goal: Learn a reward function r* such that

7% = argmax [, [r*(x, u)]
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The high-level recipe

® Step 1: Learn a policy for the current reward tunction r
® Step 2: Update the reward function

Repeat until policy trajectories are similar to demonstrations

Compare R
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Learning a reward function is an under defined problem

e Many reward functions correspond to the same policy
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Learning a reward function is an under defined problem

® Let 7 be one solution, ie. 7 = argmax [ [r*(x, u)]

e Note that ar™ for any constant a is also a solution, since

argmax [E_ |ar*(x,u)| = argmax E_ |r*(x, u)|

e In fact, »" = 0 is always a solution, since every policy is optimal
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Many different |IRL approaches

@ The reward function is linear |Abbeel & Ng 2004]

e Maximize the trajectory entropy, subject to a feature matching constraint
| Ziebart et al., 2008|

e Maximum Margin Planning |Ratliff et al., 2006}
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The linear reward function assumption
reduces to feature expectation matching

® Assume r(x) =6-¢(x) where ¢h(x) are the features of state x

@ Then the value of a policy is linear in the expected features

H
J(n) = E lz - qb(xt)]
=0
H
=0 L [Z¢(xt):|
=0

= 0 - u(m)
\

The expected features of the policy
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New objective, matching the feature expectations

® Step 1: Learn a policy T for the current reward function and compute its
feature expectation pu

® Step 2: Update the reward function I%ll?xl 6’T(,u,, — W)
<

Repeat until feature expectations are close ||y, — p ||

Compare R
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Using IRL to predict pedestrian intention

|Kitani et al., 2012]
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Part 2: Directly learning a policy

Output Inputs
Policy Reward Access to Interactive Pre-collected
Learning Learning Environment Demonstrator Demonstration
Part 1 Inverse RL No Yes Yes No Yes
. Yes
Behavior Cloning Yes (direct) No No No
Part 2 Interactive IL Yes (direct) No Yes Yes (Optional)
GAIL Y
Yes (indirect) No Yes No "
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Behavior cloning

e Observe pre-collected expert The state-action distribution of policy =*
demonstrations: /

D= {7, ....7,} = {(X Uy, X{, Uj...) } ~ P

® Learn a policy

argmin_ Z £ (u;, n(x;))

=3

Some loss function

T
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Behavior cloning suffers from compounding errors

Va\

® The good news: 7 will perform well on
samples from p_

® The really bad news: When we roll out
policy 7 it will inevitably make some
mistakes compared to 7, and these errors
could compound resulting in drastically
different state action distributions p,+« and

Pz
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Behavior cloning suffers from compounding errors

A\

® The good news: 7 will perform well on
samples from p_

® The really bad news: When we roll out

policy 7 it will inevitably make some
- %
mistakes compared to 7™, and these errors MUI D 1@y o Al

could compound resulting in drastically = Oplions

different state action distributions p,+ and Quit

Pz
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Behavior cloning suffers from compounding errors

Theorem (simplified) [Ross et al., 2011|. Let ¢ be the supervised learning error rate of 7. Then the
cumulative reward of this policy is bounded by:

J(7) < J(m%) + T?¢

Errors compound with respect to the time horizon T
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A history of covariate shift in imitation learning

3O Output
Units

J0x32 Sensor
Input Retina

Navlab 1 (1986-1989) and Navlab 2 + ALVINN

30 x 32 pixels, 3 layer network, outputs steering
command from approximately 5 minutes of training

data per road type [Pomerleau 1992] o8



A history of covariate shift in imitation learning

“igure 3.4: The single original video image is shifted and rotated to create multiple
raining exemplars in which the vehicle appears to be at different locations relative to

he road.
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Imitation Learning is not supervised learning

e Policy’s actions affect future observations/data

® This is not the case in supervised learning

Imitation Learning Supervised Learning
e Train/test data are not i.i.d. e Train/test data are i.i.d.
® If expected hold-out error is ¢, then ® If expected hold-out error is ¢, then
expected test error after T decisions is up to expected test error after T decisions is order
1=e Te
® Errors compound ® LErrors are independent
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Part 1

Part 2

Interactive imitation learning

Inverse RL

Behavior Cloning

Interactive 1L

GAIL

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Yes (indirect)

Reward
Learning
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Yes

No

No

No

Inputs
Access to Interactive Pre-collected
Environment Demonstrator Demonstration

Yes No Yes
Yes

No No

Yes Yes (Optional)
Yes

Yes No
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Interactive feedback

® Roll-out any policy, and expert provides

feedback for the current state

® In today’s lecture, we’ll consider the simple
setting where this feedback takes the form of

y : *
the expert’s action n*(x;) Expert feedback m*(z:)
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The high-level recipe

e Step 1: Roll-out the current policy, collect expert feedback on the states it
V1s1ts

e Step 2: Update the dataset and retrain the policy

Repeat
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The Forward Training algorithm

Initialize T policies, 7y, ..., Ty
® Step 1: Roll-out pOllcy uy ~ 7[1(5'1), Uy ~ 7[2(5'2),
and collect expert feedback u® = z*(x,), uik = 1*(x,), ...

1

e Step 2: Update policies

Intuitively, each policy will have to learn to correct for the mistakes of earlier policies
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The Forward Training algorithm

@ Theorem (simplified) |Ross et al., 2011]|. Let ¢ be the supervised learning error rate of 7. Then

the cumulative reward of this policy is bounded by:

J(n) £ J(7*) + ule

N

Errors increase linearly with respect to the time horizon T,

A constant

Same as supervised learning!

The downside: We have to learn T separate policies
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DAgger: Dataset Aggregation

® Learn only a single policy

Algorithm 1 DAgger

1: D = {(s,a)} initial expert demonstrations
2: ; + train learner’s policy parameters on D
3: for:=1...N do

4; Execute learner’s policy mg., get visited states Sp. = {sq, ..., s7}

5: Query the expert at those states to get actions A = {ag. .... a.-r}

6: Aggregate datasetlD = DU {(s,a) | s € Sy., a € A}| Aggregate the data
T Train learner’s policy my, ., on dataset L

8: Return one of the policies my. that performs best on validation set
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DAgger: Dataset A
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GAIL: Generative Adversarial Imitation Learning

Part 1 Inverse RL

Behavior Cloning

Part 2 Interactive 1L

GAIL

Output

Policy
Learning

No
Yes (direct)

Yes (direct)

Yes (indirect)

Inputs
Reward Access to Interactive Pre-collected
Learning Environment Demonstrator Demonstration
Yes Yes No Yes
Yes
No No No
No Yes Yes (Optional)
Yes
No Yes No
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GAIL: Generative Adversarial Imitation Learning

® Setting: Pre-collected expert demonstrations
—_ _ U, 0 1,1
D — {Tl, ...,Tm} — {(.XO, I/to,.xl, ul...)} an.*

® Goal: Minimize the divergence between p . and p,

7z =argmin D(p_||p,:)
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What's a divergence?

® Tells us how far apart two distributions are

® Given samples from p_. and p, , we can estimate the divergence (e.g. using
|[Nguyen et al., 2008|)
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GAIL: Generative Adversarial Imitation Learning

® The GAIL objective

_x,urvpﬂ* IOg(f(X, I/t)) T _x,urvpﬂ log(l _f(xa l/t))

The divergence estimator

The ‘“discriminator’”

RL problem

® Step 1: For the current 7, maximize the discriminator to estimate the
divergence

® Step 2: Update the policy using reinforcement learning.
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Takeaways

e Expert demonstrations, and in particular expert feedback, can dramatically
speed up policy training.

® Behavior Cloning suffers from compounding errors. This is not true for
Forward Training or DAgger, which use interactive expert feedback.

® Inverse reinforcement learning allows us to learn an expert’s reward
function.
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