Multi-armed Bandits

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Matt Barnes

Housekeeping

• Remember to fill out course evaluations

Recap

• Markov Decision Processes are a very general class of models, which encompass planning and reinforcement learning.

"Markov" means that _____ captures all information about the history x_1, x_2, \ldots, x_t

The most recent state x_t

Recap

_____ are known

transition model / dynamics / environment

Recap

• The difference between planning and reinforcement learning is whether the

Recap

• The three general methods for reinforcement learning are... (1) Model-based (2) Approximate dynamic programming

• (2) and (3) are both _____ methods

- (3) Policy gradient

 - Model-free

What if the MDP only has a single state?

The MDP view of bandits

Reinforcement Learning

The MDP view of bandits

Multi-armed Bandits

Another view of the bandit problem

t=1 \$2 -\$1

Side note: Throughout this lecture I use "reward" and "cost" interchangeably. You can think about reward as negative cost.

1 \$10

\$2 t=1

-\$2

\$10 -\$1

\$2

Real world bandit successes

Which advertisement to display? Reward: user clicks on the selected ad

U.S. INTERNATIONAL 中文 ESPANOL

Other exciting applications

Which grasp? Reward: robot picks up object

Other exciting applications

Which treatment? Reward: patient gets healthy

Other exciting applications

Packet routing: Which path to send data along?

The stochastic bandit setting

- At each time-step t = 1, 2, ...
- Choose action a_k
- Receive stochastic reward $r_t \sim \mathbb{P}_k(c)$

The stochastic bandit setting

- What is the best action? u_3
- Why?

Optimal action is one with highest expected reward

Requires both (a) Playing arms we don't know much about (**exploring**) (b) Earning money on arms we know will pay off well (**exploiting**)

Key challenge: How do we maximize our gambling earnings?

The stochastic bandit setting

Step 1) Explore: Play each arm n times

A dumb algorithm

Step 2) Exploit: Choose the arm with the best estimated reward forever

"Exploration vs. Exploitation" is a fundamental tradeoff

Stafford, Tom, et al. "A novel task for the investigation of action acquisition." PloS one 7.6 (2012): e37749.

"Exploration vs. Exploitation" is a fundamental tradeoff

Key takeaway: Algorithm needs to transition from *exploring* to *exploiting*

A slightly less dumb algorithm: The *ɛ*-greedy algorithm

Maintain *estimates* of each action's expected cost. At each time step, choose action a_t according to

- Exploit: With probability (1ε) choose the action with the lowest estimated cost
- **Explore:** With probability ε , choose a random action

Update estimates.

The *ɛ*-greedy algorithm

Say we chose action k at time steps $t = t_{k_1}, \ldots, t_{k_{n_k}}$

The estimator of the expected cost is the empirical mean of the observed costs for this action:

Why can't we just choose the action with the lowest estimated cost??

If \hat{c} of the optimal action is less than the true expected cost of some other action, then we will never choose the optimal action!

$$\hat{c}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} c_{t_{k_i}}$$

The *\varepsilon*-greedy algorithm

The downside of ε -greedy

- It's pretty dumb about how it chooses to explore or exploit
- It will keep exploring forever!

- With a high estimated reward — We are uncertain about (have no tried many times)

• Instead of maintaining an estimate of the expected reward, greedily choose actions with the largest *upper confidence bound* on the expected reward

• "Optimism in the face of uncertainty." Naturally trades off choosing actions:

At t=0, $n_k = 0$ for all k and the upper confidence bounds are infinite.

We pull the first arm

We pull the second arm

• By now, each arm has been pulled a couple times, and we have a more reasonable UCB. way as planning heuristics (e.g. A^*).

• Note that these UCB's are *optimistic*, and allow us to focus our actions on promising actions in the same

Only need to pull these three arms! Will effectively stop exploring once all UCB's are less than r_3

Focus exploration on more promising arms, evident by the better arms having tighter UCB'
Naturally transitions from exploration to exploitation

UCB outperforms *e*-greedy in practice (and in theory)

 \mathcal{E} -greedy $\mathcal{E} = 0.1$

Contextual bandits are a powerful variation of the classic bandit problem Example: Advertising – which ad to show user?

Additional context: User history, type of ad, IP address, time of day Reward: Does user click the ad?

Another variation: Adversarial rewards

Stochastic vs. Adversarial

• Stochastic bandits assume rew distribution

Stochastic bandits assume reward drawn i.i.d. from some bounded

Another variation: Adversarial rewards

- ulletsome distribution
- ullet

Adversarial bandits only assume reward is bounded, samples not drawn IID from

Surprisingly, we can prove strong guarantees in this setting, too (EXP3 algorithm)

The multi-armed bandit problem is reinforcement learning with $__$ state(s)

1

Recap

problems?

Exploration vs. exploitation

Recap

What is the fundamental trade-off in bandit (and reinforcement learning)

Reward is equivalent to _____

Negative cost

Recap

The ε -greedy algorithm randomly explores with probability

 ${\cal E}$

Recap

bonus (i.e. confidence interval) which decreases with respect to $_____$

The number of times we try that action.

Recap

The UCB algorithm chooses actions according to the estimated reward, plus a

Further Reading

Chapter 2: Multi-armed bandits

Foundations and Trends[®] in Machine Learning 4:2

Online Learning and Online Convex Optimization

Advanced reading: Connection to online convex optimization

Preview of the next lecture

• Imitation learning — what if we have help from a (human) expert?

