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Housekeeping

• Remember to fill out course evaluations

!2



Recap
• Markov Decision Processes are a very general class of models, which 

encompass planning and reinforcement learning.
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Recap

“Markov” means that _____ captures all information about the history 
x1, x2, …, xt

The most recent state xt



Recap
• The difference between planning and reinforcement learning is whether the 

__________ are known

transition model / dynamics / environment



Recap
• The three general methods for reinforcement learning are…

(1) Model-based

(2) Approximate dynamic programming

(3) Policy gradient

• (2) and (3) are both _______ methods

Model-free



What if the MDP  
only has a single state?
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The MDP view of bandits

Reinforcement Learning
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Another view of the bandit problem
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$2 -$2 -$1 $10t=1

The original MAB problem
u1 u2 u3 u4

Side note: Throughout this lecture I use “reward” and “cost” interchangeably. 
You can think about reward as negative cost.



Agent

$2 -$2 -$1 $10t=1 $2

The original MAB problem
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Agent

$2 -$2 -$1 $10t=1 $2

$3 -$3 $0 $5t=2

The original MAB problem
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Agent

$2 -$2 -$1 $10t=1 $2

$3 -$3 $0 $5t=2 -$3

The original MAB problem
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Agent

$1 -$4 $1 $1000000t=3 $1

$2 -$2 -$1 $10t=1 $2

$3 -$3 $0 $5t=2 -$3

The original MAB problem
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Ba
nd

its Agent

$3 -$4 -$5 $3t=4 -$5

$2 -$2 -$1 $10t=1 $2

$3 -$3 $0 $5t=2 -$3

$1 -$4 $1 $1000000t=3 $1

The original MAB problem
a1 a2 a3 a4



Real world bandit successes
Which advertisement to display?  
Reward: user clicks on the selected ad



Which grasp? Reward: robot picks up object

Other exciting applications



Which treatment? Reward: patient gets healthy

Other exciting applications



Packet routing: Which path to send data along?

Other exciting applications



The stochastic bandit setting

At each time-step t = 1, 2, … 

• Choose action ak 

• Receive stochastic reward rt ∼ ℙk(c)



The stochastic bandit setting

• What is the best action?

u3

• Why?

argmink𝔼 [ck]

Optimal action is one with highest 
expected reward



The stochastic bandit setting

Cost

Probability

Cost Cost Cost

u1 u2 u3 u4

Key challenge: How do we maximize our gambling earnings? 

Requires both 
(a) Playing arms we don’t know much about (exploring) 
(b)Earning money on arms we know will pay off well (exploiting) 



A dumb algorithm

Cost

Probability

Cost Cost Cost

u1 u2 u3 u4

Step 1) Explore: Play each arm n times 

Step 2) Exploit: Choose the arm with the best estimated reward forever 



“Exploration vs. Exploitation” is a fundamental tradeoff

Stafford, Tom, et al. "A novel task for the investigation of action acquisition." PloS one 7.6 (2012): e37749.
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Key takeaway: Algorithm needs to transition 
from exploring to exploiting 

“Exploration vs. Exploitation” is a fundamental tradeoff



A slightly less dumb algorithm: 
The ε-greedy algorithm

Maintain estimates of each action’s expected cost. At each time step, choose 
action at according to 

• Exploit: With probability (1 - ε) choose the action with the lowest 
estimated cost 

• Explore: With probability ε, choose a random action 

Update estimates.



The ε-greedy algorithm
Say we chose action k at time steps 

The estimator of the expected cost is the empirical mean of the observed 
costs for this action: 

̂ck =
1
nk

nk

∑
i=1

ctki

t = tk1
, …, tknk

Why can’t we just choose the action with the lowest estimated cost??

If     of the optimal action is less than the true expected cost of some other 
action, then we will never choose the optimal action!

̂c



The ε-greedy algorithm
The downside of ε-greedy 

• It’s pretty dumb about how it chooses to explore or exploit 

• It will keep exploring forever!



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

• Instead of maintaining an estimate of the expected reward, greedily choose 
actions with the largest upper confidence bound on the expected reward

̂ck +
2
nk

log ( 1
δ )

The estimate of the mean 
(same as ε-greedy) 

Number of times we  
have tried action uk

Constant, trades off  
exploration and exploitation

• “Optimism in the face of uncertainty.” Naturally trades off choosing actions: 
— With a high estimated reward 
— We are uncertain about (have no tried many times)

Bonus which encourages exploration



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

The upper confidence bound

At t=0, nk = 0 for all k and the upper confidence bounds are infinite. 



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

The upper confidence bound

We pull the first arm

The sample r



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

We pull the second arm

The sample r



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

Action with the best UCB

• By now, each arm has been pulled a couple times, and we have a more reasonable UCB. 
• Note that these UCB’s are optimistic, and allow us to focus our actions on promising actions in the same 

way as planning heuristics (e.g. A*).



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

Only need to pull these three arms!  
Will effectively stop exploring once all UCB’s are less than r3



A Smart Algorithm: 
Upper Confidence Bound (UCB) Algorithm

•Focus exploration on more promising arms, evident by the better arms having tighter UCB’ 
•Naturally transitions from exploration to exploitation 



UCB outperforms ε-greedy in practice (and in theory) 



Contextual bandits are a powerful variation of the 
classic bandit problem

Additional context: User history, type of ad, IP address, time of day 
Reward: Does user click the ad?

Example: Advertising – which ad to show user?



Another variation: Adversarial rewards

• Stochastic bandits assume reward drawn i.i.d. from some bounded 
distribution

Ba
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its
Stochastic vs. Adversarial

0 1Reward

Prob

0 1Reward 0 1Reward 0 1Reward



• Adversarial bandits only assume reward is bounded, samples not drawn IID from 
some distribution 

• Surprisingly, we can prove strong guarantees in this setting, too (EXP3 algorithm)
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Stochastic vs. Adversarial

0 1Reward 0 1Reward 0 1Reward 0 1Reward

Prob ? ? ? ?

Another variation: Adversarial rewards



Recap

The multi-armed bandit problem is reinforcement learning with __ state(s)

1



Recap

What is the fundamental trade-off in bandit (and reinforcement learning) 
problems?

Exploration vs. exploitation



Recap

Reward is equivalent to ________

Negative cost



Recap

The ε-greedy algorithm randomly explores with probability

ε



Recap

The UCB algorithm chooses actions according to the estimated reward, plus a 
bonus (i.e. confidence interval) which decreases with respect to _____

The number of times we try that action.



Further Reading

Chapter 2: Multi-armed bandits
Advanced reading: 

Connection to online convex optimization



Preview of the next lecture
• Imitation learning — what if we have help from a (human) expert?


