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Recap
• Markov Decision Processes are a very general class of models, which 

encompass planning and reinforcement learning.
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Recap

“Markov” means that _____ captures all information about the history 
x1, x2, …, xt

The most recent state xt



Recap
• The difference between planning and reinforcement learning is whether the 

__________ are known

transition model / dynamics / environment



Recap
• The three general methods for reinforcement learning are…

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

• (2) and (3) are both _______ methods

Model-free



Recap

The multi-armed bandit problem is reinforcement learning with __ state(s)

1



Recap

What is the fundamental trade-off in bandit (and reinforcement learning) 
problems?

Exploration vs. exploitation



Recap

Reward is equivalent to ________

Negative cost



Recap

The ε-greedy algorithm randomly explores with probability

ε



Recap

The UCB algorithm chooses actions according to the estimated reward, plus a 
bonus (i.e. confidence interval) which decreases with respect to _____

The number of times we try that action.



Today’s lecture
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Today’s lecture

• Robots do not operate in a vacuum. They do not need to learn everything 
from scratch. 

• Humans need to easily interact with robots and share our expertise with 
them. 

• Robots need to learn from the behavior and experience of others, not just 
their own.

!12 *Based off Florian Shkurti’s lectures



Today’s lecture

• Part 1: How can robots easily understand our objectives from 
demonstrations? 

Inverse reinforcement learning (IRL) 

• Part 2: How can robots incorporate other’s decision into their own? 

Behavior cloning (BC), interactive imitation learning (IL)

!13 *Based off Florian Shkurti’s lectures
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Today’s lecture

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy 
Learning

Reward 
Learning

Access to 
Environment

Interactive 
Demonstrator

Pre-collected 
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes 

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes 



Part 1: Inverse Reinforcement Learning (IRL)

• Setting: No reward function. For complex tasks, these can be hard to 
specify! 

• Fortunately, we are given a set of demonstrations 

• Goal: Learn a reward function r* such that

!15

π* = argmaxπ𝔼π [r*(x, u)]

D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

m trajectories The state-action distribution of policy π* 



The high-level recipe

• Step 1: Learn a policy for the current reward function r 

• Step 2: Update the reward function 

Repeat until policy trajectories are similar to demonstrations
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Run RL

Update 
reward

Compare

*Partially based off slides from Yisong Yue and Hoang M. Le



Learning a reward function is an under defined problem

!17

• Many reward functions correspond to the same policy

*Partially based off slides from Yisong Yue and Hoang M. Le



Learning a reward function is an under defined problem

• Let r* be one solution, i.e. 

• Note that ar* for any constant a is also a solution, since  

• In fact, r* = 0 is always a solution, since every policy is optimal
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π* = argmaxπ𝔼π [r*(x, u)]

argmaxπ𝔼π [ar*(x, u)] = argmaxπ𝔼π [r*(x, u)]



Many different IRL approaches

• The reward function is linear [Abbeel & Ng 2004] 

• Maximize the trajectory entropy, subject to a feature matching constraint 
[Ziebart et al., 2008] 

• Maximum Margin Planning [Ratliff et al., 2006]
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The linear reward function assumption  
reduces to feature expectation matching

• Assume                    where        are the features of state x 

• Then the value of a policy is linear in the expected features 
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r(x) = θ ⋅ ϕ(x) ϕ(x)

J(π) = 𝔼 [
H

∑
t=0

θ ⋅ ϕ(xt)]
= θ ⋅ 𝔼 [

H

∑
t=0

ϕ(xt)]
= θ ⋅ μ(π)

The expected features of the policy



New objective, matching the feature expectations
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• Step 1: Learn a policy     for the current reward function and compute its 
feature expectation  

• Step 2: Update the reward function  

Repeat until feature expectations are close

Run RL

Update 
reward

Compare

*Partially based off slides from Yisong Yue and Hoang M. Le!21

π
μ

max
||θ||≤1

θT(μπ − μπ*)

| |μπ − μπ* | |
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[Kitani et al., 2012]

Using IRL to predict pedestrian intention
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Part 2: Directly learning a policy

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy 
Learning

Reward 
Learning

Access to 
Environment

Interactive 
Demonstrator

Pre-collected 
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes 

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes 



Behavior cloning
• Observe pre-collected expert 

demonstrations: 

• Learn a policy
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D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

̂π = argminπ

n

∑
i=0

ℓ(ui, π(xi))

Some loss function

The state-action distribution of policy π* 



Behavior cloning suffers from compounding errors

• The good news:     will perform well on 
samples from 

• The really bad news: When we roll out 
policy     it will inevitably make some 
mistakes compared to    , and these errors 
could compound resulting in drastically 
different state action distributions      and  

!25

̂π
ρπ*

̂π
π*

ρπ*
ρ ̂π



Behavior cloning suffers from compounding errors

• The good news:     will perform well on 
samples from 

• The really bad news: When we roll out 
policy     it will inevitably make some 
mistakes compared to    , and these errors 
could compound resulting in drastically 
different state action distributions      and  
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̂π
ρπ*
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π*

ρπ*
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Behavior cloning suffers from compounding errors
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J( ̂π) ≤ J(π*) + T2ϵ

Theorem (simplified) [Ross et al., 2011]. Let ε be the supervised learning error rate of   . Then the 
cumulative reward of this policy is bounded by: 

̂π

Errors compound with respect to the time horizon T



A history of covariate shift in imitation learning

Navlab 1 (1986-1989) and Navlab 2 + ALVINN
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30 x 32 pixels, 3 layer network, outputs steering 
command from approximately 5 minutes of training 

data per road type [Pomerleau 1992]



A history of covariate shift in imitation learning
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[Pomerleau 1992]



Imitation Learning is not supervised learning

• Policy’s actions affect future observations/data 

• This is not the case in supervised learning
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Imitation Learning 

• Train/test data are not i.i.d. 

• If expected hold-out error is ε, then 
expected test error after T decisions is up to 

T2ε 

• Errors compound

*From Florian Shkurti

Supervised Learning 

• Train/test data are i.i.d. 

• If expected hold-out error is ε, then 
expected test error after T decisions is order 

Tε 

• Errors are independent
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Interactive imitation learning

*Partially based off slides from Yisong Yue and Hoang M. Le

Output Inputs

Policy 
Learning

Reward 
Learning

Access to 
Environment

Interactive 
Demonstrator

Pre-collected 
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes 

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes 



Interactive feedback
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Expert feedback π*(xt)  

• Roll-out any policy, and expert provides 
feedback for the current state 

• In today’s lecture, we’ll consider the simple 
setting where this feedback takes the form of 
the expert’s action π*(xt)



The high-level recipe

• Step 1: Roll-out the current policy, collect expert feedback on the states it 
visits 

• Step 2: Update the dataset and retrain the policy 

Repeat
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The Forward Training algorithm
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Initialize T policies,  

• Step 1: Roll-out policy 

              and collect expert feedback 

• Step 2: Update policies 

Intuitively, each policy will have to learn to correct for the mistakes of earlier policies 

π1, …, πT

u1 ∼ π1(s1), u2 ∼ π2(s2), …

u*1 = π*(x1), u*2 = π*(x2), …



The Forward Training algorithm
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• Theorem (simplified) [Ross et al., 2011]. Let ε be the supervised learning error rate of   . Then 
the cumulative reward of this policy is bounded by: 

J( ̂π) ≤ J(π*) + uTϵ

̂π

Errors increase linearly with respect to the time horizon T, 
Same as supervised learning!

A constant

The downside: We have to learn T separate policies



DAgger: Dataset Aggregation 
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Aggregate the data

• Learn only a single policy



DAgger: Dataset Aggregation 
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Ross et al, 2011



DAgger: Dataset Aggregation 
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Ross et al, 2011



GAIL: Generative Adversarial Imitation Learning
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Output Inputs

Policy 
Learning

Reward 
Learning

Access to 
Environment

Interactive 
Demonstrator

Pre-collected 
Demonstration

s
Part 1 Inverse RL No Yes Yes No Yes

Part 2

Behavior Cloning Yes (direct) No No No
Yes 

Interactive IL Yes (direct) No Yes Yes (Optional)

GAIL
Yes (indirect) No Yes No

Yes 



GAIL: Generative Adversarial Imitation Learning

• Setting: Pre-collected expert demonstrations 

• Goal: Minimize the divergence between      and  
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D = {τ1, …, τm} = {(xi
0, ui

0, xi
1, ui

1…)} ∼ ρπ*

ρπ* ρ ̂π

̂π = argminπD(ρπ | |ρπ*)



What’s a divergence?
• Tells us how far apart two distributions are 

• Given samples from     and    , we can estimate the divergence  (e.g. using 
[Nguyen et al., 2008])

!41

ρπ* ρ ̂π

P
(x

)
x



GAIL: Generative Adversarial Imitation Learning

• The GAIL objective 

• Step 1: For the current π, maximize the discriminator to estimate the 
divergence 

• Step 2: Update the policy using reinforcement learning.
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min
π

max
f

𝔼x,u∼ρπ*
log( f(x, u)) + 𝔼x,u∼ρπ

log(1 − f(x, u))

RL problem
The “discriminator”

The divergence estimator



Takeaways

• Expert demonstrations, and in particular expert feedback, can dramatically 
speed up policy training. 

• Behavior Cloning suffers from compounding errors. This is not true for 
Forward Training or DAgger, which use interactive expert feedback. 

• Inverse reinforcement learning allows us to learn an expert’s reward 
function.
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